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Abstract: Prostate cancer (PCa) is a clinically heterogeneous disease. Predicting clinically significant
PCa with low–intermediate prostate-specific antigen (PSA), which often includes aggressive cancers,
is imperative. This study evaluated the predictive accuracy of deep learning analysis using multi-
modal medical data focused on clinically significant PCa in patients with PSA ≤ 20 ng/mL. Our
cohort study included 178 consecutive patients who underwent ultrasound-guided prostate biopsy.
Deep learning analyses were applied to predict clinically significant PCa. We generated receiver
operating characteristic curves and calculated the corresponding area under the curve (AUC) to
assess the prediction. The AUC of the integrated medical data using our multimodal deep learning
approach was 0.878 (95% confidence interval [CI]: 0.772–0.984) in all patients without PSA restriction.
Despite the reduced predictive ability of PSA when restricted to PSA ≤ 20 ng/mL (n = 122), the
AUC was 0.862 (95% CI: 0.723–1.000), complemented by imaging data. In addition, we assessed
clinical presentations and images belonging to representative false-negative and false-positive cases.
Our multimodal deep learning approach assists physicians in determining treatment strategies by
predicting clinically significant PCa in patients with PSA ≤ 20 ng/mL before biopsy, contributing to
personalized medical workflows for PCa management.

Keywords: deep learning; prostate cancer; clinically significant prostate cancer; multimodal data; PSA

1. Introduction

Prostate cancer (PCa) is a clinically heterogeneous disease, which is one of the most
commonly diagnosed cancers in elderly men and the sixth leading cause of cancer-related
death in Japan [1]. Prostate-specific antigen (PSA) is widely used in clinical practice,
leading to a reduction in the risk of cancer spreading and cancer-related deaths [2–4].
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However, PCa with low–intermediate PSA level also often includes aggressive cancers,
such as clinically significant cancer, which can be life-threatening if not addressed [2,3,5].
Clinically significant cancer can progress when appropriate treatment is not performed at
the appropriate time.

Artificial intelligence (AI) is gaining considerable attention owing to its excellent
performance in medical image classification [6–9]. In the field of PCa, this technology has
achieved notable effects that would be impossible to achieve using conventional approaches.
Clinically significant PCa was detected by applying an explainable AI model to prostate
magnetic resonance imaging (MRI) [10], showing improved confidence and reading time
for non-experts by offering visual and textual explanations using established imaging
features. Furthermore, we developed a method to acquire new explainable features from
annotation-free histopathological prostate images, which can improve cancer recurrence
predictions [11]. Urologists are eager to enhance PCa management in patients with low–
intermediate PSA by applying AI technology to predict clinically significant PCa accurately.
Our study aimed to predict clinically significant PCa in patients with PSA ≤ 20 ng/mL
by employing our deep learning approach on multimodal medical data routinely used
in clinical practice without prostate biopsy, which can be used to optimize the overall
management of PCa.

2. Materials and Methods
2.1. Study Design

We enrolled 178 consecutive patients between August 2019 and June 2020. Patients
underwent ultrasound-guided prostate biopsy at Nippon Medical School Hospital (NMSH)
in Tokyo, Japan. Figure 1 shows the profile used in this study. Cases with transperineal
biopsy of the prostate (two cases), history of post-intravesical Bacillus Calmette–Guérin
therapy (one case), and others (insufficient saved image and data: 24 cases) were excluded.
In our institution, transrectal prostate biopsy was performed in most cases. In this study, we
excluded two cases of transperineal biopsy. We evaluated 151 cases, 583 ultrasound images
obtained via the transrectal approach, 1540 T2-weighted images (T2WI), and 1487 diffusion-
weighted images (DWI)/apparent diffusion coefficient (ADC) using deep learning analysis.
Clinical data were divided into two subsets: a training dataset comprising cases between
August 2019 and February 2020 and a test dataset comprising cases from March 2020 to
June 2020. Clinically significant PCa is variably defined [12], and among several indicators
we used the International Society of Urological Pathology (ISUP) prostate cancer grading
2–5 in this study. We evaluated the prediction accuracies for clinically significant PCa
before prostate biopsy using the following datasets: PSA, ultrasound imaging, MRI (T2WI,
DWI, and ADC), and multimodal clinical data, in whole cases with no restrictions of PSA
and in cases with PSA levels ≤20 ng/mL. This study was approved by the Institutional
Review Boards of the NMSH (reference O-2021-080) and RIKEN (reference Wako 2023-21).
The requirement for informed consent was waived due to the retrospective nature of this
study and the lack of intervention. The opportunity to refuse to participate in this study
was guaranteed in an opt-out manner via the Ethics Committee of the NMSH website.

2.2. MRI Images

All patients underwent biparametric MRI before prostate biopsy. Each scan was
performed using a mixed MRI scanner with different gradient strengths (1.5 or 3.0 tesla)
with a phased array coil. A previous study revealed that the signal-to-noise and contrast-
noise ratios of T2WI were similar at 1.5 and 3.0 tesla. All MRI images were saved in Portable
Network Graphics (PNG) format. A rectangular region of the prostate was extracted from
these images. This rectangular region included proximate tissues, such as the prostatic
capsular vessels, pelvic fascia, and rectum. We adjusted these images to 256 × 256 pixels
for the deep learning analysis.
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Figure 1. Flowchart of the patient selection procedure.

2.3. Ultrasound Imaging

Prostate ultrasound imaging was performed at four locations (base, middle, middle-
apex, and apex). All ultrasound images were saved in Digital Imaging and Communications
in Medicine (DICOM) format. All the DICOM ultrasound images were converted to PNG,
and a rectangular section of the prostate was isolated from the images. This rectangular
area encompasses neighboring structures such as the prostatic capsular vessels, pelvic
fascia, and rectum. The images were resized to 256 × 256 pixels. We used an ultrasound
system (Aplio i800; Canon Medical Systems, Tokyo, Japan) with a 6 MHz transrectal probe
(PVT-770 RT; Canon Medical System).

2.4. Pathological Evaluation

Histopathological assessments were performed by two pathologists in accordance
with the ISUP grading [13]. Pathologists independently diagnosed all cases and reached
a consensus.

2.5. Prediction Using Machine Learning Analysis

We applied a deep convolutional neural network model [14], which was pre-trained
on ImageNet. We used an augmentation technique, including a zoom range parameter. We
assigned positive or negative labels to these datasets for the analyses (clinically significant
PCa or others). Three images were automatically selected in cases with multiple images per
patient based on the top three highest probabilities (|Pdl-0.5|, Pdl: the predicted probability
of deep learning prediction). Our previous study [15] showed that using three suitable
images provides the most accurate analysis. We used the predicted probabilities of the deep
learning prediction as feature values for multimodal analysis. We summed the features
from each modality and employed them as support vector machine (SVM) features for
prediction (Figure 2). We constructed a receiver operating characteristic (ROC) curve with
the corresponding area under the curve (AUC) to evaluate the predictions. We determined
the thresholds using the Youden index. We used the e1071 package (version 1.7.14) of
the R software for the SVM. The SVM calculations were performed automatically using
software packages.
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Figure 2. Graphical flowchart of machine learning analysis. Step 1: individual medical data analysis
(upper image)—our system selected three images (yellow frame) of each modality based on the
method in Section 2.5 (automated selection). Predictive probabilities belonging to each of the three
images outputted by neural network are employed as SVM features for prediction. Step 2: integrated
analysis (lower image)—similarly, our system selected three images (yellow frame) belonging to
each modality based on the method in Section 2.5 (automated selection). A total of 12 predictive
probabilities from each modality along with clinical data (PSA) were employed as SVM features
for prediction. Abbreviations: SVM: support vector machine, PSA: prostate-specific antigen, T2WI:
T2-weighted imaging, ADC: apparent diffusion coefficient, DWI: diffusion-weighted imaging.

2.6. Statistical Analysis

A Wilcoxon rank-sum test was used to assess the differences in continuous variables.
The construction and comparison of ROC curves were performed using the ‘pROC’ package
(version 1.18.5) in the R programming language, version 4.4 [16]. All p-values reported in
this study were two-sided, and statistical significance was determined at p < 0.05.

2.7. Data Availability

The clinical data analyzed in this study were collected with the cooperation of each
patient through medical treatment at NMSH. Protecting their personal information has
priority, therefore these data are not publicly available. The data presented in this study
are available on request from the corresponding author after approval by the NMSH
institutional ethics committee.

3. Results
3.1. Image and Patient Characteristics

Table 1 shows the 151 patients enrolled in our study, all of whom underwent ultrasound-
guided prostate biopsies at the NMSH. We classified cases based on the presence or absence
of clinically significant PCa. The median age of all patients was 71 years [interquartile
range (IQR): 66–76 years]. The median age of the patients with clinically significant PCa
was 72 years (IQR: 68–78), and those with clinically significant PCa were significantly
older than those without clinically significant PCa (p = 0.003). The median PSA level in all
cases was 8.6 ng/mL (IQR: 6.1–14.3). Among clinically significant PCa cases, the median
PSA was 9.6 ng/mL (IQR: 7.2–27.1). No significant differences were observed in PSA
levels between the clinically significant PCa predictions. Biopsy Gleason scores were dis-
tributed as follows: Gleason score 6 (11 cases), 7 (40 cases), 8 (19 cases), 9 (27 cases), and 10
(0 cases). Remarkably, 57.0% of these cases were diagnosed with clinically significant PCa
(ISUP 2–5). The results indicated trends consistent with the features observed in cases with
PSA ≤ 20 ng/mL (Table 1).
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Table 1. Patient characteristics for clinically significant PCa predictions.

Characteristics

No PSA Restriction PSA < 20 ng/mL

Total
Clinically
Significant

PCa
Others p Total

Clinically
Significant

PCa
Others p

Cases, n 151 86 65 - 122 71 51 -

Age (years)

Median (IQR) 71, 66–76 72, 68–78 68, 63–73 0.003 71, 65–75 72, 69–78 68, 63–73 0.009

PSA (ng/mL)

Median (IQR) 8.6, 6.1–14.3 9.6, 7.2–27.1 7.5, 4.8–11.1 0.195 7.7, 5.6–10.4 7.8, 6.4–9.8 7.1, 4.7–10.7 0.261

Gleason score 6: 11, 7: 40, 8: 19. 9:27, 10: 0 6: 11, 7: 39, 8: 14. 9:7, 10: 0

PCa: prostate cancer, IQR: interquartile range, PSA: prostate-specific antigen.

3.2. Prediction of Clinically Significant PCa

Table 2 shows the prediction accuracies for clinically significant PCa predictions in
cases with no PSA restrictions. The AUC values for clinically significant PCa predic-
tions are as follows: PSA, 0.649 [95% CI: 0.467–0.832]; ultrasound imaging, 0.715 (95% CI:
0.551–0.878); T2WI, 0.738 (95% CI: 0.581–0.895); DWI, 0.582 (95% CI: 0.396–0.767); and
ADC, 0.690 (95% CI: 0.519–0.861). The integrated analysis demonstrated a remarkable
AUC of 0.878 (95% CI: 0.772–0.983). Although individual diagnostic tests did not exhibit
statistically significant differences in the AUC compared to PSA, integrated analysis signifi-
cantly surpassed the results of PSA (p = 0.024) (Figure 3). Furthermore, we evaluated the
accuracy of clinically significant PCa predictions in cases with PSA levels ≤20 ng/mL. The
AUC values for clinically significant PCa predictions are as follows: PSA, 0.574 [95% CI:
0.330–0.819]; ultrasound imaging, 0.708 (95% CI: 0.508–0.908); T2WI, 0.803 (95% CI:
0.629–0.976); DWI, 0.564 (95% CI: 0.341–0.787); and ADC, 0.662 (95% CI: 0.449–0.874).
The integrated analysis demonstrated an AUC of 0.862 (95% CI: 0.723–1.000) (Table 2 and
Figure 4).

Table 2. AUCs of the clinically significant PCa prediction.

Variables
No PSA Restriction (n = 151) PSA ≤ 20 ng/mL (n = 122)

AUC 95% CI p AUC 95% CI p

PSA 0.649 0.467–0.832 - 0.574 0.330–0.819 -

Ultrasound 0.715 0.551–0.878 0.530 0.708 0.508–0.908 0.387

T2WI 0.738 0.581–0.895 0.523 0.803 0.629–0.976 0.127

DWI 0.582 0.396–0.767 0.644 0.564 0.341–0.787 0.954

ADC 0.690 0.519–0.861 0.735 0.662 0.449–0.874 0.595

Integration 0.878 0.772–0.984 0.024 0.862 0.723–1.000 0.032
AUC: area under the curve, PCa: prostate cancer, CI: confidence interval, PSA: prostate-specific antigen, T2WI:
T2-weighted image, DWI: diffusion-weighted imaging, ADC: apparent diffusion coefficient.
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Figure 3. ROC curves of clinically significant PCa prediction using routine clinical data. (a) Ultrasound
image, (b) T2WI, (c) DWI, (d) ADC, (e) integrated medical data. The blue line represents the ROC
curve for the PSA level, while the red line corresponds to the ROC curve for each dataset. The
blue-shaded region indicates the 95% CI for PSA, and the red-shaded regions represent the 95% CIs
for each dataset. We determined the thresholds using the Youden index.

We further assessed clinical presentations and images belonging to representative
false-negative and false-positive cases, as described below. False-negative case: a 71-year-
old man who was referred to our department after a health check showed a PSA level of
7.0 ng/mL. Pre-biopsy MRI revealed no sign suggestive of malignancy; however, it indi-
cated the presence of benign prostatic hyperplasia. Subsequent biopsy revealed PCa (ISUP
2). False-positive case: a 75-year-old man who was referred to our department after a health
check showed a PSA level of 7.5 ng/mL. Pre-biopsy MRI revealed no sign suggestive of
malignancy; however, it indicated the presence of benign prostatic hyperplasia. Subsequent
biopsy revealed chronic inflammatory changes. Both cases had PSA levels below 10 ng/mL.
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using routine clinical data. (a) Ultrasound image, (b) T2WI, (c) DWI, (d) ADC, (e) integrated medical
data. The blue line represents the ROC curve for the PSA level, whereas the red line corresponds
to the ROC curve for each dataset. The blue-shaded region indicates the 95% CI for PSA, and the
red-shaded regions represent the 95% CIs for each dataset. We determined the thresholds using the
Youden index.

4. Discussion

This study assessed the predictive accuracy of deep learning analysis by utilizing
multimodal medical data to identify clinically significant cancer in patients with a low–
intermediate PSA level, specifically below 20 ng/mL, before undergoing prostate biopsy.
The predictive performance for clinically significant PCa, measured by the AUC, was 0.862
when integrating medical datasets.

In clinical practice, PCa can have a diverse course, ranging from indolent to aggressive,
rapidly progressing, life-threatening tumors. The necessity to accurately diagnose cancer
and appropriately treat the disease is essential. Pathological grading is still one of the
most prognostic factors for stratifying PCa, and treatment options are proposed according
to pathological grading. In 1994, Epstein et al. published the first criteria for defining
clinically significant PCa [17]. Clinically significant cancer has a meaningful impact on a
patient’s health and requires definitive intervention or treatment. Treatment options for
localized PCa include radical prostatectomy, radiation therapy, hormonal therapy, or a
combination of these therapies [15,18]. The introduction of robotic surgery systems has
expanded the indication of clinically significant PCa. In addition, a combination of external
beam radiation therapy, brachytherapy, and hormonal therapy is effective for clinically
significant PCa [19,20].
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A pressing need to improve diagnostic accuracy to deliver these treatments for clini-
cally significant cancers effectively exists. Efforts to discover new biomarkers for clinically
significant PCa have been advancing. The prostate health index (PHI; Beckman Coul-
ter, Brea, CA, USA) score offers a more comprehensive insight into elevated PSA levels
and the probability of detecting PCa by biopsy. A meta-analysis of 60 studies involving
14,255 patients observed that the PHI showed a combined sensitivity of 0.874 (95% CI
0.803–0.923) and specificity of 0.569 (95% CI 0.458–0.674) in detecting clinically significant
PCa [21]. Prostate cancer antigen 3 (PCA3) encodes a prostate-specific messenger ribonu-
cleic acid that serves as the target for a urine-based diagnostic biomarker for PCa detection.
ROC curve analysis revealed that PSA alone resulted in an AUC of 0.63 for PCa detection,
whereas a combined PSA and PCA3 score resulted in an AUC of 0.71 [22]. Furthermore,
AI technology is anticipated to be pivotal in cancer management. Jin et al. [23] used a
T2-weighted imaging-based deep learning method to predict noninvasive PCa detection
and Gleason grade. Wang et al. [24] used ADC maps and MRI deep learning to predict the
biochemical recurrence of advanced PCa. These datasets in the studies mentioned above
are single-modality. In addition, Lombardo R et al. [25] warned about the quality of AI
by analyzing the appropriateness of ChatGPT’s response to the European Association of
Urology (EAU) 2023 PCa guidelines. A growing trend toward conducting multimodal
AI studies has been observed [15]. Zhao et al. [26] and Li et al. [27] used the findings on
multiparametric MRI images, and a deep learning approach was conducted to predict
significant cancer. However, these previous studies did not focus on patients with low–
intermediate PSA. Our multimodal approach for predicting clinically significant PCa in
patients with low–intermediate PSA levels, incorporating biparametric MRI alongside
ultrasound imaging and clinical data, achieved an AUC of 0.862. Our study focused on
patients with PSA ≤ 20 ng/mL; our method may produce robust results regardless of
PSA levels.

AI technologies are being developed for practical clinical applications. When integrat-
ing AI into healthcare, assessing its suitability for actual medical workflows and carefully
judging its appropriateness is crucial [28]. Medical workflows contribute to improving
the efficiency and accuracy of medical procedures and play a role in reducing medical
errors. In this study, we only utilized medical data that are practical and available in clinical
settings to deploy AI technologies without disrupting the current workflow. Our method
may advance cancer management through effective analysis of medical big data.

The main limitation of this study was that it was conducted at a single facility with a
relatively small sample size (178 patients). However, we analyzed 583 ultrasound images,
1540 T2-weighted images, and 1487 DWI or ADC images. Furthermore, we applied aug-
mentation techniques and transfer learning based on ImageNet32 [29]. In the future, we
intend to obtain a validation dataset from external data and perform subsequent analyses.
Expanding the dataset could improve the accuracy of the prediction analysis. In addition,
we found patterns of benign prostatic hyperplasia among representative images belonging
to both false-negative and false-positive cases. Increasing the number of training images
may be useful for classification of benign prostatic hyperplasia patterns. Further research
is needed to strengthen our findings. Moreover, while this study provides initial insights,
using a larger cohort with other significant PCa labels which includes transperineal biopsy
cases would enhance the generalizability of our findings given that we used only transrectal
prostate biopsy samples in this study.

5. Conclusions

Our study illustrates that multimodal deep learning may assist in identifying clini-
cally significant PCa in patients with low–intermediate PSA levels before prostate biopsy.
Urologists may enhance personalized workflows for managing PCa by integrating medical
data through AI technology.
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