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Simple Summary: This manuscript explores how artificial intelligence (AI) is revolutionizing the
way to predict and develop drugs to fight cancer. Traditional methods of drug discovery can be
lengthy and costly, but AI offers promising ways to accelerate and refine this process. By analyzing
vast amounts of data, AI helps identify potential drug candidates, predict their effects, and tailor
treatments to individual patients. The goal is to highlight how AI-driven approaches can bring faster,
more effective cancer treatments to clinical practice. This report aims to benefit researchers, clinicians,
and healthcare innovators by showcasing the potential of AI to advance anticancer drug development,
ultimately leading to better outcomes for patients and a more efficient drug discovery process.

Abstract: The integration of AI has revolutionized cancer drug development, transforming the land-
scape of drug discovery through sophisticated computational techniques. AI-powered models and
algorithms have enhanced computer-aided drug design (CADD), offering unprecedented precision
in identifying potential anticancer compounds. Traditionally, cancer drug design has been a complex,
resource-intensive process, but AI introduces new opportunities to accelerate discovery, reduce costs,
and optimize efficiency. This manuscript delves into the transformative applications of AI-driven
methodologies in predicting and developing anticancer drugs, critically evaluating their potential to
reshape the future of cancer therapeutics while addressing their challenges and limitations.

Keywords: cancer drug development; artificial intelligence (AI); machine learning (ML); deep
learning (DL); pharmacophore mapping; computer-aided drug design (CADD); molecular docking

1. Introduction

Cancer is a complex group of diseases characterized by uncontrolled cell growth and
proliferation. Globally, cancer remains one of the leading causes of death, with an estimated
20 million new cases and almost 9.7 million cancer-related deaths recorded in 2022 alone.
The incidence and mortality rates vary significantly across regions, influenced by factors
such as lifestyle, environment, and access to healthcare. In regions like North America and
Europe, early screening and advanced treatments have contributed to relatively higher
survival rates, although cancer burden continues to rise. In contrast, low- and middle-
income countries, especially in Asia, Africa, and Latin America, experience high cancer
mortality rates due to limited healthcare resources and late-stage diagnoses [1]. Developing
effective drugs to treat cancer is challenging due to the intricate molecular interactions
involved and the potential for drug resistance to develop [2]. Traditional experimental
drug discovery methods are time-consuming and resource-intensive, making it imperative
to incorporate computational approaches to streamline the process. The discovery of
anticancer drugs involves a variety of computational methods that play crucial roles at
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different stages of the drug development process [3]. These methods help in identifying
potential drug candidates, optimizing their properties, and understanding their interactions
with cancer-related biomolecules (Table 1). The incorporation of computer-aided techniques
for overseeing drug screening is becoming a pivotal element in the field of drug design [4].
This methodology empowers medicinal chemists to assess the interactions between a
ligand and receptors, facilitating the design and refinement of lead compounds through
computer simulations [5]. In drug design, the customary function of computer-aided
design (CAD) is to scrutinize extensive compound libraries, grouping them into smaller
clusters of anticipated active compounds through computational chemistry. This can
significantly accelerate the anticancer drug design process and result in substantial time
and cost savings [5].

Artificial intelligence (AI) involves replicating human intelligence in machines pro-
grammed to emulate human thought processes and actions [6]. A prevalent assumption
regarding AI is its aim to create machines with a comparable ability to “understand” [7]. In
contemporary cancer research, AI finds diverse applications, including the classification of
abnormal cancer cells through image analysis, forecasting target protein structures, and
anticipating interactions between drugs and proteins [8]. These investigations showcase
the transformative potential of AI methods in reshaping processes related to anticancer
drug design [9]. This report provides a comprehensive review of advancements in methods
for designing anticancer drugs, specifically those leveraging AI [10]. Different applications
of AI within the anticancer drug design processes have been illustrated in (Figure 1).

Table 1. Transformative applications of AI-driven software tools in drug discovery with representative
drug examples.

AI-Driven
Methodology

Application in
Anticancer Drug

Development
Key Advantages

Software Tools
(Version/Website
Access Details)

Drug/Compound
Examples

Challenges and
Limitations References

Machine
Learning (ML)

Predicting
drug–target
interactions,
optimizing drug
efficacy, identifying
novel compounds

Reduces
experimental
costs and time,
improves predic-
tion accuracy

AutoDock Vina
1.2.x
(Documentation),
Chemprop (GitHub,
https://github.
com/chemprop/
chemprop (accessed
on 7 October 2024))

Alpelisib (PI3K
inhibitor)
identified using
ML tools for
breast cancer

Requires
extensive,
high-quality
datasets; risk of
over-fitting.

[11,12]

Deep
Learning (DL)

Screening drug
candidates,
predicting
patient-specific
drug responses,
discovering hidden
patterns

Handles large,
complex datasets,
enhances
novel discovery

DeepChem 2.7.1,
AtomNet
(Atomwise,
https://www.
atomwise.com/
(accessed on 7
October 2024))

Lapatinib
(EGFR/ErbB2
inhibitor)
prediction
improved with
DL
screening tools

DL models are
“black boxes”,
making them
difficult to
interpret;
computationally
expensive.

[13]

Natural
Language

Processing (NLP)

Mining literature
and patents for
drug discovery
insights, identifying
emerging drug
trends

Extracts valuable
information from
unstructured data

SciBite (https:
//scibite.com/
(accessed on 7
October 2024)),
TextMining (spaCy,
https://spacy.io/
(accessed on 7
October 2024))

Identified
Pembrolizumab
in conjunction
with other
immune
checkpoint
inhibitors from
literature mining

Struggles with
domain-specific
language;
customization
required to
interpret scien-
tific literature.

[14]

https://github.com/chemprop/chemprop
https://github.com/chemprop/chemprop
https://github.com/chemprop/chemprop
https://www.atomwise.com/
https://www.atomwise.com/
https://scibite.com/
https://scibite.com/
https://spacy.io/
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Table 1. Cont.

AI-Driven
Methodology

Application in
Anticancer Drug

Development
Key Advantages

Software Tools
(Version/Website
Access Details)

Drug/Compound
Examples

Challenges and
Limitations References

Generative
Adversarial
Networks
(GANs)

Designing new
chemical entities
(NCEs), generating
drug-like
compounds with
desired properties

Generates diverse
and novel
compounds,
reduces reliance
on traditional
synthesis methods

MoleculeGAN
(Academic Repos,
https:
//github.com/
(accessed on 7
October 2024)),
REINVENT
(GitHub,
https://github.
com/MolecularAI/
Reinvent (accessed
on 7 October 2024))

Generated new
EGFR inhibitors
with properties
for
targeting cancer

Difficult to
control quality of
generated
molecules;
clinical validation
often lacking.

[4]

Reinforcement
Learning (RL)

Optimizing drug
combinations,
exploring
synergistic effects,
guiding
decision-making in
drug design

Provides adaptive
learning, maxi-
mizes efficacy

Deep RL
(Resources, https:
//github.com/
(accessed on 7
October 2024)),
ChemTS (GitHub,
https:
//github.com/
tsudalab/ChemTS
(accessed on 7
October 2024))

Combination of
Vemurafenib and
Cobimetinib for
melanoma
identified
through RL

High
computational
requirements;
accurate reward
signals needed
for clinical
validation.

[15]

Quantum
Computing (QC)

Simulating complex
molecular
interactions,
optimizing
quantum machine
learning for
faster discovery.

Solves complex
computational
chemistry prob-
lems.

Qiskit (https:
//www.ibm.com/
quantum/qiskit
(accessed on 7
October 2024)), IBM
Quantum (IBM,
https://quantum-
computing.ibm.
com/ (accessed on 7
October 2024))

Quantum
simulations for
Taxol drug
interactions with
tubulin in
cancer treatment

Still in infancy
with limited
practical
applications;
scalability is
a challenge.

[9]

AI for Biomarker
Discovery

Identifying
predictive
biomarkers,
facilitating
personalized
medicine, linking
genetic profiles

Enhances
personalized
treatment
strategies,
improves patient
selection for trials

OncoKB (https:
//oncokb.org
(accessed on 7
October 2024)),
BioX-press (https:
//bioxpress.org/
(accessed on 7
October 2024))

Identified
biomarkers for
Pembrolizumab
effectiveness in
melanoma

Large
multi-omics
datasets required;
data privacy
concerns and
complex
integration
challenges.

[11,16]

AI-Based Virtual
Screening

High-throughput
screening (HTS) of
drug libraries,
accelerating lead
identification

Increases speed
and accuracy in
identifying
promising
candidates

Schrödinger
(https://www.
schrodinger.com/
(accessed on 7
October 2024)),
PyRx (https://pyrx.
sourceforge.io/
(accessed on 7
October 2024)),
VSpipe (GitHub,
https:
//github.com/
(accessed on 7
October 2024))

Screened
inhibitors for ERα
(estrogen
receptor) in
breast cancer

Not always
accurate predictor
of in vitro success;
requires
follow-up
validation.

[5,15]

AI in Drug
Repurposing

Identifying existing
drugs with
potential anticancer
properties,
analyzing multidi-
mensional data

Lowers costs,
speeds up clinical
trials,
reduces risks

CANDO, DTC
(Research
Resources, https:
//github.com/
(accessed on 7
October 2024))

Repurposed
Metformin as a
potential
anticancer agent
for
pancreatic cancer

Known toxicity
profiles can limit
repurposing;
incomplete data
can miss
key interactions.

[12]

https://github.com/
https://github.com/
https://github.com/MolecularAI/Reinvent
https://github.com/MolecularAI/Reinvent
https://github.com/MolecularAI/Reinvent
https://github.com/
https://github.com/
https://github.com/tsudalab/ChemTS
https://github.com/tsudalab/ChemTS
https://github.com/tsudalab/ChemTS
https://www.ibm.com/quantum/qiskit
https://www.ibm.com/quantum/qiskit
https://www.ibm.com/quantum/qiskit
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://oncokb.org
https://oncokb.org
https://bioxpress.org/
https://bioxpress.org/
https://www.schrodinger.com/
https://www.schrodinger.com/
https://pyrx.sourceforge.io/
https://pyrx.sourceforge.io/
https://github.com/
https://github.com/
https://github.com/
https://github.com/


Cancers 2024, 16, 3884 4 of 21

Table 1. Cont.

AI-Driven
Methodology

Application in
Anticancer Drug

Development
Key Advantages

Software Tools
(Version/Website
Access Details)

Drug/Compound
Examples

Challenges and
Limitations References

AI in Clinical
Trial

Optimization

Predicting patient
outcomes,
optimizing inclu-
sion/exclusion
criteria, improving
trial design

Reduces trial
costs, improves
recruitment,
enhances efficacy
predictions

Deep 6 AI (https:
//www.deep6.ai
(accessed on 7
October 2024)), IBM
Watson for Clinical
Trial Matching

Optimized trials
for
immunotherapy
agents like
Nivolumab

Ethical concerns
in AI-driven
patient selection;
risk of
introducing
biases affecting
trial diversity.

[17]
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Figure 1. Comprehensive integration of AI, omics, and ML in drug target discovery and design. 
This figure highlights the transformative role of AI in drug target discovery, utilizing a multi-omics 
approach—epigenetics, genomics, proteomics, and metabolomics—to improve disease association 
prediction, target prioritization, protein structure prediction, and druggability prediction. AI, 
combined with ML and DL, accelerates key phases such as structure-based drug design, molecular 
docking, pharmacophore mapping, and de novo drug design. The figure emphasizes core stages 
like target identification, drug–target interaction, and drug toxicity assessment, with advanced AI 
techniques driving the development of more effective anticancer drugs. Figure creation source: 
Bio-Render software (https://biorender.com (accessed on 7 October 2024)). 

Figure 1. Comprehensive integration of AI, omics, and ML in drug target discovery and design.
This figure highlights the transformative role of AI in drug target discovery, utilizing a multi-omics
approach—epigenetics, genomics, proteomics, and metabolomics—to improve disease association
prediction, target prioritization, protein structure prediction, and druggability prediction. AI, com-
bined with ML and DL, accelerates key phases such as structure-based drug design, molecular
docking, pharmacophore mapping, and de novo drug design. The figure emphasizes core stages
like target identification, drug–target interaction, and drug toxicity assessment, with advanced AI
techniques driving the development of more effective anticancer drugs. Figure creation source:
Bio-Render software (https://biorender.com (accessed on 7 October 2024)).

https://www.deep6.ai
https://www.deep6.ai
https://biorender.com
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1.1. Background/History of AI Role in Drug Discovery and Development
1.1.1. Evolution of AI: From Machine Learning (ML) to Deep Learning (DL)

AI has undergone a remarkable evolution over the last several decades, with its inte-
gration into drug discovery representing a significant shift in the way that pharmaceutical
research is conducted. Initially, AI in drug discovery was driven by ML algorithms that
could analyze structured data, recognize patterns, and predict outcomes based on statistical
methods. Early AI techniques were limited by computational power and data availability,
but they laid the groundwork for more sophisticated methods in later years [11–13,16–18].

The transition from ML to DL marked a significant leap in the field. While ML relies on
algorithms designed to learn from data through human intervention, DL leverages artificial
neural networks that are capable of learning directly from raw data with minimal human
input. DL models, such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), have demonstrated a remarkable ability to process vast amounts of
unstructured data, including images, genomics data, and chemical structures, making them
particularly suited for tasks like drug discovery. The integration of DL into drug discovery
processes has revolutionized the field, enabling predictive models with much higher
accuracy, robustness, and adaptability compared to traditional methods. For instance, DL
techniques have been instrumental in identifying novel drug targets, predicting drug–target
interactions, and designing new compounds with optimized properties, accelerating the
pace of drug development. Over time, advancements in computational power, coupled
with the availability of large-scale biological datasets, have further fueled the expansion
of AI in the pharmaceutical industry. As the scope of AI continues to grow, its integration
into various stages of drug discovery—from initial target identification to preclinical and
clinical testing—has paved the way for a new era of precision medicine, where treatments
can be more personalized and targeted [13,17,18].

1.1.2. AI’s Role in Accelerating Drug Development: From Early Target Discovery to
Clinical Trials

The integration of AI technologies has become integral to each stage of the drug
development pipeline. In the early stages, AI has proven invaluable in target identification
and drug repurposing, where ML and DL algorithms are used to determine vast datasets
for potential therapeutic targets and to predict how existing drugs could be repurposed
for new indications. In the drug design phase, AI tools have significantly accelerated
the process of hit identification, lead optimization, and de novo drug design. AI-driven
algorithms, such as generative adversarial networks (GANs), are now used to create novel
drug-like compounds by exploring chemical space far more efficiently than traditional
methods. Additionally, AI models now play a crucial role in clinical trial design, where they
assist in patient stratification, predicting patient responses, and identifying biomarkers that
can indicate a drug’s efficacy or toxicity [14,15].

The ongoing integration of AI with reinforcement learning, natural language pro-
cessing (NLP), and multi-omics data will enable even more precise drug discovery and
personalized therapies. AI is expected to shorten the time to market for new drugs, reduce
costs, and improve the overall efficiency of the drug development process [14]. In conclu-
sion, the evolution of AI from early ML methods to advanced DL techniques has played
an instrumental role in transforming drug discovery and development. As the technology
continues to advance, it promises to further revolutionize the pharmaceutical industry,
making drug development faster, more efficient, and more personalized than ever before.

2. AI Capability to Integrate Information from Diverse Sources

One of the key strengths of AI in the context of anticancer drug target identification
is its ability to integrate data from multiple sources. Cancer is a complex disease with a
multitude of underlying genetic, molecular, and cellular factors. Integrating data from
various sources provides a more comprehensive understanding of these factors and helps
in identifying potential drug targets [11]. AI algorithms can analyze genomic data to
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identify genetic mutations, alterations, and gene expression patterns associated with can-
cer. Integrating this data with other omics data (such as proteomics and transcriptomic)
can reveal the molecular pathways driving cancer development. By combining data on
protein expression and gene expression, AI can identify key proteins and their regulatory
networks that are dysregulated in cancer cells. This helps in identifying targets that play
a crucial role in disease progression. Integrating clinical data, including patient histories,
treatment responses, and outcomes, with molecular data can provide insights into the
effectiveness of different treatments for specific genetic profiles [12]. AI can integrate data
from various sources to construct detailed signaling pathways and molecular networks.
This enables researchers to pinpoint specific nodes within these networks that could be
targeted with drugs. AI can analyze protein structures to predict how molecules interact
with potential drug targets. Integrating structural data with other molecular data helps in
understanding the mechanisms of DTIs [9,11]. AI can analyze data from high-throughput
screening (HTS) assays to identify compounds that show activity against specific targets.
Integrating screening data with other molecular information enhances target validation [16].
AI techniques like DL can fuse data from various sources to identify hidden patterns and
relationships. This can reveal novel insights that may not be apparent when analyzing
individual datasets [16].

An increasing number of approaches within similarity-based or data-driven frame-
works aim to harness AI for enhanced predictive capabilities through the integration of
diverse data types. Madhukar et al. [18] introduced a Bayesian-based ML method known as
“BANDIT”, achieving approximately 90% accuracy in target prediction for over 2000 small
molecules. The success was attributed to the integration of six data types, including growth
inhibition, gene expression, adverse reactions, chemical structure, and drug-related data.
In a similar vein, Olayan et al. [17], proposed the DDR method to explore more efficient
predictions of DTIs through the utilization of data from multiple sources, encompassing
eight drug similarity networks and eight target similarity networks. The drug similarity
networks comprised various elements such as gene expression similarity, disease-based sim-
ilarity, drug side effect–based similarity, and chemical structure fingerprint-based similarity.
Similarly, the target similarity networks encompassed features like gene ontology–based
similarity and protein sequence–based similarity. These investigations highlight that lever-
aging AI to integrate data from diverse sources enhances both the biological interpretability
of drug target prediction and prediction accuracy [13].

3. AI in Anticancer Drug Target Identification

AI has made significant contributions to various aspects of cancer research, including
drug target identification [6,9]. Identifying suitable drug targets is a critical step in the
drug discovery process, as it helps researchers to design therapies that can specifically
target cancer cells while minimizing detriment to healthy cells. AI techniques have been
particularly valuable in this area due to their ability to analyze large and complex biological
datasets and identify patterns that might be difficult for humans to discern [15]. Drug–
target interaction (DTI) is a key step in drug development. The robustness of the interaction
between a drug and its target is frequently characterized by binding affinity constants,
which encompass metrics such as the dissociation constant (Kd), inhibition constant (Ki),
and half-maximal inhibitory concentration (IC50) [14]. The experimentally determining DTI
is a resource-intensive and time-consuming endeavor, and the computational prediction
of these interactions holds considerable significance. Precise and efficient DTI predictions
have the potential to significantly enhance drug development processes and expedite the
discovery of lead or hit compounds [19].

Computational approaches for predicting DTIs encompass methods such as molec-
ular docking simulations and those grounded in ML. An innovative end-to-end learning
framework named “EEG-DTI” for DTI predictions was introduced by Peng et al., lever-
aging heterogeneous graph convolutional networks [20]. This model employed a graph
convolutional network to acquire low-dimensional feature representations of drugs and
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targets, facilitating DTI prediction based on the learned features. Notably, it demonstrated
strong DTI prediction performance, even in cases where the three-dimensional structures
of drug targets were not employed. For enhanced prediction accuracy, Shao et al. treated
DTI prediction as a link prediction challenge and introduced an end-to-end model called
“DTI-HETA”, utilizing a heterogeneous graph with an attention mechanism [21]. This
model surpassed the performance of current state-of-the-art models. Simultaneously, in
tackling the interpretability challenge of DL, Yang et al. presented a method for predicting
DTIs. This method relied on mutual learning mechanisms, operated without 3D structural
data, and provided explanatory insights [22].

4. AI Predicts the Viability of Drug Targets for Anticancer Therapies

The selection of drug targets is also a very crucial step in the cancer drug design
process. AI can play a significant role in predicting the druggability of potential anticancer
drug targets. Druggability refers to the likelihood that a target can be modulated by a
small drug molecule in a way that produces a therapeutic effect. Identifying druggable
targets is important in the drug discovery process, as it helps researchers to prioritize
which targets are more likely to lead to successful drug development [23]. AI-driven virtual
screening involves the computational screening of large databases of chemical compounds
to identify those that are likely to bind to a target of interest. This approach can help
researchers identify potential drug candidates that could modulate anticancer targets. AI
can predict the 3D structure of proteins and analyze their binding sites. This enables
researchers to assess whether a target’s structure is suitable for small molecule binding.
Structural information helps in understanding how a potential drug molecule could interact
with the target. AI models can predict the binding affinity between a target protein and
potential drug molecules. This helps in determining whether a small molecule is likely to
bind strongly to the target, a key factor in drug development [24]. Numerous AI related
methodologies have been devised (Table 2). Raies et al. [25], introduced a predictive model
named “DrugnomeAI” to tackle the challenge of targeted drug synthesis. They employed
a stochastic semi-supervised ML framework to develop DrugnomeAI for forecasting the
druggability of drug targets within the human exome. Additionally, the study showcased
the capability of DrugnomeAI in predicting the druggability of drug targets specifically in
oncology diseases. In a separate effort, Wang et al. [26] formulated a novel model, KG4SL,
grounded in a graph neural network (GNN). This model integrates knowledge graph
(KG) messaging into GNN predictions. The empirical findings underscored the substantial
positive impact of incorporating KG into GNN for SL prediction.

Table 2. Overview of AI-integrated software tools and techniques in anticancer drug design: Applica-
tions, advantages, challenges, and case-study references.

AI Application in
Anticancer Drug

Design
Description Key Advantages Challenges and

Limitations
AI-Integrated Software Tools

(Version/Access Details) * References

Drug–Target
Interaction Prediction

AI algorithms predict
potential interactions
between drugs and
their targets

Increases the speed
of identifying viable
drug candidates;
enhances accuracy of
predictions

Requires large,
high-quality datasets;
predictions can be
biased based on
training data;
overfitting is a risk if
not
managed properly.

Chemoinformatics Software:
BindingDB (Version 2023.09,
accessed November 2024)
Docking Tools: AutoDock
(Version 4.2.6, accessed
November 2024); MOE (Version
2023.09, subscription)

[22]

Compound Screening
and Optimization

AI methods screen
vast chemical
libraries to identify
promising candidates

Reduces time and
costs associated with
traditional
high-throughput
screening methods

Virtual predictions
may not always
correlate with
in vitro results;
requires thorough
experimental
validation.

Virtual Screening Platforms:
Schrödinger Suite (2024.2,
accessed November 2024);
DeepChem (Version 2.7.1,
accessed November 2024)

[27]
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Table 2. Cont.

AI Application in
Anticancer Drug

Design
Description Key Advantages Challenges and

Limitations
AI-Integrated Software Tools

(Version/Access Details) * References

Patient-Specific Drug
Response Prediction

AI models analyze
patient data to
predict individual
responses to
specific drugs

Facilitates
personalized
medicine; helps in
tailoring treatments
for better outcomes

Data privacy
concerns; requires
comprehensive
patient data and
validation; risk of
misclassification
based on model bias.

Predictive Modeling Tools:
IBM Watson for Drug Discovery
(Updated 2023,
subscription-based);
Tempus (Platform details,
https://www.tempus.com
accessed November 2024)

[28]

Biomarker Discovery

AI identifies potential
biomarkers that
predict responses
to therapies

Enhances patient
stratification;
supports the
development of
personalized
treatment plans

Requires integration
of multi-omics data;
potential ethical
concerns regarding
genetic data usage.

Bioinformatics Software:
GenePattern (Version 3.9.0,
accessed November 2024);
CBioPortal (Version 2024.10,
open access)

[29]

De Novo Drug
Design

AI generates novel
chemical entities that
can act as new
anticancer drugs

Accelerates the
discovery of
innovative
compounds; opens
up new avenues for
drug discovery

Generated
compounds may lack
drug-like properties;
quality control of
generated structures
is crucial.

Generative Design Tools:
DeepGen (Platform,
https://github.com/ details not
disclosed); MolecularAI
(Proprietary, inquire at
MolecularAI site, https:
//www.molecularai.com/)

[30]

Drug Repurposing

AI analyzes existing
drugs for new
anticancer
applications

Reduces
development costs
and timelines; known
safety profiles can
expedite clinical trials

Limited by existing
drugs’ toxicity
profiles; AI may
overlook some
interactions due to
data limitations.

Repurposing Platforms:
Drug Repurposing Hub (Open
Access, curated, accessed
November 2024); RepoDB (Free,
[Version 2024])

[31]

Clinical Trial Design
Optimization

AI optimizes trial
protocols, including
patient selection and
endpoint definitions

Improves recruitment
efficiency; enhances
trial success rates and
reduces timelines

Ethical concerns
related to AI-driven
patient selection;
requires careful
validation against
traditional trial
designs.

Trial Optimization Tools:
Trialspark (Platform Details,
version not specified); Medidata
(Version 2024.10, subscription
required)

[32]

Toxicity Prediction

AI models assess the
potential toxicity of
new compounds
early in the
design process

Reduces the
likelihood of
late-stage failures in
clinical trials due to
safety issues

High false-positive
rates can occur;
requires extensive
toxicology datasets
for accurate
predictions.

Toxicity Prediction Software:
DEREK Nexus (Version 7.0,
proprietary); DeepTox
(Accessed via GitHub,
https://github.com/DeepTox)

[33]

Integration of
Multi-Omics Data

AI integrates
genomic, proteomic,
and metabolomic
data to provide com-
prehensive insights

Facilitates
understanding of
complex cancer
biology; enhances
target identification

Data integration
challenges; requires
advanced
computational
resources; may face
data
heterogeneity issues.

Multi-Omics Platforms:
GATK (Version 4.4.0, open
source); OmicsHub
(Commercial access)

[12]

Real-Time
Monitoring of Trials

AI technologies
enable continuous
monitoring of trial
data and
patient responses

Facilitates adaptive
trial designs; allows
for real-time
adjustments based
on findings

Relies on the
availability of
real-time data;
requires robust data
infrastructure and
ethical considerations
for patient privacy.

Real-Time Monitoring Tools:
Medidata Rave (Commercial
Suite, updated November 2024);
Clinical Ink (Contact for Info,
https://clinicalink.com)

[34]

* Accessed Dates: November 2024 for all open-access tools and platforms.

5. AI Screening of Potential Hit Compounds for Anticancer Drugs

AI holds a crucial position in assessing potential compounds for anticancer drugs.
Within the field of drug discovery, the objective is to identify molecules that can interact
with a target protein, positively influencing its function for disease treatment [35]. AI
acts as an essential tool in this process, aiding in the prediction and optimization of

https://www.tempus.com
https://github.com/
https://www.molecularai.com/
https://www.molecularai.com/
https://github.com/DeepTox
https://clinicalink.com
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compounds with increased affinity and specificity for cancer-related targets. As a result, AI
significantly accelerates and improves the drug discovery process [36]. Integrating AI into
hit compound screening not only speeds up the discovery of potential drug candidates but
also reduces the costs and time associated with experimental screening. Once therapeutic
targets for anticancer drugs are identified, the subsequent phase involves screening for hit
compounds—molecules exhibiting initial activity against a specific target or pathway [37].
The computer-aided exploration of hit compounds is primarily facilitated through HTS,
which can be carried out using two main approaches: structure-based screening and
ligand-based screening [27].

5.1. Strategies for Structure-Based Screening

The structure-based approach relies on known structural information to characterize
the interaction effects between bioactive compounds and their corresponding receptors [38].
Advancements in bimolecular spectroscopic technologies, such as X-ray crystallography
and nuclear magnetic resonance (NMR), have significantly enhanced our understanding
of the drug target’s structure. Leveraging the three-dimensional structure of proteins,
structure-based design (SBD) allows for the rational design of new ligands to elicit thera-
peutic effects. SBD offers crucial insights into the discovery and optimization of initial lead
compounds for new drug design and development [39,40]. High-affinity ligands, guided
by SBD, selectively regulate validated drug targets, influencing specific cellular activities
and ultimately achieving the desired pharmacological and therapeutic effects [41].

In the realm of anticancer drug design, structure-based virtual screening utilizes dock-
ing and scoring techniques to identify molecules exhibiting robust binding affinity for a
target protein [42]. Nevertheless, conventional docking procedures are frequently time-
consuming, presenting challenges for extensive virtual screening. To address this issue, Lu
et al. integrated DL models into structure screening, developing a model capable of pre-
dicting molecular docking scores and accelerating the evaluation process [43]. Yasuo et al.
introduced an innovative structure-based virtual screening approach for hit compounds,
known as “SIEVE-Score”, which harnesses AI and showcases substantial improvements
compared to other contemporary virtual screening methods [44].

5.1.1. Molecular Docking

Molecular docking, although not inherently rooted in AI, is a computational method
extensively applied in drug discovery, notably in the context of anticancer drug research.
This technique involves predicting the preferred orientation and conformation of a ligand (a
drug molecule) when it binds to a target protein. The assessment encompasses the strength
and geometry of the interaction between the ligand and the target, providing valuable
insights into potential binding sites and affinities [45]. While traditional molecular docking
relies on physics-based scoring functions and algorithms for predicting binding interactions,
recent strides in drug discovery involve the integration of AI techniques to augment the
precision and efficiency of docking studies. Approaches grounded in AI, such as ML and
DL, have the potential to enhance scoring functions, refine predictions, and address intricate
interactions in the context of molecular docking [46]. By leveraging extensive datasets,
these techniques can train models that more effectively capture the subtleties of molecular
interactions. In essence, while molecular docking stands as a prevalent computational
technique in anticancer drug discovery, the integration of AI methods into this domain
holds promise for elevating the predictive capabilities and precision of docking studies.
Integrating AI techniques into molecular docking for computational drug discovery entails
utilizing ML and other AI methods to improve the precision and efficiency of docking
studies [47].

5.1.2. Integrating Molecular Docking with AI for Comprehensive Processing

ML models have significantly improved scoring mechanisms in molecular docking,
enhancing the accuracy of drug discovery processes. These models are trained on diverse
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datasets to comprehend complex relationships between molecular features and binding
affinities, thereby providing more reliable scoring functions. In particular, regression-based
ML models are highly effective in predicting binding affinities with greater precision. By
utilizing experimental binding affinity data, these models can recognize intricate patterns
and correlations, leading to more accurate outcomes [48]. DL techniques further contribute
by automatically extracting relevant features from molecular structures. Neural networks
develop hierarchical representations, capturing fine details crucial for docking accuracy.
As a result, DL has become instrumental in improving docking performance by providing
a more nuanced understanding of molecular interactions [49]. In addition to enhancing
scoring functions, ML algorithms optimize virtual screening processes. By prioritizing
compound libraries based on predicted binding affinities, these algorithms significantly
improve the efficiency of hit identification. Another key advancement is in handling protein
flexibility during docking, as AI-driven methods can accommodate conformational changes
in target proteins [50]. This is often achieved through molecular dynamics simulations or
ML models capable of predicting protein flexibility. Generative models based on DL are
also making strides in ligand design. These models can craft novel ligands with specific
properties, suggesting new chemical structures for synthesis and testing. Transfer learning
techniques further streamline this process by leveraging knowledge from existing docking
studies, allowing pretrained models to be fine-tuned for specific targets, thereby reducing
the need for extensive training data [51]. Ensemble models, which combine predictions
from multiple docking runs or AI models, provide a robust and high-performing approach.
The integration of AI predictions with experimental data helps refine and validate docking
results, ensuring that predictive power is continuously improved [52]. Real-time adaptation
is another promising development, where adaptive algorithms adjust docking parame-
ters based on ongoing experimental feedback, allowing for dynamic optimization [9,16].
Overall, incorporating AI techniques into molecular docking workflows enhances the
accuracy, speed, and reliability of computational drug discovery efforts. This integration ul-
timately facilitates the identification and optimization of potential drug candidates, offering
a powerful tool for modern drug development [53].

5.1.3. Structure-Based Pharmacophore Mapping

Pharmacophore mapping is the process of discerning the critical features of a molecule
that contribute to its biological activity, enhancing our comprehension of the interactions
between a drug and its target. Although not originally an AI technique, the application of
AI-based methods in pharmacophore mapping accelerates drug discovery by efficiently
analyzing extensive datasets and predicting potential pharmacophores more swiftly [54].
In the realm of anticancer drug discovery, AI-based methods become pivotal in pharma-
cophore mapping, utilizing ML and data analysis.

5.1.4. Integration of AI in Pharmacophore Mapping

AI has transformed the drug discovery process by enabling the analysis and extraction
of critical data features from extensive molecular datasets. Through the use of AI algo-
rithms, researchers can analyze vast datasets containing molecular structures and biological
activities to identify key features associated with anticancer properties. ML models are par-
ticularly effective in extracting crucial molecular descriptors or fingerprints that contribute
to the pharmacophore of effective anticancer drugs. This process allows for a more targeted
and efficient approach to drug discovery [55]. One of the most significant applications of
AI in this field is virtual screening, where AI predicts the binding affinity of compounds to
cancer-related targets [14,15]. DL models, leveraging insights from known molecular inter-
actions, can identify potential ligands that meet pharmacophoric requirements necessary for
anticancer activity [24]. This screening process enhances the chances of discovering potent
drug candidates. Generative models, such as generative adversarial networks (GANs) and
variational autoencoders (VAEs), further boost drug discovery efforts by generating novel
molecular structures with desired pharmacophoric features. These AI-driven models create
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new possibilities for drug design, generating compounds that are tailored to meet specific
therapeutic needs [56]. AI also excels in integrating multi-omics data, including genomics,
proteomics, and metabolomics, providing a comprehensive understanding of cancer at the
molecular level. This integration aids researchers in identifying relevant pharmacophores,
thus contributing to more accurate and effective anticancer drug design [57]. Moreover,
AI models are capable of predicting the absorption, distribution, metabolism, excretion,
and toxicity (ADMET) properties of potential compounds. This capability ensures that
drug candidates not only demonstrate anticancer activity but also possess favorable phar-
macokinetic profiles for further development [27,33]. In addition to these advancements,
AI accelerates drug design through reinforcement learning and optimization algorithms,
enabling the creation of new compounds with optimized pharmacophoric features. This
significantly speeds up the drug discovery process by efficiently navigating large chemical
spaces to identify promising candidates. By combining AI methodologies with pharma-
cophore mapping, researchers can streamline the development of anticancer drugs, making
the entire process faster and more precise [58].

5.2. Ligand-Based Pharmacophore Mapping in Drug Discovery

Ligand-based screening involves the identification of small molecules with known
activities and the exploration of structures within a compound library exhibiting similar
physical or chemical characteristics as potential candidates. The fundamental principle un-
derlying ligand-based approaches in drug discovery is molecular similarity. These methods
rely on the structural information of active ligands interacting with the target protein, using
a compound with noteworthy biological properties as a template to identify and predict
new chemical entities with comparable properties [59]. This methodology is considered an
indirect protocol for drug discovery, relying solely on the structure of known active small
molecules, without the need to predict the 3D protein structure. The approach is commonly
employed to virtually screen novel ligands with intriguing biological activities and to
optimize the biological properties of ligands, enhancing drug pharmacokinetics, including
ADMET. Ligand based pharmacophore mapping is a crucial aspect of drug discovery that
involves the identification and characterization of molecular features essential for a ligand
to interact with a target protein [60]. Ligand-based pharmacophore mapping focuses on the
properties of known active ligands and their spatial arrangement, aiming to understand
the key elements responsible for biological activity.

5.2.1. AI Integrated Software Tools for Ligand-Based Pharmacophore Mapping

Various computational tools are available for pharmacophore mapping, such as Ligand
Scout, MOE (Molecular Operating Environment), and Discovery Studio. These tools assist
in the generation, visualization, and validation of pharmacophores [27,54]. Ligand-based
pharmacophore mapping, when integrated with other computational and experimental
techniques, significantly contributes to the rational design of new drugs with improved
potency and selectivity. It plays a vital role in streamlining the drug discovery process
and reducing the reliance on serendipity in identifying potential therapeutic agents [61].
Krasoulis et al. introduced an end-to-end approach called “DENVIS”, which presents
a scalable and innovative algorithm for HTS. This approach utilizes graphical neural
networks incorporating atomic and surface protein pocket features. In experiments on two
benchmark databases, DENVIS demonstrated significantly improved speed compared to
other models [62]. Turkina et al. recently developed a cumulative molecular fingerprinting
algorithm that comprehensively considers all structural data in the calculation, effectively
enhancing the utilization of experimental data. This method achieves a seamless integration
of molecular fingerprinting and experimental information, inheriting the speed advantage
of the former approach while achieving higher information utilization [63].
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5.2.2. Ligand-Based Quantitative Structure–Activity Relationship (QSAR) Modeling

QSAR modeling is a computational approach used in drug discovery to establish
relationships between the chemical structure of molecules (ligands) and their biological
activities [47]. Ligand-based QSAR specifically focuses on the properties and features of
ligands with known bioactivity against a target [55]. The traditional QSAR approach in-
volves statistical methods to correlate physicochemical properties or molecular descriptors
with biological activities [64]. These descriptors capture information about the structural
features of molecules, allowing researchers to predict how changes in chemical structure
might affect a compound’s activity. In recent years, AI, particularly ML, has been integrated
into QSAR modeling to improve accuracy and efficiency. ML algorithms can handle large
datasets, identify complex patterns, and make predictions without explicitly programmed
rules [65]. This synergy has led to the development of QSAR models with enhanced
predictive power. In summary, while QSAR modeling itself is not purely an AI tool, the
integration of AI techniques has significantly advanced its capabilities in drug discovery by
enabling more accurate predictions and handling larger and more complex datasets [66].

5.2.3. Integration of AI Tools with QSAR Modeling

QSAR modeling involves establishing mathematical relationships between the chemi-
cal structure of compounds and their biological activities. The integration of AI tools with
QSAR modeling enhances the efficiency, accuracy, and predictive power of these models.
The integration of AI tools with QSAR modeling has significantly transformed traditional
methods, making the modeling process more efficient, accurate, and scalable. In conven-
tional QSAR modeling, data preprocessing involves manual calculation of descriptors,
handling missing values, and dealing with data outliers [67]. With AI integration, these
steps can be automated and optimized, allowing AI tools to handle large datasets efficiently,
including imputing missing values and selecting relevant descriptors with minimal human
intervention. When it comes to descriptor selection, the traditional approach relies on do-
main knowledge or statistical methods to manually choose relevant descriptors. In contrast,
AI, particularly ML, can automatically identify and prioritize descriptors by recognizing
complex relationships in the data. Techniques like recursive feature elimination become
more powerful through AI, ensuring more precise and relevant feature selection. Model
building in traditional QSAR is often based on linear regression or similar methods, which
may struggle to capture nonlinear relationships in complex biological systems [68]. AI inte-
gration, through ML and DL, offers greater flexibility in modeling nonlinear relationships
between molecular descriptors and biological activities. Neural networks, a DL technique,
are particularly useful in uncovering intricate patterns within data that are not apparent
through conventional methods such as partial least squares or support vector machines. AI
tools significantly improve prediction accuracy by learning complex dependencies and pat-
terns in data, which traditional QSAR methods, constrained by linearity assumptions, often
miss. Transfer learning further enhances model performance by allowing models trained
on one dataset to be fine-tuned for use on another, thereby leveraging knowledge across
datasets and improving generalization [69]. In addition to improving prediction accuracy,
AI automates the model selection process. While traditional approaches require manual
selection based on statistical metrics, AI-driven algorithms can explore a wider range
of models, optimizing for both accuracy and interpretability. This is especially valuable
when dealing with large datasets, where AI’s scalability, including the use of distributed
computing and cloud-based solutions, allows for efficient handling of big data challenges.

AI’s potential to address big data challenges in QSAR modeling extends far beyond
traditional methods. Unlike conventional QSAR, where data handling and modeling are
often limited by linear approaches, AI-based techniques like ML and DL can process high-
dimensional data with intricate patterns [47]. These methods enable faster processing and
feature selection by utilizing algorithms capable of identifying meaningful descriptors
from complex datasets, even with significant noise or missing values. Furthermore, AI
facilitates distributed computing, allowing models to scale across vast molecular databases
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and provide real-time adaptability as new data becomes available [55]. This adaptability
and scalability make AI an indispensable tool for handling the high volume, variety, and
velocity of big data in QSAR, leading to faster, more precise predictive models and more
effective drug discovery efforts. AI facilitates distributed computing, which allows models
to scale across vast molecular databases and handle large volumes of data that are beyond
the capacity of conventional computing systems. This distributed approach enhances the
ability to process data in parallel, speeding up the modeling process and improving real-
time adaptability as new data becomes available. As a result, AI models can continuously
learn and evolve, adjusting their predictions based on fresh inputs and improving over time.
The scalability and adaptability of AI are essential for handling the high volume, variety,
and velocity of big data in QSAR modeling. In drug discovery, where datasets often include
millions of compounds and experimental results, AI’s capacity to process and analyze
such data efficiently leads to faster development of more accurate predictive models. This,
in turn, accelerates the identification of promising drug candidates, ultimately driving
more effective drug discovery and development processes. AI’s ability to tackle big data
challenges is transforming QSAR modeling, making it a more powerful tool for advancing
medicinal chemistry and material science [70].

Moreover, AI allows for continuous learning, where models adapt and evolve as
new data becomes available, ensuring that they remain relevant over time. Overall, the
integration of AI tools with QSAR modeling enhances the entire workflow, from data pre-
processing to model building and prediction accuracy. It enables more robust and adaptable
predictive models, offering new possibilities for understanding complex structure–activity
relationships in drug discovery and material science [71]. The synergy between AI and
QSAR modeling is transforming how researchers develop more accurate and efficient
models in these fields.

6. Molecular Dynamics (MD) Simulation in Finding New Drug Binding Sites

MD simulations play a pivotal role in drug discovery by providing a dynamic and
detailed view of molecular interactions within biological systems. Understanding the
dynamics of proteins and their interactions with ligands is crucial for identifying new
drug binding sites [13]. MD simulations play a crucial role in drug discovery by capturing
the dynamic behavior of biomolecular systems, providing insights beyond static struc-
tures. They enable the exploration of protein structures over time, revealing flexibility
and conformational changes that can uncover hidden or transient binding sites [42,48].
MD simulations are instrumental in characterizing ligand binding pathways, identify-
ing how ligands approach and bind to target proteins, and detecting allosteric binding
sites—regions that modulate protein function despite not being part of the active site [72].
They also capture transient binding events and predict cryptic binding sites, which are
inaccessible in experimental structures but may become available under specific condi-
tions like changes in pH or temperature. MD simulations are invaluable for validating
and refining computational models, such as docking studies, by confirming binding site
predictions and assessing the stability of ligand–protein interactions [73]. Furthermore,
MD provides insights into binding site flexibility, showing how sites adapt to different
ligands, and can quantify binding affinities and kinetics by analyzing interaction energetics.
By integrating MD results with experimental techniques like X-ray crystallography and
NMR spectroscopy, researchers can refine models and validate binding sites, providing
a comprehensive and dynamic perspective that enhances rational drug design. In sum,
MD simulations significantly improve the discovery of drug binding sites by offering a
detailed, time-dependent view of biomolecular interactions, making them a powerful tool
in modern drug discovery [74].

Integration of MD Simulation with AI

The integration of AI with MD simulations revolutionizes the process of identifying
new drug binding sites by combining the strengths of both technologies. MD simula-
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tions, which involve solving Newton’s equations of motion to simulate molecular move-
ments over time, provide detailed insights into the dynamic behavior and interactions of
biomolecules. When integrated with AI-driven techniques like ML and DL, the efficiency
of these simulations is enhanced. AI algorithms can extract relevant features from MD
data, build predictive models, and identify conformational changes that reveal hidden
binding sites [75]. Hybrid approaches combining physics-based MD simulations with data-
driven AI methods offer a comprehensive strategy for understanding complex biological
processes [76]. Tools like Markov state models (MSMs) benefit from AI by improving the
identification of key conformational changes, while clustering techniques and principal
component analysis (PCA) are enhanced through AI to better analyze MD data and reveal
stable binding site conformations. AI also strengthens the predictive power of drug binding
site prediction tools like Sitemap and FT-Map, and convolutional neural networks (CNNs)
are used to recognize complex patterns in MD trajectory frames, aiding in binding site
discovery [77]. Furthermore, integrating MD with ensemble docking, where multiple
protein conformations are used for ligand docking, and leveraging quantum mechan-
ics/molecular mechanics (QM/MM) simulations allow for more accurate and insightful
representations of ligand–target interactions. Overall, AI-driven MD simulations offer
increased efficiency, accuracy, and the potential to uncover novel drug binding sites [25,72].
However, challenges such as the computational demands of these simulations and the
reliance on high-quality data for ML models need to be addressed to fully harness their
potential in drug discovery [78].

7. Identification of Anticancer Drugs Using AI-Based De Novo Drug Design

AI-based de novo drug design is a powerful approach for identifying anticancer
drugs by creating new molecules with desired properties through computational methods,
without relying on existing compounds. This method leverages various computational
techniques to design novel compounds with therapeutic potential [30]. Molecular docking
and virtual screening are commonly employed to predict how small molecules might bind
to cancer-related proteins, helping to identify promising candidates. QSAR modeling aids
in correlating molecular structures with anticancer activity, while fragment-based drug
design combines smaller fragments to form effective drug molecules. Pharmacophore
modeling and ligand-based virtual screening focus on identifying molecular frameworks
and similar structures from known anticancer compounds to discover new drug candi-
dates [79]. Structure-based design methods analyze the three-dimensional structures of
proteins to design molecules that fit well in binding sites. AI-driven ML techniques analyze
large chemical and biological datasets, predicting the anticancer potential of new molecules
by identifying complex patterns. Additionally, fragment-based lead discovery screens
libraries of fragments to create new lead compounds, while genetic algorithm-based design
simulates evolutionary processes to optimize molecules for anticancer activity [80]. Multi-
objective optimization balances factors like potency and selectivity to develop molecules
with an overall favorable profile. Advanced computational power, combined with HTS
and virtual screening (VS), allows for the efficient evaluation of vast compound libraries.
AI techniques such as variational autoencoders (VAEs), recurrent neural networks (RNN),
generative adversarial networks (GAN), and deep reinforcement learning (DRL) are em-
ployed to generate and optimize new molecules, making de novo drug design a crucial
tool for modern anticancer drug discovery [81].

8. Role of AI in Anticancer Drug Repurposing
8.1. Overview of Anticancer Drug Repurposing

Drug repurposing, often referred to as drug repositioning, identifies alternative thera-
peutic uses for medications that have already been approved for other conditions, offering
the potential to treat complex diseases like cancer. This approach allows researchers to
circumvent the extensive time and financial resources required for new drug development
by leveraging existing knowledge about these drugs’ safety profiles, pharmacokinetics, and
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mechanisms of action. Many medications originally designed for specific ailments exhibit
additional therapeutic effects because they interact with diverse biological pathways that
impact multiple diseases. Consequently, drug repurposing has attracted growing atten-
tion in recent years for its ability to accelerate the drug discovery process and offer new
treatments for cancer [31,82]. Despite extensive research efforts in academia and the phar-
maceutical industry, current anticancer therapies have shown substantial success in only a
limited number of cancer types, underlining the need for innovative approaches like drug
repositioning. Drug repurposing strategies fall into two primary categories: target-centric
and disease-centric approaches, aimed at predicting novel drug–target and drug–disease
interactions, respectively. These strategies not only streamline the drug discovery process
but also broaden the range of potential therapeutic options for patients, supporting a more
efficient and resource-saving paradigm in cancer treatment [83,84].

8.2. AI-Driven Insights into Drug–Target Interactions

AI has become an essential tool in drug repositioning, particularly by elucidating
complex interactions between drugs and new biological targets. By analyzing massive
datasets generated from biological studies, clinical trials, and chemical properties, AI
methodologies like ML and DL have transformed our ability to discover alternative ther-
apeutic applications for approved medications [85]. For example, predictive modeling
can assess interactions between drugs and targets by examining molecular structures and
known drug–target relationships. Through computational techniques such as molecular
docking and virtual screening, AI can predict a drug’s binding efficacy with potential
new targets. This enables a faster identification of drug candidates that might be effective
against complex diseases like cancer, where traditional development methods often fall
short [86]. Moreover, AI facilitates the integration of multi-omics data—encompassing
genomics, proteomics, metabolomics, and transcriptomics—giving researchers a compre-
hensive understanding of disease processes and associated biological pathways. This
data-driven, holistic approach is crucial for complex diseases like cancer, where numerous
interconnected pathways contribute to disease progression, thereby enabling AI to identify
both direct drug–target interactions and indirect effects, which can lead to novel therapeutic
advantages [28] (Figure 2).

8.3. Enhancing Data Analysis and Clinical Trials Through AI

Another significant advantage of AI in drug repurposing is its capacity to improve
the speed, accuracy, and depth of data analysis. For instance, natural language processing
(NLP) algorithms can sift through vast amounts of scientific literature and clinical trial
data, extracting insights into drug interactions and potential new uses that may have
previously been overlooked [87]. By continuously learning and updating with new data,
AI systems adapt their predictions, thereby increasing the reliability of drug repurposing
efforts. Beyond analysis, AI contributes to experimental design in preclinical and clinical
trials by predicting which drug candidates are most likely to succeed based on historical
and real-time data. By doing so, AI can streamline the clinical trial process, reducing time
and associated costs, and ultimately accelerating the path to market for new therapies.
This predictive capability not only improves the efficiency of drug development but also
enhances the chances of clinical success by optimizing the selection and prioritization
of repurposed drugs for further investigation [32]. In summary, the integration of AI
into drug repurposing represents a groundbreaking shift in pharmaceutical research, as
it augments our understanding of drug mechanisms, expedites discovery processes, and
offers promising new avenues for cancer treatment [29,34,88–90].
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Figure 2. AI-mediated computer-aided drug design (CADD) tools: Integration of traditional and
AI-driven approaches in anticancer drug development. The figure showcases how AI revolutionizes
traditional drug discovery by leveraging advanced computational power and data-driven insights.
On one side, the traditional multi-omics process is depicted, highlighting key steps such as drug target
identification, druggability prediction, hit compound screening, molecular docking, pharmacophore
mapping, and QSAR modeling. On the other side, AI-driven tools like DeepChem, AtomNet,
BenevolentAI, Drugnome AI, and Exscientia enhance speed and precision in drug design. AI models
improve scoring functions, protein flexibility, and ADMET predictions, while tools like LigandScout
MOE and DENVIS Algorithm add value to pharmacophore validation and structural data analysis.
Together, these innovations bridge the gap between computational predictions and experimental
validation, accelerating drug discovery.

9. Conclusions and Future Perspectives

In summary, the integration of AI into the realm of computational anticancer drug
discovery is not merely an enhancement; it is a paradigm shift that promises to redefine the
landscape of cancer therapeutics. Through advanced algorithms and data-driven method-
ologies, AI systematically addresses the myriad challenges inherent in the drug discovery
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pipeline, from the initial stages of target identification to the intricate processes of clinical
trial optimization [34]. AI accelerates the identification of novel drug candidates, deepens
our understanding of complex biological interactions, and facilitates the development of
personalized treatment strategies tailored to individual patient profiles. By employing
sophisticated ML models, AI predicts drug–target interactions with remarkable accuracy,
designs optimized drug structures, and identifies opportunities for repurposing existing
therapies for anticancer applications [89]. Moreover, AI-driven patient stratification allows
for the implementation of tailored therapies, thereby maximizing treatment efficacy and
improving patient outcomes. Its ability to analyze and extract valuable insights from vast
omics datasets enhances the identification of biomarkers and elucidates mechanisms of
drug resistance. Additionally, AI streamlines literature mining through natural language
processing, ensuring that researchers remain at the forefront of the latest advancements
in cancer research. Automation of high-throughput screening further accelerates data
analysis, facilitating the rapid identification of promising drug candidates. However, while
AI is an extraordinarily powerful tool, it is imperative to rigorously validate its predictions
through experimental and clinical studies to ensure their reliability and applicability [29].
Ethical considerations, transparency, and the mitigation of biases within AI algorithms are
critical areas that require ongoing scrutiny and refinement. Ultimately, the fusion of AI
with computational anticancer drug discovery significantly enhances the pace of innova-
tion, boosts research efficiency, and ushers in a more targeted and personalized approach
to cancer treatment. As this dynamic field continues to evolve, fostering collaboration
between AI technologies and traditional research methodologies will be essential to trans-
lating computational insights into clinically impactful and safe anticancer therapeutics [90].
Looking ahead, the synergistic potential of AI and cancer research could hold the promise
of unlocking new avenues for effective cancer therapies, paving the way for breakthroughs
that could transform patient care and outcomes.

10. Clinical Impact

• AI-driven models enhance the ability to predict patient-specific drug responses, en-
abling personalized treatment plans. This results in more precise and effective cancer
therapies, reducing adverse effects and improving patient outcomes.

• AI expedites the screening and optimization of anticancer compounds, significantly
shortening drug development timelines. This leads to faster clinical implementation
of novel therapies, offering new treatment options for cancer patients.

11. Significance

AI-driven computational approaches for transforming anticancer drug development
and prediction hold transformative potential by streamlining the drug discovery process
with unprecedented speed and accuracy. AI enables rapid identification of novel com-
pounds and optimizes treatment efficacy, significantly reducing development costs and
failure rates. Moreover, AI’s ability to predict patient-specific responses paves the way
for personalized cancer therapies, offering more targeted and effective treatment options,
ultimately improving clinical outcomes for cancer patients.
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