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Abstract: Protein–polysaccharide interactions have been a subject of considerable interest in the
field of food science. Chitosan is the most prominent and naturally occurring polysaccharide with
a positive charge, and its hydroxyl and amino groups facilitate protein–chitosan interactions due
to their diverse biochemical activities. The complexation of chitosan enables the modification of
proteins, thereby enhancing their value for applications in the food and nutrition industry. This
paper presents a summary of the complexes formed by chitosan and different proteins, such as
lactoglobulin, egg white protein, soybean isolate protein, whey isolate protein, and myofibrillar
protein, and systematically describes the modes of interaction between proteins and chitosan. The
effects of protein–chitosan interactions on functional properties such as solubility, emulsification,
antioxidant activity, and stability are outlined, and the potential applications of protein–chitosan
complexes are discussed. In addition, the current challenges associated with the formation of protein–
chitosan complexes and potential solutions to these challenges are highlighted. This paper provides
an overview of the current research progress on the interaction of proteins with chitosan and its
derivatives in the food industry.
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1. Introduction

Protein is an essential biomolecule present in a multitude of foods and exhibits
a diverse array of properties. Proteins have amphiphilic, emulsifying, foaming, film-
forming, and water retention properties, and they are widely used in food stability and
emulsification. The quality of food largely depends on the use of proteins as stabilizers and
emulsifiers [1,2]. Polysaccharides also play an important role in the functional properties of
foods by interacting with various food components. The interactions between food protein
and polysaccharides are particularly prevalent. This is because electrostatic interactions,
covalent bonds, and some non-covalent bonds are highly likely to occur between polysac-
charides and proteins [3]. Protein–polysaccharide interactions can be used not only to
assess changes in proteins during processing, transport, and storage but also to modify
proteins to improve their functional properties.

Chitosan is primarily derived from insects and crustaceans, as shown in Figure 1, and
is the second largest natural polysaccharide in nature after cellulose. It is a polymer derived
from the deacetylation of chitin and is soluble at acidic pH [4]. Chitosan is antimicrobial,
biocompatible, biodegradable, and biorejective [5]. The aforementioned properties of chi-
tosan have led to its frequent use in conjunction with proteins, with the aim of increasing
the solubility and stability of said proteins. This is achieved through the formation of com-
plexes used in the production of emulsions, gels, and other food ingredients. Figure 1 shows
an illustrative example of this process. Chitosan has been used in a variety of fields, including
the food industry, agriculture, and biomedicine [6]. The simultaneous presence of chitosan
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and protein results in the formation of complexes that are more effective than those observed
when the two components are employed in isolation. These complexes have the potential to
enhance the quality and functional properties of food products [7]. For instance, biopolymers
formed by chitosan complexed with myofibrillar protein, phycocyanin, and egg white pro-
tein exhibit enhanced emulsification and stability properties [8–10]. Furthermore, chitosan
can facilitate the solubility of protein following interaction with zein alcohol-soluble protein
and β-lactoglobulin [11,12]. Moreover, protein–chitosan complexes are widely used in food
applications, such as whey isolate protein–chitosan complexes used to develop antimicro-
bial aerogels for chicken preservation, and cod protein–chitosan complexes can be used to
construct food-grade emulsion delivery systems for astaxanthin delivery [13,14]. At present,
protein–chitosan complexes have attracted extensive attention due to their excellent functional
properties and wide range of applications.
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Figure 1. Sources and applications of chitosan. Chitosan is mainly derived from the shells of shrimps,
crabs, and insects and is used in cosmetics, food, and other applications.

This paper reviews the mode of interaction between protein and chitosan and its effect
on the functional properties of protein–chitosan complexes. These properties mainly in-
clude solubility, emulsification, stability, gelation, and antioxidant activity. The interaction
mode between protein and chitosan is mainly categorized into non-covalent and cova-
lent interactions. Furthermore, the paper describes the extensive uses of protein–chitosan
complexes in microencapsulation, composite films and coatings, antimicrobial aerogels,
food-grade emulsion delivery systems, and other applications in the food industry. This pa-
per also highlights the challenges faced by protein–chitosan complexes in the production of
food products. In particular, issues such as stability, safety, compatibility, and sustainability
need to be further explored in relation to protein–chitosan complexes.

2. Mode of Interaction Between Protein and Chitosan

The modes of interaction for the formation of protein–chitosan systems include non-
covalent and covalent interactions. Non-covalent interactions, which include electrostatic
interactions, hydrophobic interactions, hydrogen bonding, and van der Waals forces, are
formed spontaneously when substances are mixed, and they can contribute to the formation
of emulsion stabilizers, gels, thin films, and edible protective coatings. Most non-covalent
interactions are weak and reversible and can be modified by adjusting factors such as pH,
ionic strength, and temperature [15,16]. Covalent interactions are processes that create
covalent bonds through Maillard reactions, enzyme-catalyzed reactions, and chemical
cross-linking reactions that make protein–chitosan complexes more stable [17]. However, in
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order to achieve the desired reaction, it is necessary to adjust the reaction conditions, such
as pH, temperature, ionic strength, and reaction time [18]. The primary binding modes
of protein and chitosan are illustrated in Figure 2. These modes are broadly classified
into physical copolymerization, chemical cross-linking, enzymatic glycosylation, and the
Maillard reaction. The following sections provide a detailed analysis of the interaction
between protein and chitosan.
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Figure 2. The interactions between protein and chitosan are basically classified as non-covalent
polymerization, chemical cross-linking, enzymatic glycosylation, and Maillard reaction.

2.1. Non-Covalent Interactions

The non-covalent interactions between protein and chitosan are primarily designed
to exploit the charged properties of the two polyelectrolytes. Electrostatically attractive
interactions are the primary driving force. Hydrophobicity, hydrogen bonding, and spatial
interactions are also involved [19,20]. Proteins are amphipathic, meaning that their surface
charge depends on the pH of the solution. Although the net charge of a protein is zero at
its isoelectric point, its surface still has positive and negative regions. This suggests that
it may be involved in electrostatic interactions of attraction or repulsion [21]. The charge
of chitosan is determined by the amino side groups, with a pKa of approximately 6.5. At
relatively low pH values, chitosan can be dissolved in water after protonation of the amino
group, which imparts a positive charge. However, with the increase in pH, more chitosan
is required to wrap around the protein due to the decrease in the charge of chitosan and
electrostatic repulsion, and the complex is prone to sedimentation at a high pH [22,23]. The
electrical properties of protein and chitosan can be exploited to design a range of complexes
that meet the specific requirements of the food industry.

The non-covalent interactions between protein and chitosan are mainly based on the
charged nature of both. By adjusting pH and ionic strength, soluble complexes or cohesive
layers can be formed for use in foods. The pH-induced interaction between gliadin and
chitosan was investigated. At pH 5.0, the gliadin–chitosan soluble complex presented spherical
nanoparticles with a particle size of 570.42 nm, polymer dispersity index (PDI) of 0.191, and ζ

potential of +19.2 mV, showing good uniformity and dispersity. In addition, the encapsulation
rate was as high as 85.11%, and the release rate of curcumin during pepsin and trypsin
digestion was reduced [24]. The complexes of soybean isolate protein (SPI) with chitosan (CS)
were subjected to heating, and it was observed that the heated SPI-CS complexes exhibited
enhanced acidic solubility [25]. The most likely explanation for this phenomenon is that more
negatively charged carboxyl groups on the proteins were exposed during the heating process,
and these charged carboxyl groups interacted with the amino groups of chitosan, resulting in
an increase in the isoelectric point from 4.4 ± 0.1 (SPI) to 5.5 ± 0.1 (SPI-CS) and a significant
increase in the solubility at pH 4.0 [25]. The same conclusion was reached that soybean
globulin–chitosan mixtures exhibited a significant increase in potential positivity and stability
upon heating at pH 3.3 [26]. Some therapeutic proteins become more stable after binding
with chitosan through electrostatic interaction and can be free from the influence of chemical
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and physical factors so as to improve bioavailability. In addition, the non-covalent interaction
between protein and chitosan can improve the stability of protein in acidic and thermal
environments [27]. It was demonstrated that the whey protein–chitosan composite system has
excellent antioxidant and emulsifying properties, and it is beneficial for the development of
this composite system in the field of food additives, food packaging, and drug delivery [28].

2.2. Covalent Interactions

Non-covalent bonds are typically reversible (physical) interactions, while covalent
bonds are irreversible (chemical) interactions. In certain applications, it is more necessary
to form covalent bonds because they produce stronger and more durable interactions [29].
Covalent interactions between protein and chitosan employ either a Maillard reaction
or an enzyme-catalyzed reaction (such as transglutaminase or tyrosinase). The resulting
conjugates retain the advantages of both substrates in a single entity. The following sections
describe these methods in detail.

2.2.1. Maillard Reaction

The Maillard reaction is a non-enzymatic browning, a complex reaction between
carbonyl and amino compounds, and ultimately produces a brown or black melanin-like
substance [30,31]. The Maillard reaction between protein and chitosan occurs mainly be-
tween the amino groups of proteins (particularly the ε-amino groups of lysine residues) and
the carbonyl groups of the N-acetylglucosamine moiety of chitosan [32]. There are many fac-
tors affecting the Maillard reaction, including the type of polysaccharides and protein, the
molecular weight of the polysaccharides, and the ratio of protein to polysaccharides [33,34].
The effect of molecular weight on the functional properties of β-lactoglobulin Maillard
products was investigated [34]. The activity of the Maillard reaction was related to the
molecular weight of the sugar. The conjugates formed with enzymatically depolymerized
chitosan (1.3 kDa) showed the sharp formation of the end product. In general, the lower
the molecular weight, the higher the activity of the Maillard reaction. However, the high
reaction activity leads to lower nutritional value. Conversely, the molecular weight of sugar
is positively correlated with the chain length of sugar. The longer the chain length, the
greater the spatial resistance, which slows down the process and prevents the production
of harmful substances [35].

2.2.2. Enzymatic Glycosylation

Another type of covalent interaction is the enzyme-catalyzed binding of proteins to
chitosan, also known as glycosylation. Protein glycosylation is the covalent attachment
of proteins to monosaccharides or glycans. It is one of the most common methods of
protein modification, and it can significantly alter the structure, properties, and function of
proteins. The most commonly used enzymes are transglutaminase and tyrosinase. They can
catalyze the reaction of active groups between protein and chitosan to form covalent bonds.
Enzymatic glycosylation has a number of advantages over chemical modification of the
protein, including a shorter reaction time, greater control over the degree of glycosylation,
the ability to attach sugars to specific sites on the protein, and the ability to eliminate toxic
reagents [36]. It has been demonstrated that these enzymes can significantly enhance the
functional properties of protein. The following paragraphs present two microbial enzymes
that are safe and widely used in the food industry.

Transglutaminase

Transglutaminase (TGase) is an enzyme that modifies proteins by amine incorpo-
ration, cross-linking, and deamidation. The use of transglutaminase to catalyze protein
glycosylation has been reported since the early 1980s [37,38]. At that time, guinea pig
liver transglutaminase, which is Ca2+-dependent, was used. The currently used microbial
transglutaminase (MTGase) does not rely on Ca2+, which makes it safer and less expensive.
It can also be produced in large quantities. In addition, microbial transglutaminase was
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employed to glycosylate zein with chitosan (MW 1500 Da), and 97.48 mg of glucosamine
was covalently conjugated to 1 g of zein. This process significantly increased the solubility
and antioxidant activity of zein in vitro while concomitantly reducing its surface hydropho-
bicity [39]. It is crucial to recognize that intramolecular and intermolecular cross-linking
of the protein occurs simultaneously in cases where the protein contains a high number
of lysine residues. For proteins with a high lysine content, such as soybean 11s globulin,
pea 11s globulin, casein, etc., to prevent intramolecular cross-linking from affecting protein
glycosylation, the protein can be alkylated first [36]. Corn gluten is a protein with low
lysine content. Its enzymatic glycation reaction mainly occurs with sugars that have reac-
tive primary amino groups, and the probability of internal occurrence is low. Therefore,
corn protein may be a suitable substrate for enzymatic glycation to prepare glycopro-
teins [39]. The use of transglutaminase to couple chitosan to zein significantly enhances the
water solubility and emulsification of zein [40]. Moreover, glycosylated caseinate has en-
hanced surface hydrophobicity, water-binding capacity, rheological properties, and in vitro
digestibility compared to the original caseinate [41].

Tyrosinase

Tyrosinase is an enzyme that contains copper and is commonly found in nature. It
catalyzes the conversion of phenolics to o-quinones, thereby causing the ripening or dis-
coloring of the skins of fruits and vegetables. Tyrosinase can also be used to link protein
to the biopolymer chitosan, preserving the biological activity of the protein [42]. The reac-
tion mechanism of tyrosinase to protein-bound tyrosine residues involves hydroxylation
to 3,4-dihydroxyphenylalanine, followed by oxidation to the corresponding o-quinone [43].
These o-quinones are active compounds and can be condensed with each other or react with
nucleophiles. Protein can bind to amines and sulfhydryl groups of amino acid residues or
amine groups of chitosan [44]. Enzymatic protein–polysaccharide grafting has great potential
for the production of a new range of bio-based, environmentally friendly polymers. Tyrosinase
is used in the preparation of spike protein conjugates due to the high reactivity of dopaquinone
with the amino groups present in chitosan [45]. The peptides are enzymatically immobilized
on gold nanoparticles. The amino groups of chitosan are linked to DOPA–quinone, and the
DOPA–quinone is produced from tyrosine by tyrosinase. The study demonstrated that the
tyrosinase-mediated linkage between peptides and chitosan-coated particles played a crucial
role in the production of functionalized nanoparticles [46].

Although both transglutaminase and tyrosinase are enzyme preparations commonly
used for glycosylation, their mechanisms of action are different: TGase catalyzes the
formation of a peptide bond between the γ-carboxamide of a glutamine residue and the
ε-amino groups of lysine residues, whereas tyrosinase catalyzes the reaction of oxidized
substances with chitosan amino groups to form imide linkages or secondary amines [47].
They have been used to catalyze the cross-linking of gelatin and chitosan, respectively, to
form gels. The gel formed by transglutaminase showed better mechanical properties [18].

2.3. Crosslinking Agent

Chemical crosslinking agents can be divided into five main categories: aldehyde crosslink-
ing agents, sodium tripolyphosphate crosslinking agents, vanillin crosslinking agents, propylene
oxide crosslinking agents, and methylene bisacrylamide. Each of these agents has distinct prop-
erties. For example, glutaraldehyde is a commonly used substance, but it is toxic and unsuitable
for fruit preservation. In contrast, tripolyphosphate is an ionic crosslinker that can only be used
when chitosan is protonated. Vanillin is derived from plants, but its cross-linking bonds are
easily broken. As a result, the use of the aforementioned chitosan-based crosslinkers is limited.

Genipin can react with the amino group of the enzymes, leading to an increase in
cross-linking groups. It can be cross-linked with chitosan as an immobilization carrier for
β-D-galactosidase from Aspergillus oryzae, and the resulting particles were more thermally
stable, acid-resistant, and mechanically resistant [48]. Genipine can be used as a replacement
for conventional reagents like glutaraldehyde in enzyme immobilization. Compared to
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glutaraldehyde, genipin is much less cytotoxic [49]. Moreover, genipin crosslinked chitosan
microspheres have been investigated to immobilize β-galactosidase from Aspergillus oryzae.
The resulting immobilized enzyme has high stability, tolerance, and suitability for continuous
production [50]. The effects of three different cross-linking agents (tripolyphosphate, phytate,
and sodium phytate) on the properties of gliadin–chitosan composite nanoparticles were also
investigated [51]. The presence of chitosan was able to increase the encapsulation rate of
curcumin in nanoparticles, but the cross-linking agents were able to enhance the hydrogen
bonding and electrostatic interactions of the nanoparticles. Specifically, the tripolyphosphate-
crosslinked nanoparticles had the highest encapsulation rate of 86.1%. Compared with
curcumin–gliadin–chitosan nanoparticles, the encapsulation efficiency was increased by 23.5%.
Phytic acid and phytate-crosslinked nanoparticles had better thermal and UV stability, while
sodium phytate had a better potential to protect curcumin in vitro [51]. Therefore, the choice
for these three cross-linking agents should be made according to the purpose of preparing
specific composite nanoparticles.

3. Effect of Interaction Between Protein and Chitosan on Functional Properties

Protein and chitosan are widely used in food applications and pharmaceutical and
bioengineering industries due to their multifunctional properties. In various food systems,
protein and chitosan play a pivotal role in determining product stability, antioxidant
properties, viscosity, texture, and flavor. However, the functional properties of protein–
chitosan complexes are distinct from those of single macromolecular substances, and their
complexes exhibit superior functional properties.

3.1. Solubility

The limited solubility of proteins can have a significant impact on their functional
properties, limiting their use in the food industry. Currently, various methods, such as
protease hydrolysis, deamidation, and glycosylation, have been developed to increase
the solubility of proteins [52]. Among these approaches, glycosylation stands out as
the most widely used technique due to its effectiveness on a wide range of proteins.
For example, it has been shown that zein hydrolysate, after glycosylation with chitosan,
exhibits a significant increase in solubility within the pH range of 5–7 [11]. The study
investigated the effect of interaction between β-lactoglobulin and chitosan on solubility
in aqueous solutions. The results showed that chitosan can form soluble complexes with
β-lactoglobulin at pH 4.0, which increases the solubility of the protein. This phenomenon
can be attributed to the electrostatic forces that arise between biopolymers of opposite
charges when subjected to changes in pH [12].

3.2. Emulsification Degree

As amphiphilic molecules, proteins are able to adsorb at the oil–water interface to
stabilize emulsions, but their stability is easily affected by temperature, pH, ionic strength,
and other factors. However, when combined with polysaccharides, the solubility and
stability of proteins are increased, which can improve the emulsification properties of pro-
teins [53]. Therefore, protein–polysaccharide complexes with strong emulsifying properties
have become a hot research topic nowadays. A previous study has found that potato isolate
proteins modified and complexed with chitosan resulted in complex-stabilized emulsions
with better emulsification properties [54]. The latest study investigated the emulsification
properties of myofibrillar protein–chitosan complexes under acidic conditions (pH 3–6) and
showed that chitosan enhanced the emulsification properties of myofibrillar protein [55].
In addition, a new type of egg white protein chitosan bilayer emulsion was obtained by
ultrasound and glutamine aminotransferase modification technology [56]. When the dou-
ble emulsion contained chitosan (0.6%, v/v), the zeta potential of the double emulsion
was −1.1 mV with a small particle size (56.87 µm), and the delamination index was 16.3%.
This uniform droplet dispersion is suitable for the transportation of food-grade bioactive
substances (such as β-carotene) [56].
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3.3. Gel

With the rapid development of the modern food industry and the general improve-
ment of people’s understanding of healthy diets, people gradually prefer gel food because
it has many advantages over other types of food. These include a high water content, low
energy, and an attractive texture. Different types of complexes tend to have more advan-
tages in the preparation of binary food gels than the same types of complexes (such as
polysaccharide–polysaccharide complexes and protein–protein complexes) [57]. It is com-
monly believed that protein–chitosan gels are formed when proteins are denatured during
heating and subsequently aggregated and crosslinked with polysaccharides to form a gel.
The main reason is the interaction between protein and chitosan [58]. The formation of the
composite gel layer of pea protein isolate–chitosan (FPPI/CH) was primarily determined
by electrostatic and hydrophobic interactions [59]. Hydrogen bonding also played a role
in the occurrence of electrostatic complexation, resulting in the formation of the cohesive
layer of FPPI/CH complexes. Specifically, the FPPI/CH formed by high molecular weight
chitosan (HMW) (310–375 kDa, >75% deacetylated degree) and the pea protein isolate
showed a uniform microstructure [59]. Pre-aggregates of soy isolate protein–naringenin
complexes were prepared by ohmic heating with the addition of chitosan to form protein
gels. The addition of chitosan increases the cross-linking point and the three-dimensional
network structure of the gel, improving the quality and performance of the gel [60].

3.4. Rheological Properties

Rheological properties refer to the deformation and flow properties of substances
under external forces. A previous study revealed that the viscosity of the myofibrillar
protein–chitosan complex was higher than that of myofibrillar protein and chitosan alone;
as the mixture ratio of protein to chitosan decreased from 10:1 to 1:1, the viscosity of the
complex increased [61]. Furthermore, non-covalent interactions between the complexes,
such as hydrogen bonds, were identified as another factor that increases viscosity [62].
Because the acetyl group is closely related to the hydrophobicity of polysaccharides, the
degree of deacetylation (DD) significantly affects the biological activity of chitosan, and
the viscosity of chitosan mixture with high DD is higher. Therefore, the creep recovery test
showed that the condensed layer formed by high DD chitosan and whey protein isolate
had a denser and stronger structure. This is because the higher the DD value, the more
hydrogen bonds formed in the composite, and the higher the viscoelastic modulus. It
was demonstrated that the viscosity of ovalbumin (OVA) fibrils decreased significantly
following storage at pH 8.0 for 7 days. However, the viscosity of OVA cellulose gradually
increased with the addition of chitosan, as shown in Figure 3. The study also revealed
that the G′ value of OVA fibrils decreased when stored under alkaline conditions for seven
days. However, the storage modulus of OVA fibrils exhibited a gradual increase with the
addition of chitosan [63]. Carboxymethylchitosan (CMC) is a water-soluble derivative of
chitosan with the same biocompatibility and biodegradability as chitosan. The addition of
CMC to the soy protein isolate Pickering emulsion resulted in higher G′ and G′′ values. In
addition, the viscosity of the emulsion increased as a consequence of the CMC addition,
leading to improved emulsion stability [64].

3.5. Antioxidant Activity

Oxidation reactions usually occur during food processing and storage. Lipid oxida-
tion leads to bad flavor and color changes, while protein oxidation changes the texture,
digestibility, and functional properties of food [65]. Specifically, the Maillard reaction-
involved browning products have been proven to exhibit antioxidant activity, and the
antioxidant activity can be affected by pH and temperature [66]. When chitosan and fibrils
were combined with curcumin, these complexes showed significantly improved antioxidant
activity (DPPH free radical scavenging activity and reducing power) compared to curcumin
alone (p < 0.05). This may be due to the combination of chitosan and fibrils with curcumin
to form a bi-continuous polymer through electrostatic interactions, which increases the
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repulsive force between the fibrils, resulting in greater stability of the delivery system [67].
Algae oil is rich in polyunsaturated fatty acids, which are important for the human body,
but it is also sensitive to oxygen and temperature. A previous study investigated the use
of soybean protein and chitosan to create antioxidant microcapsules for delivering algal
oil [68]. The optimal chitosan/soybean protein complexation pH was 6.0, and the optimum
complexation ratio was 0.125 (g/g). This resulted in a significant improvement in the ox-
idative stability of the oil. The enhanced stability is attributed to the antioxidant properties
of chitosan and the oxygen barrier provided by the composite coagulation, which increases
protection against oxidation [68].
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3.6. Reduce Protein Allergen

Food allergy has become a serious health problem globally. It is an IgE-mediated
allergic reaction to specific components of food, which can be life-threatening in allergenic-
ity. Protein allergenicity is determined by the amino acid sequence and conformation of
the protein. The Maillard reaction occurs when the carbonyl group in the reducing sugar
interacts with the ε-amino group of the lysine residue in the protein, leading to a series of
complex chemical reactions. These reactions can result in the loss of lysine residues and
alterations to the protein structure, which may contribute to allergenicity. Further hydrol-
ysis of chitosan results in chitosan oligosaccharides (COS), which have better solubility
than other polysaccharides. Tropomyosin (TM) is rich in lysine and has a high reactivity
to the Maillard reaction, thus affecting its allergenicity. The Maillard reaction of chitosan,
ribose, and galactose oligosaccharide with tropomyosin was carried out to remove TM
from shrimp [69]. It was found that COS had the best effect on eliminating TM allergens
within 4 h, while ribose and galactose showed an obvious effect after 8 h, which may be
attributed to the fact that chitosan significantly alters the peptide structure by altering
the β-folding [69]. A previous study coupled bovine β-lactoglobulin (βLG) with oligosac-
charides via the Maillard reaction, and it was found that there was no significant change
in the conformation of βLG, but the enzyme-linked immunosorbent assay demonstrated
that the binding of oligosaccharides resulted in an effective decrease in the allergenicity of
βLG [70]. The above studies suggest that chitosan and its derivative, such as COS, have
great prospects in reducing protein allergenicity.

3.7. Stability

Phycocyanin is a natural pigment protein with a variety of physiological functions,
but its poor emulsification, easy degradation under acidic conditions, and instability at
high temperatures limit food applications. The novel phycocyanin–chitosan complexes
were developed to improve the stability of the algal blue protein [9]. The laser confocal
scanning micrographs and photographs of the emulsions stabilized by observation of
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phycocyanin and phycocyanin–chitosan complexes are shown in Figure 4a,b. At pH 6.5, the
complex-stabilized emulsions contained more uniformly distributed oil droplets, indicating
that the addition of chitosan significantly improved the stability of the emulsions and
inhibited the aggregation of oil droplets. Furthermore, the oil droplets in the phycocyanin
emulsions aggregated and were exposed to air after prolonged storage, making them highly
susceptible to oxidation. The oxidation rate of the stabilized emulsion of phycocyanin–
chitosan complexes was significantly reduced after the addition of chitosan, as illustrated
in Figure 4c,d. An innovative method is to combine algal blue protein with whey protein,
separated by protein co-precipitation, and then coat the resulting mixture with chitosan to
form composite particles with colloidal stability [71]. Figure 4e illustrates the mechanistic
process of the formation of this composite material. This method enabled the algal blue
protein to maintain its color stability under both acidic and heating conditions. This may
be attributed to the chitosan coating mitigating the electrostatic repulsion and minimizing
the protein structural alterations induced by transient heating, thereby protecting the
chromophore. Mixed-layer emulsions were prepared using myofibrillar fibrin–chitosan
electrostatic complexes to protect and deliver astaxanthin. The mixed-layer emulsions
prepared with fibronectin–chitosan complexes exhibited greater stability at pH 3, 5, and
7 and temperature changes (30, 50, and 80 ◦C), with a more uniform distribution. In
addition, a higher astaxanthin retention (69.11%) was obtained in mixed-layer emulsions
after exposure to UV-light irradiation for 8 h [10].
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4. Application of Protein–Chitosan Complexes

Protein and chitosan have high nutritional value and functional properties, and the
interaction between them has a significant impact on the food industry. The interaction
between protein and chitosan can enhance the functional properties, give them new values,
and thus expand the scope of applications. Figure 5 summarizes the utilization of protein–
chitosan complexes in the food industry.
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Figure 5. Applications of protein–chitosan complexes in the food sector, including microencapsulation,
composite films and coatings, antimicrobial aerogels, and food-grade emulsion delivery systems.

4.1. Microencapsulation

Microcapsules can be prepared using one or more materials that protect specific ingre-
dients from external environmental factors, thereby enhancing the functionality. Compared
to simple emulsion encapsulation, microcapsules offer higher encapsulation rates and an-
tioxidant effects on the target ingredient [72]. To enhance the physicochemical properties of
microcapsules, one approach is to perform protein–polysaccharide coacervation at a tempera-
ture that triggers the Maillard reaction. The impact of different temperatures (50 ◦C, 70 ◦C,
and 90 ◦C) on the physicochemical properties of microcapsules was examined. It was found
that higher coagulation temperatures can significantly enhance microencapsulation properties
and reduce coagulation. When the condensation temperature rose successively from low
(50 ◦C), medium (70 ◦C), to high (90 ◦C) temperature, the swelling rate of microcapsules
decreased [72]. At elevated temperatures, the Maillard reaction occurs between soybean
protein isolate and chitosan [73]. The generation of the Maillard reaction is beneficial to the
stability of microcapsules and results in microcapsules with better flowability and higher
packing density.
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During the microencapsulation of probiotics, the wall material can protect the microor-
ganisms. The wall material can consist of low-molecular-weight carbohydrates, proteins,
or polysaccharides. Proteins can pass through stable membrane components to protect
cells from damage. The combination of biopolymers (especially polysaccharides and pro-
teins) with nanostructured materials is a novel and promising approach to maintaining
the viability of probiotics in probiotic microcapsules and has been shown to be effective
in maintaining the viability of the bifidobacterium during the digestive transition and in
the intestinal tract [74]. Chitosan is considered to be a dietary fiber that protects microbes
from gastric diseases and allows them to be released into the colon in appropriate amounts.
Trypsin inhibitor (TTI) was encapsulated with chitosan whey protein nanoparticles. Chi-
tosan mainly interacts with TTI to stabilize the system and binds to some anionic regions
of whey protein isolate through fractional interaction. Compared to other formulations,
the interaction between chitosan and whey protein improved the thermal stability of the
microcapsules and showed excellent incorporation efficiency [75].

4.2. Composite Film and Coating

Due to its antioxidant, antibacterial, and water-insoluble properties, edible protein–
chitosan films produced by the Maillard reaction have been investigated [76]. The use of
composite films and coatings can effectively reduce the growth of undesirable microorganisms
in fresh meat. Typically derived from proteins, polysaccharides, lipids or their mixtures, these
films exhibit favorable properties such as transparency and mechanical strength when chitosan
is incorporated due to its safety profile and excellent oxygen barrier properties. Chitosan
has antimicrobial properties, but chitosan films are highly permeable to water vapor, leading
to limitations in the application of chitosan films as an antimicrobial agent. It was found
that the film formed by whey proteins and chitosan had good mechanical properties and
barrier capacity, and the addition of organic acids significantly improved the antimicrobial
capacity of the film [77]. In addition, applying this protective film to fresh turkey effectively
prevented microbial spoilage while retarding the growth and development of pathogenic
microorganisms [77]. In another study, the development of a composite film containing
chitosan–sardine protein isolate for edible packaging improved the microbial stability of
shrimp during refrigeration while reducing lipid peroxidation (p < 0.05) [78].

4.3. Antibacterial Aerogel

Aerogel is defined as an extremely light nanoporous material derived from a gel in which
the liquid part has been replaced by gas [79]. As a carrier substrate, food-grade aerogels
can protect loaded functional components from degradation, improve bioavailability, and
provide well-controlled release. They can also be used as stabilizers, thickeners, and fillers
in various food formulations. Currently, the combination of proteins and polysaccharides
to develop aerogels has become a research hotspot, and molecular interactions can improve
the mechanical properties, thermal insulation capacity, specific surface area, and density
of aerogels [80,81]. The traditional absorbent pad is composed of polyethylene film and
a nonwoven base, which has the characteristics of a low absorption rate and no antibacterial
effect. A novel hyperabsorbent and antibacterial aerogel composed of isolated whey protein
and chitosan was investigated. The aerogel can effectively prolong the shelf life of chicken to
7 days and can be used as a water-absorbing pad for meat preservation [13].

4.4. Food Grade Emulsion Conveying System

In the food industry, proteins are frequently utilized to stabilize emulsions and serve
as carriers of nutrients and flavor. Protein–polysaccharide stabilized high internal phase
Pickering emulsion (HIPE) has attracted extensive attention from researchers because of its ex-
cellent stability. It can be used as a delivery system to significantly improve the bioavailability
of bioactive substances [82]. A large number of studies have reported that chitosan can be
combined with soy protein isolate [83], cod protein [14], and phosphorylated perilla protein
isolate [84] to develop HIPE and construct a food-grade emulsion delivery system. The proper-
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ties of myofibrillar proteins (MPs) and chitosan (CS) complexes of Sparus macrocephalus were
investigated. The results demonstrate that the MP/CS at a mixture ratio of 95:5 (w/w) has the
potential to prepare HIPE. Furthermore, the MP/CS mixture can be employed to construct
a food-grade emulsion delivery system with a high internal phase in the food industry [85].
The high intrinsic Pickering emulsion was stabilized by designing a cod protein–chitosan
nanocomplex to deliver astaxanthin. The application of cod protein–chitosan nanocomplexes
was demonstrated to form stable emulsions with a high internal phase, which significantly
enhanced the chemical stability of astaxanthin [14].

5. Challenges and Solutions
5.1. Stability Problems of Protein–Chitosan Complexes

Although the protein–polysaccharide complex systems are relatively stable under
certain conditions, they remain susceptible to external factors. The formation of protein–
chitosan complexes relies mainly on non-covalent interactions such as electrostatic interac-
tions and hydrogen bonds. As a result, the complexes are susceptible to a variety of factors,
including pH, ionic strength, temperature, and protein–polysaccharide ratio. Temperature
plays a crucial role in the coagulation process of the complexes. The formation of hydrogen
bonds is favored at lower temperatures, while the exposure of hydrophobic groups is
increased at higher temperatures due to alterations in protein structure. Although heat
treatment can improve the emulsification properties of proteins to some extent, it can
also lead to irreversible denaturation of proteins, decreasing their solubility and stability
and thus aggregation [86,87]. High pressure may be an alternative processing method to
heat treatment, and the use of it as a pretreatment may improve protein gel stability [88].
Proteins and chitosan are hotly researched as usable coatings for food protection, but
the poor stability of chitosan limits its application. It was found that the introduction
of cross-linking agents can effectively solve this problem [89]. Another finding also re-
vealed that whey protein–carboxymethyl chitosan composite membranes in ratios of (whey
protein/carboxymethyl chitosan = 75:25 and 50:50, v/v) treated with glutamine amino-
transferase improved the water vapor barrier properties and mechanical properties [90]. In
addition, proteins are usually hydrolyzed under acidic conditions, and ionic strength and
pH affect the mixing of chitosan and proteins, thus affecting the stability of the complex.
The study revealed that the soy protein–chitosan complex coagulates at a neutral pH. With
the addition of salt ions (50, 100, and 200 mM), the electrostatic interaction between proteins
and polysaccharides was weakened, creating an electrostatic shield and, thus, less stability.
Protein–chitosan complexes show inferior performance compared to other materials. The
main direction of future research will be to identify methods to maintain the stability of the
complex in extreme environments [91].

5.2. Safety Problems of Protein–Chitosan Complexes

Chitosan and proteins can form edible films and coatings that inhibit the proliferation
of harmful microorganisms through a Maillard reaction. Due to its potential application in
food packaging, it has been extensively researched in the last decade [92]. Nevertheless,
despite the potential benefits, protein–chitosan films may encounter certain challenges
before entering the industrial market. Developing protein–chitosan complexes with the
required properties and functions may result in reduced biosafety or biocompatibility or
other potential side effects in the human body [93]. For instance, the cross-linking agents
glutaraldehyde and epichlorohydrin are known to be toxic and are prevalent in most
chitosan complex formulations, enhancing the functional properties of the complexes but
raising concerns about potential toxicity. To resolve this limitation, the dialdehyde chitosan
was prepared by a one-step reaction with sodium periodate, and the resulting chitosan
membranes were less toxic than the sample crosslinked with glutaraldehyde, showing
good solubility, mechanical properties, and thermal stability [94]. In addition, chitosan has
low water solubility and is difficult to use directly, thus necessitating the production of
chitosan derivatives. The solubility of chitosan with different DD degrees in a solvent is
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different, so chitosan with a certain DD value can be selected according to demand [95].
However, the use of potentially hazardous chemicals in the synthesis of these derivatives
can pose an overall risk. In contrast to alkali and acid treatment, biological treatment and
green synthesis can be employed as an alternative, with the objective of resolving the issue
of environmental toxicity [93].

5.3. Problems of Compatibility and Persistence of Protein–Chitosan Complexes

The production of chitosan requires the use of a variety of acidic and basic reagents
and elevated temperatures, which collectively result in a lengthy extraction process from
crustacean shells. The sustainability of chitosan production is often a significant challenge.
However, the implementation of effective strategies can effectively address these challenges.
For example, the use of a deep eutectic solvent (a mild and environmentally friendly green
solvent) to extract and process chitin shows the advantages of low toxicity, sustainability,
biodegradability, and recyclability. However, due to its high cost, it cannot be used for mass
production [94]. Moreover, chemical methods can be employed to modify the complexes in
order to enhance the incompatibility between protein (e.g., whey protein isolate, quinoa
protein) and chitosan. The production of chitosan can be extended by using microwave
technology to reduce the extraction time of chitin [96]. Consequently, the practical im-
plementation of protein–chitosan complexes is subject to certain challenges. However,
according to the properties of different proteins, appropriate adjustment of the conditions
of protein chitosan complex (such as pH value and ratio) can obtain ideal target products
and achieve application [97,98].

6. Conclusions and Outlooks

This paper examines the interaction between protein and chitosan and its impact
on functional properties, as well as the application of protein–chitosan complexes in the
food industry. It also provides a comprehensive overview of the current challenges in the
production of protein–chitosan complexes. The interaction between chitosan and protein is
currently a subject of increasing interest. In future research, we can consider the following
avenues: (1) The design of different complexes to meet the needs of the food industry by
exploring the electrical properties of protein and chitosan. (2) Since the food system is not
a single combination of polysaccharides and proteins, the formation and establishment
of a ternary system (or even a multicomponent system) of chitosan with one protein,
two proteins, or protein–chitosan complex will provide a more theoretical basis for food
production. (3) Hydrolysates of protein–chitosan complexes have demonstrated a number
of valuable functional properties, including high emulsification and specific binding of
metal elements. Further study of complex hydrolysates will provide a broader platform for
the comprehensive utilization of protein–chitosan.
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