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Abstract: Background/Objective: A-lines and B-lines are key ultrasound markers that differentiate
normal from abnormal lung conditions. A-lines are horizontal lines usually seen in normal aerated
lungs, while B-lines are linear vertical artifacts associated with lung abnormalities such as pulmonary
edema, infection, and COVID-19, where a higher number of B-lines indicates more severe pathology.
This paper aimed to evaluate the effectiveness of a newly released lung ultrasound AI tool (ExoLun-
gAI) in the detection of A-lines and quantification/detection of B-lines to help clinicians in assessing
pulmonary conditions. Methods: The algorithm is evaluated on 692 lung ultrasound scans collected
from 48 patients (65% males, aged: 55 ± 12.9) following their admission to an Intensive Care Unit
(ICU) for COVID-19 symptoms, including respiratory failure, pneumonia, and other complications.
Results: ExoLungAI achieved a sensitivity of 91% and specificity of 81% for A-line detection. For
B-line detection, it attained a sensitivity of 84% and specificity of 86%. In quantifying B-lines, the
algorithm achieved a weighted kappa score of 0.77 (95% CI 0.74 to 0.80) and an ICC of 0.87 (95% CI
0.85 to 0.89), showing substantial agreement between the ground truth and predicted B-line counts.
Conclusions: ExoLungAI demonstrates a reliable performance in A-line detection and B-line detec-
tion/quantification. This automated tool has greater objectivity, consistency, and efficiency compared
to manual methods. Many healthcare professionals including intensivists, radiologists, sonographers,
medical trainers, and nurse practitioners can benefit from such a tool, as it assists the diagnostic
capabilities of lung ultrasound and delivers rapid responses.

Keywords: A-lines; B-lines; lung ultrasound; machine learning; artificial intelligence

1. Introduction

Ultrasound imaging is a convenient, low-cost, non-invasive technology that works by
sending sound waves through the body [1]. Those sound waves produce echoes when they
pass from one tissue to another if those tissues have a different acoustic impedances [2]). In
an aerated lung, the air rapidly dissipates the sound waves and, since there is no acoustic
impedance mismatch, there is no echo that can be converted into an image. Indeed, in
normal conditions, the only detectable structure is the pleura [3]. Therefore, it was thought
for years that ultrasound would be of little use for the diagnosis of lung pathologies;
however, it was later discovered that the artifacts visible in a lung ultrasound could be
correlated to healthy and non-healthy lungs [4].

At present, lung ultrasound (LUS) serves an essential function in assessing pulmonary
disorders at the point of care [5–7]. It has shown accuracy comparable to lung CT scans
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across a few key pathologies like these, and a higher sensitivity than chest X-rays for
detecting pneumothorax and pleural effusion [8,9]. In particular, A-lines and B-lines
represent two important sonographic indicators that provide essential insights into lung
health [10].

A-lines are repeating horizontal echogenic lines that form parallel to the pleural
line. The detection of A-lines indicates a high gas–volume ratio, so it generally suggests
the presence of normal lung tissue, hyperinflation, or (in the absence of sliding lung)
pneumothorax [5]. The presence of A-lines argues against pulmonary conditions such as
pneumonia and pulmonary edema [11]. In contrast, B-lines are vertical echogenic lines
that extend from the pleura to the end of the screen. Although the physical process that
creates the B-lines is not entirely understood, their presence is associated with the presence
of interstitial fluid or collagen tissue alterations [12–14].

The quantification of B-lines helps in the estimation of a disease’s severity, the moni-
toring of its progress, or the impact of a therapeutic intervention. For example, in some
chronic diseases like heart failure, the clinician has to consider whether there is a change in
lung fluid and revise their treatment approach accordingly [15]. While one or two isolated
B-lines can be seen in healthy individuals [16,17], the presence of three to four B-lines per
frame is correlated with a thickened lobular septa, and five or more B-lines indicate severe
interstitial syndrome [5]. When two or more B-lines appear close together, they merge into
a homogenous bright zone and form confluent B-lines. B-lines, particularly the confluent
ones, indicate increased lung density and suggest a variety of pulmonary pathologies such
as pulmonary edema, interstitial lung diseases, or acute respiratory distress syndrome
(ARDS) [18]. In such cases, one method used to estimate the number of B-lines is to calculate
the percentage of the scan occupied by B-lines, and then divide this percentage by ten [3].

Given the importance of assessing A-lines and B-lines, it is essential to have a reliable
and objective approach to their detection. Previous studies have shown that the manual
assessment of A/B-lines can be subjective [13]. Many factors like the clinician’s level of
expertise, the quality of the images, the observer’s bias, and the complexity of this task can
lead to high intra- and inter-observer variability [19]. Furthermore, manual interpretation
and counting can be labor-intensive and time-consuming, requiring the clinician to review
a video multiple times to make a decision. AI has emerged as a possible solution that
improves objectivity and repeatability in this context. Additionally, AI tools can analyze a
large volume of data in a fraction of a second and produce consistent results [12,20–22].

Another advantage of using AI is its ability to generate an initial automated report
with preliminary findings for clinicians or radiologists, enhancing diagnostic efficiency [23].
This allows sonographers to rely on the tool’s findings, enabling them to concentrate
more on the complex aspects of image acquisition. Medical trainers and educators can
use such a system to teach new practitioners with the help of consistent examples [21,24].
Particularly in remote areas where access to experts is limited, an AI tool can provide
insightful information for health practitioners so that they can refer a patient to an expert in
case further examinations are needed [12,25]. However, all of these use cases are contingent
upon the AI being reliable and trustworthy.

Having an explainable AI tool that highlights the features it uses for decision-making
would enhance its trustworthiness [26]. A black box approach takes the LUS video and
only outputs the number of A/B-lines present in it; although this approach can be accurate,
it does not provide any insight into the intermediate steps that lead to the final decision.
Alternatively, an explainable AI approach visualizes the A- and B-lines, displays the number
of B-lines, and outputs the outcome according to the findings [27,28]. As a result, the user
can see the basis for the outcome and trust the decision-making process in the latter system.

Here, we investigate the performance of ExoLungAI (Exo Imaging, Santa Clara, CA,
USA, version 2.1.0), an AI algorithm used for analyzing lung ultrasound images. This AI
tool is based on convolutional neural networks, which have demonstrated effectiveness in
analyzing images and videos. Under the hood, the ExoLungAI utilizes a neural network
capable of identifying A-lines and B-lines in LUSs. The ExoLungAI analyzes each frame in
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real time as the user scans, displaying the A-lines and B-lines in each frame in an online
manner. The visualization reveals whether the B-lines are confluent or isolated. At the end
of the scan, the tool determines the B-line count for the entire video by selecting the frame
with the maximum number of B-lines. For the sake of B-line classification, this count is
compared to a predetermined threshold (five in our case). If it exceeds the threshold, the
scan is reported as a B-line case. In the case of A-lines, it counts the frames with A-lines.
If this count exceeds a predetermined threshold, A-line presence is reported for the clip.
The final classification of the presence of A-lines and B-lines helps the user determine the
case’s severity.

The Goals of This Investigation

In this paper, we aim to evaluate the performance of ExoLungAI, an AI tool designed
to assess A-lines and B-lines in lung ultrasound scans. ExoLungAI identifies the presence
or absence of A-lines and B-lines. If B-lines are present, the tool highlights and counts them
and reports whether their number is greater than or equal to five. We compute the tool’s
accuracy, specificity, and sensitivity by comparing its predictions (more than five B-lines)
with the number of B-lines in the clinical report, similar to [29]. We further compare the
number of B-lines predicted by the tool with the ground truth shown in the clinical report
using the kappa score, intraclass correlation coefficient (ICC), and an error-distribution
bar plot.

2. Materials and Methods
2.1. Study Design

We collected 692 scans from 48 patients who were admitted to the Emergency de-
partment (50%) or Intensive Care Unit (ICU) of the University of Alberta Hospital from
April of 2021 to Jan of 2022 for COVID-19 symptoms. A total of 94% of the scans were
obtained using a phased-array Philips Lumify, with the remaining acquired using a Clarius
handheld probe. The study cohort had a mean age of 55 with a standard deviation of 12.39.
The minimum age was 32 and the maximum was 77. A total of 35% of the participants in
the study were female.

Lung scans were taken following the same protocol described in [16,18,30]. Thus,
for each patient, up to eight zones of the ventral wall of the chest, including the anterior
superior, anterior inferior, lateral superior, and lateral inferior regions of both left and right
sides, were collected, as illustrated in Figure 1. Lung scans were collected across days 1, 2,
3, 4, 5, and 7 unless the patient was discharged from the ICU or had an outcome of death
before the 7th day.

L3

L4

Regions of the chest Left Right

anterior superior L1 R1
anterior inferior L2 R2
lateral superior L3 R3
lateral inferior L4 R4

L1

L2

R1

R2R3

R4

Figure 1. Illustration of lung regions divided into 8 zones.

The clinical report provides a video-level rough estimate of the percentage of lung
area affected by B-lines, categorized as 100%, >75%, >50%, or normal. Based on these data
and the ultrasound videos, two expert users annotated the exact video-level B-line grading
scale from 0 to 10 (with 10 representing a 100% affected lung) and classified the absence
or presence of A-lines. A consensus reading was reached through further discussion to
obtain the final B-line count and A-line classification of the videos. There is a single A-line
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detection and B-line count label for each video. We followed [29] and categorized both the
ground truth and predicted B-lines into two classes: less than 5 and 5 or more.

2.2. Approach

Figure 2 outlines the workflow of ExoLungAI for two example videos. First, we feed
the original lung videos into the tool (left side of the figure). The tool visualizes the A-lines
(in green) and B-lines (in red) for every frame of the video. Internally, the AI counts the
number of B-lines based on what percentage of the rib space is affected by B-lines, a.k.a the
instant percent method [30]. The frame with the maximum number of B-lines is selected
and its count is reported as the clip’s B-line count. If the count is higher than a threshold of
5, it is reported as a B-line case. For the A-line classification of the clip, if the number of
frames containing A-lines exceeds a threshold, the scan is reported as a case with A-lines.
As seen at the top of the figure, the top video shows a healthy lung ultrasound with a
clearly visible A-line and one B-line, which is fewer than five. This video is reported as
a case with A-lines and no significant B-line involvement. In contrast, the video on the
bottom shows 7 B-lines with no visible A-lines and is therefore reported as a B-line case.

…

…

ExoLungAI

…

…

Original LUS Videos

7 B-lines

A-lines 

B-lines

…

…

…

…

…

1 B-line

A-lines 

B-lines

Figure 2. ExoLungAI workflow: visualization and classification of A-lines and B-lines from input
lung ultrasound videos.

The inference time for analyzing the A/B-lines in each frame is under 16 msec
(∼60 frames per second). The AI tool can be seamlessly integrated into lung ultrasound
workflows. As the physician is scanning different regions of the lung, they can observe
the A-lines and B-lines in real time for each frame. The visualized A- and B-lines form the
basis of the ultimate A- and B-line classification of the scan. The user can decide whether to
accept or reject the final decision of the tool based on the clear and explainable real-time
visualization provided.
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2.3. Evaluation Metrics

This section describes the evaluation metrics used to assess the performance of
ExoLungAI.

The B-line count represents the ratio of the rib space affected by B-lines, scaled by a
factor of 10. This number ranges from 0 to 10, with 10 indicating that B-lines cover the entire
pleura [30]. For B-line quantification, we calculated the error as the difference between the
ground truth, as mentioned in the clinical report (GT), and the predicted B-line counts. The
mean and standard deviation of errors across all cases was the metric used to determine on
average how much this approach’s results deviate from the ground-truth B-line count. We
also evaluated the agreement between the B-line count prediction and the ground truth in
terms of Cohen’s kappa and intraclass correlation coefficients (ICCs).

For A- and B-line detection, we assessed the tool’s binary classification performance
using accuracy, sensitivity, specificity, and Cohen’s kappa metrics. For B-line detection,
we compared the results using two different thresholds: 3 and 5. We also presented the
confusion matrix for both A- and B-line detection. A confusion matrix is a performance
assessment tool that compares the predicted class labels (columns) to the true class labels
(rows) and shows the distribution of these labels. The diagonal elements of the matrix
represent the correctly classified cases.

We finally conducted a qualitative analysis to investigate some failure cases of ExoL-
ungAI in both A-line detection and B-line detection/quantification. Since we care mostly
about the sensitivity of this approach, we decided to present some of the cases in which
the B-line count has the highest error (the GT is much greater than the predicted) and false
positive cases of A-line detection.

3. Results

We first compare our B-line counting results with the data from the clinical report. The
bar plot in Figure 3 illustrates the distribution of errors in B-line counting across the videos.
The mean error is −0.28, and the standard deviation is 1.4.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
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Figure 3. Distribution and frequency of errors across B-line classes.

In Table 1, we compare the results of the A- and B-line binary classification of an AI
tool with clinical ground-truth data. For B-line detection, we reported the results using
two different thresholds, 5 and 3. When the final count is higher than the threshold we
report it as a B-line case. The metrics that we use here for binary classification are true
positives (TPs), true negatives (TNs), false positives (FPs), false negatives (FNs), accuracy,
sensitivity, and specificity. Figure 4a–c show the confusion matrices for B-line detection at
the thresholds 3 and 5, as well as that for A-line detection.



Diagnostics 2024, 14, 2526 6 of 10

Table 1. Summary of B-line and A-line performance metrics.

Metric B-Line Threshold = 3 B-Line Threshold = 5 A-Lines

Accuracy 89% 85% 85%
Sensitivity 94% 84% 91%
Specificity 77% 86% 81%

Kappa Score 0.73 [95% CI 0.68–0.79],
p-value < 0.05

0.68 [95% CI 0.62–0.74],
p-value < 0.05

0.71 [95% CI
0.65–0.76],

p-value < 0.05

(a) (b) (c)

Figure 4. Confusion matrices for B-line and A-line detection. (a) B-line detection with threshold = 3.
(b) B-line detection with threshold = 5. (c) A-line detection.

4. Discussion

Here we delve deeper into the results and examine their clinical relevance. As demon-
strated in Figure 3, the presented tool gives favorable results, with most of the cases
exhibiting zero or ±1 errors. The tool tends to slightly overestimate the count of B-lines in
comparison to the clinical data. This is to ensure that the tool is sensitive and does not miss
unhealthy cases, which is advantageous in clinical settings.

We further qualitatively analyze some cases in which the error of the B-line prediction
is high or an absence of A-lines is misclassified (see Figure 5).

(a) (b) (c)

Figure 5. Some failure cases of the B- and A-line detection algorithm. (a) GT B-lines: 9; predicted
B-lines: 3. (b) GT B-lines: 8; predicted B-lines: 4. (c) GT: no A-lines; tool predicted: A-lines.

Figure 5a shows a case in which the clinical report identified nine B-lines while the
AI tool predicted three. As can be seen, although the tool correctly visualized the B-lines,
it failed to calculate the proportion of the rib space affected by these B-lines. The same
thing happened in Figure 5b (GT was eight and the prediction was four). The visualization
of the B-lines is correct again but the method failed in its counting of the B-lines. In
addition, based on the image itself, a lower count than eight could also be justified in this
case. Note that the frame shown is the one with the largest affected area. For these cases,
even though the final count of the B-lines may not be accurate, the explainability of the
visualization remains valuable. The AI tool would still be able to assist the operator by
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clearly showing the affected parts of the lung field and enhancing their ability to identify
these regions effectively.

Lastly, in Figure 5c we show a failure case of the A-line detection algorithm, where
the poor quality of the image has impacted the tool’s performance, causing it to confuse an
echogenic part of the image with an A-line, resulting in a false positive.

We evaluated the quantitative performance of the AI tool in detecting both A-lines
and B-lines across several metrics in Table 1. As can be seen, both A-line and B-line
detection methods show consistent performance, with a good balance across all metrics.
The confusion matrices in Figure 4 show that most of the elements lie along the diagonal,
indicating strong agreement between the algorithm’s predictions and the clinical ground
truth for both A-line and B-line detection. As illustrated in the confusion matrices of
Figure 4, ExoLungAI demonstrates a lower rate of false negatives compared to false
positives in B-line classification (29/692 false negatives compared to 48/692 false positives).
This signifies that the model prioritizes higher sensitivity, aiming to minimize missed true
positive cases. The occurrence of false predictions could be due to lower image quality
and/or the subjectivity of the ground truths (see, e.g., Figure 5a,b). For the case of A-line
detection, false positives and false negatives formed 77 out of 692 and 24 out of 692 cases,
respectively. Upon further investigation, we found that most false predictions were due to
confusing image structures or artifacts resembling A-lines with actual A-lines in low-quality
or suboptimal lung images (see, e.g., Figure 5c)

In the case of B-line detection, the user is free to change the B-line threshold to adjust
the trade-off between sensitivity and specificity. If the operator needs higher sensitivity
to spot B-line cases, they might decrease the threshold from 5 to 3 or pick any other
threshold to obtain more true positives. However, at the same time, there would be a
slight corresponding increase in false positives. It should be noted that the detection of
A- and B-lines is highly subjective [13,30–32]. Many factors including image quality, the
patient’s condition, and the proficiency of the user can be a source of inconsistency among
observers. Thus, it is recommended that the user uses both the B- and A-line results to
interpret the scan.

We explored the agreement between the B-line predictions and the ground truths
in the context of the existing literature. The kappa score is a metric for quantifying the
agreement between two raters. Anderson et al. investigated the B-line-counting inter-rater
variability of six emergency physicians with experience in pleural sonography [30]. They
classified scans based on whether they contained three or more B-lines. They reported a
Cohen’s kappa score of 0.71. As mentioned in Table 1, we reached a kappa score of 0.73
for B-line classification with the same threshold, indicating a strong agreement between
AI predictions and the clinical data. In the case of 10-class B-line counting, [32] reported a
weighted kappa score of 0.67 (95% CI 0.50–0.84) and an ICC of 0.87 (95% CI 0.83 to 0.91)
for the agreement between their automated B-line counter and the clinical data. Their
ground-truth B-line counts’ mean and standard deviation were 1.60 and 1.35, respectively.
Here we reach a weighted kappa score of 0.77 (95% CI 0.74 to 0.80) and an ICC of 0.87 (95%
CI 0.85 to 0.89) for B-line counting on a dataset with a mean of 3.62 and standard deviation
of 2.04, demonstrating a better agreement on a more diverse dataset. The narrower CIs in
our ICC and kappa score indicate the higher reliability of the agreement in both metrics
when using ExoLungAI.

5. Conclusions

A- and B-lines are instructive sonographic markers that help clinicians assess lung
health at the point of care. In the absence of intervening air in the pleural space (i.e., pneu-
mothorax), the presence of A-lines indicates a healthy aerated lung. On the other hand,
a patient with numerous B-lines that are merged is likely to have a lung disease like pul-
monary edema, interstitial fibrosis, or ARDS. Assessing the progression of these indicators
over time helps the clinician diagnose the patient’s disease and tailor therapeutic interven-
tions accordingly. Automating the detection of these findings could be helpful for three
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reasons: it introduces objectivity, improves inter-rater reliability, and enhances quality
assurance through explainable AI. This has practical ramifications for the real-world use
of ultrasound; access to and the learning of point-of-care ultrasound could become less
of a barrier, while users in remote settings could receive real-time results when sonogra-
phy experts are unavailable. Additionally, users can be more confident in their findings
should there be a significant abnormality. Complementing the ultrasound device with an
automatic lung-feature-detection tool that is consistent, reliable, and accurate can enhance
users’ diagnostic capabilities in settings with fewer diagnostic means and expertise.

In this paper, we assessed the performance of our explainable-AI lung-sonographic-
marker-detection tool, ExoLungAI. This tool takes a lung ultrasound video, visualizes the
A-lines and B-lines of every frame in real time, and provides a final assessment by counting
the B-lines and determining the presence of A-lines in the video, having been trained on
692 lung ultrasound POCUS videos. The results demonstrate that ExoLungAI achieved
a competitive performance in A- and B-line detection. Specifically, the tool achieved a
sensitivity of 84% and specificity of 86% for B-line detection and a sensitivity of 91% and
specificity of 81% for A-line detection.

In conclusion, the automation of A-line detection and B-line detection/quantification
using ExoLungAI has the potential to enhance lung clinical decision-making by providing
a real-time visualization of A- and B-lines, as well as a retrospective binary classification of
the presence of both markers. This automation allows clinicians to rapidly evaluate and
determine the presence of pulmonary pathology without the need for expert overreads. We
should note that despite the promising results of this AI tool, there are a few limitations here.
First, the whole study was conducted in a single center (University of Alberta Hospital)
and within a limited time frame, from April 2021 to January 2022. Secondly, this study only
covers patients who were admitted for COVID-19 symptoms. Lastly, the focus of this study
was solely on the evaluation of A-lines and B-lines for lung assessments. To achieve a more
comprehensive understanding of the lung, it is essential to consider other lung features
such as consolidation, pleural effusion, and lung sliding. Our future research will aim to
enhance our method to evaluate these lung conditions, alongside A-lines and B-lines, using
a larger dataset.
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