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Abstract: Background: Obstructive sleep apnea is a sleep disorder that is linked to many health
complications and can even be lethal in its severe form. Overnight polysomnography is the gold
standard for diagnosing apnea, which is expensive, time-consuming, and requires manual analysis by
a sleep expert. Artificial intelligence (AI)-embedded wearable device as a portable and less intrusive
monitoring system is a highly desired alternative to polysomnography. However, AI models often
require substantial storage capacity and computational power for edge inference which makes it
a challenging task to implement the models in hardware with memory and power constraints.
Methods: This study demonstrates the implementation of depth-wise separable convolution (DSC)
as a resource-efficient alternative to spatial convolution (SC) for real-time detection of apneic activity.
Single lead electrocardiogram (ECG) and oxygen saturation (SpO2) signals were acquired from the
PhysioNet databank. Using each type of convolution, three different models were developed using
ECG, SpO2, and model fusion. For both types of convolutions, the fusion models outperformed
the models built on individual signals across all the performance metrics. Results: Although the
SC-based fusion model performed the best, the DSC-based fusion model was 9.4, 1.85, and 11.3 times
more energy efficient than SC-based ECG, SpO2, and fusion models, respectively. Furthermore, the
accuracy, precision, and specificity yielded by the DSC-based fusion model were comparable to those
of the SC-based individual models (~95%, ~94%, and ~94%, respectively). Conclusions: DSC is
commonly used in mobile vision tasks, but its potential in clinical applications for 1-D signals remains
unexplored. While SC-based models outperform DSC in accuracy, the DSC-based model offers a
more energy-efficient solution with acceptable performance, making it suitable for AI-embedded
apnea detection systems.

Keywords: apnea; depth-wise separable convolution; transfer learning; model fusion; energy efficient AI

1. Introduction

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder caused
by the collapse of the upper airway, resulting in disrupted airflow. This repetitive blockage
of the upper airway causes breathing interruptions called hypopnea and apnea, character-
ized by reduced airflow and complete cessation of breathing for at least 10 s, respectively.
Hypopnea is also accompanied by a decrease in blood oxygen levels by at least 4% [1–3].
Individuals with moderate to severe apnea may experience numerous such apneic events
during the night, leading to detrimental health effects. Daytime fatigue caused by frequent
awakenings is the most common effect of OSA [4]. Moreover, it is linked to high blood
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pressure, and metabolic and cardiovascular diseases [5,6]. Patients with ischemic heart
disease (IHD), heart failure, arrhythmias, cerebrovascular diseases, and type II diabetes
are among the high-risk groups for OSA [6–8]. Numerous studies have demonstrated that
OSA is a risk factor for complications both before and after surgery [9,10]. According to the
American Academy of Sleep Medicine (AASM), approximately 5% of women and 14% of
men in the United States are affected by sleep apnea, with the majority of cases remaining
undiagnosed (around 80%) [11]. The estimated annual cost associated with undiagnosed
sleep apnea ranges from USD 130 billion to USD 150 billion approximately [11–13], but
timely diagnosis of apnea can potentially save up to USD 100.1 billion [11].

Laboratory polysomnography (PSG) is the most commonly used diagnostic method
for sleep apnea, involving a patient spending a night or two in a sleep laboratory with
electrodes and wires attached to record physiological signals such as electrocardiogram
(ECG), electroencephalogram (EEG), electromyography (EMG), electrooculogram (EOG),
blood oxygen saturation (SpO2), airflow, and respiratory effort [14,15]. PSG requires the
presence of a sleep expert to monitor and analyze the signals, making it a time-consuming
and expensive technique. The complex setup and discomfort caused by sensors may result
in overestimation or underestimation of the severity of sleep apnea. Therefore, there is a
strong need for an alternative to laboratory PSG that is more convenient and less intrusive.
In the literature, several artificial intelligence (AI)-based detection techniques have been
proposed as alternatives to polysomnography for automated detection of obstructive
sleep apnea.

Deep learning (DL) models have become more reliable and have found applications in
various aspects of healthcare, including monitoring, prediction, diagnosis, treatment, and
prognosis [16–20]. Advanced AI/machine learning (ML) models have shown significant
success in accurately detecting and predicting sleep apnea events [21–30]. However, there
is a need for improved dedicated hardware in biomedical applications as DL continues to
advance in terms of performance and complexity. While AI has proven capable of matching
or surpassing human experts in medical diagnosis, particularly in sleep apnea detection,
implementing portable and real-time detection tools on edge devices poses challenges.
Developing a computationally efficient DL network for ambulatory sleep apnea detection
typically requires data centers and cloud computing, which can compromise patient data
privacy. Recent publications have explored alternative approaches, such as minimal sensor
models, efficient ML models, dedicated hardware, or secured cloud-based solutions, to
provide higher security and optimal implementation [31–36]. Energy-efficient AI/ML edge
hardware is an area of ongoing research that requires further development.

AI-embedded hardware faces several significant challenges that need to be addressed
for optimal performance and widespread adoption. AI algorithms demand substantial
computational power for edge inference. Embedding these models in hardware devices
with limited processing capabilities poses a challenge in terms of efficiently executing com-
plex AI tasks while maintaining low power consumption. AI computation is power hungry
which makes it a challenging task to strike a balance between achieving high performance
and optimizing energy consumption. Moreover, a large AI model will require significant
amounts of memory and storage for storing network parameters and intermediate data [37].

In this study, we adopt depth-wise separable convolution (DSC) to detect sleep apnea
from raw ECG and SpO2 signals. DSC has been widely used in mobile computer vision
tasks, such as object recognition, where recognition tasks need to be carried out in a
computationally limited platform [38,39]. But the potential of DSC has not been explored
for 1-D physiological signals. The objective of this study is to build a lightweight, low-
parametric model for apnea detection that can be embedded in hardware for on-chip
inference in a resource-constraint environment. The contributions of this study are twofold:
(1) It adopts DSC for 1-D signal and demonstrates its usability in apnea detection; (2) This
study proposes a lightweight apnea detection model suitable for a resource-constraint
hardware system.
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2. Materials and Methods
2.1. Dataset

The ECG and SpO2 data used in this research were obtained from the Research
Resource for Complex Physiological Signals, commonly referred to as PhysioNet [40].
PhysioNet provides a comprehensive repository of physiological data from diverse clinical
domains, including sleep studies. For this study, two distinct datasets were collected from
PhysioNet, and their details are outlined below.

Apnea-ECG Database [41]: The dataset hosted on PhysioNet includes a total of 70 ECG
(electrocardiogram) recordings and 8 SpO2 (blood oxygen saturation) recordings. These
recordings were collected from a group of 32 subjects, consisting of 25 males and 7 females,
with an average age of 43 years. The duration of each recording varied, ranging from less
than 7 h to nearly 10 h. Each recording was accompanied by annotations for apnea, which
were derived by human experts using simultaneously recorded respiration and related
signals. The ECG signals were sampled at a frequency of 100 Hz, while the SpO2 signals
were sampled at 50 Hz. The annotation scheme used for the Apnea-ECG database is based
on minutes, where each record is divided into non-overlapping segments of one minute.
Apneic activity at the beginning of each minute after the onset of sleep is annotated.

St. Vincent’s University Hospital Database [42]: The dataset known as the St. Vincent’s
University Hospital Database [14] consists of 25 complete overnight polysomnograms
obtained from a group of 21 male and 4 female subjects. The average age of the participants
was 50 ± 10 years, ranging from 28 to 68 years, while the mean body mass index (BMI)
was 31.6 ± 40 kg/m2, ranging from 25.1 to 42.5 kg/m2. The ECG (electrocardiogram)
signals in this dataset were sampled at a frequency of 128 Hz, and the SpO2 (blood oxygen
saturation) signals were sampled at 8 Hz. The dataset follows a continuous annotation
scheme, providing the onset time of sleep for each recording. Additionally, for every apneic
event, the dataset includes information about the onset time and duration of the activity.

2.2. Segmentation

The signals were divided into segments of 12 s. Since an apneic activity was marked
by its persistence for at least 10 s, the use of slightly extended 12 s segments ensured
that sufficient data points were captured to reliably detect and infer apneic activity. The
segmentation process varied between the datasets due to differences in their annotation
schemes. For the Apnea-ECG dataset, which utilized a minute-based annotation scheme,
the first 12 s of each 1-min segment were retained, while the remaining duration was
discarded. Since the annotations indicated the presence of apneic activities at the beginning
of each minute, analyzing the initial 12 s was sufficient to determine if the segment was
apneic or not. Conversely, for the St. Vincent’s University Hospital dataset, each recording
was partitioned into segments of 12 s. Based on the provided information about the onset
and duration of apneic activities, any segment containing at least 10 s of apneic activity
was classified as apnea. Segments with apneic activity lasting less than 10 s or no activity
at all were considered normal.

The number of data points within each segment was determined by the sampling rate
of the respective signal. Due to variations in sampling rates between the datasets, there was
a discrepancy in the number of data points per segment. For example, an ECG segment
of 12 s from the Apnea-ECG dataset contained 1200 data points, while a corresponding
segment from the St. Vincent’s University Hospital dataset comprised 1536 data points.
Similarly, an SpO2 segment consisted of either 600 or 96 data points, depending on the
dataset. To ensure consistency in input shape for the classifier, the ECG signal from the
St. Vincent’s University Hospital dataset was downsampled. This downsampling process
aimed to match the segment length of 1200 data points, aligning it with the segment length
in the Apnea-ECG dataset. Likewise, the SpO2 signal in the Apnea-ECG dataset was
downsampled to achieve a segment length of 96 data points.
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2.3. Data Augmentation and Class Balancing

Due to the class imbalance in the dataset, with the majority of signal segments be-
longing to the normal class, a technique called synthetic minority oversampling (SMOTE)
was employed to address this issue [43]. SMOTE involves selecting a random instance
from the minority class, denoted as ‘a’, and identifying its k nearest neighbors within the
minority class. From these neighbors, one instance, denoted as ‘b’, is chosen, and synthetic
instances are created by generating random points in the feature space between ‘a’ and ‘b’.
The synthetic instances were formed through a convex combination of ‘a’ and ‘b’. In this
study, SMOTE was applied to generate synthetic data specifically for the apnea class, with
a value of k set to 5.

Data augmentation is a commonly employed technique in machine learning that in-
volves applying diverse transformations to the original training data to generate additional
training samples without the need to collect new data [44]. By generating new samples,
data augmentation enhances the generalization capability and robustness of a machine
learning model, as it exposes the model to different variations in the input. In this particular
study, the data augmentation approach involved flipping the signal segments. Since an
apneic event is characterized by changes in blood-oxygen levels and heart rate, it was as-
sumed that flipping the segments would preserve the spatial information while introducing
variations into the original dataset. This augmentation process aimed to facilitate better
generalization of the machine learning model. The original set of segments was divided
into training, validation, and testing sets, with a ratio of 8:1:1. The class balancing and
augmentation techniques were applied to the training set only. The detailed distribution
can be found in the Results section.

2.4. Depth-Wise Separable Convolution (DSC)

Spatial convolution (SC) and depth-wise separable convolution (DSC) are two tech-
niques commonly used in convolutional neural networks (CNNs) for image processing
tasks [38,39,45]. Although both approaches aim to reduce computational costs, they differ
in their underlying operations and characteristics. Figure 1 illustrates the application of SC
and DSC operation on a multichannel 2D input. SC is the conventional form of convolution
used in CNNs. It involves convolving an input image with a set of learnable filters or
kernels. Each filter slides across the input image, computing the element-wise dot product
between its weights and the corresponding patch of the image. This process generates a
feature map that represents the responses of the filters to different patterns in the input. SC
performs a full-depth convolution, where each input channel is convolved with each filter
independently as shown in Figure 1a. The number of parameters in spatial convolutions
depends on the size of the filters and the number of input and output channels. However,
spatial convolutions are computationally expensive, particularly when the input has a large
number of channels, as the computation is repeated for each channel.

Depth-wise separable convolution is a variant of convolution that decomposes the
process into two stages: depth-wise convolution and pointwise convolution (Figure 1b).
In the depth-wise convolution stage, each input channel is convolved independently
with its corresponding filter. This operation is similar to applying a separate spatial
filter to each input channel, generating a set of intermediate feature maps. Depth-wise
convolution reduces the computational cost compared to spatial convolution by performing
convolutions on each input channel separately as illustrated in Figure 1(b.1). The number
of parameters in the depth-wise convolution stage depends on the size of the filters and the
number of input channels but is significantly lower than in spatial convolution.
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Figure 1. Spatial convolution and depth-wise separable convolution illustrated for multichannel 2D
inputs. (a) Spatial Convolution, (b) (b.1) Depthwise Convolution, (b.2) Pointwise Convolution.

As shown in Figure 1(b.2), after the depth-wise convolution, a pointwise convolution
is performed. It applies a 1 × 1 filter to the intermediate feature maps, combining the
information from different channels. This step aims to capture cross-channel interactions
and generate the final output feature maps. Pointwise convolution operates on the con-
catenated output of the depth-wise convolution stage and uses 1 × 1 filters to combine
information from different channels, creating complex interactions between channels. The
number of pointwise filters determines the number of output channels in the final feature
maps. Depth-wise separable convolution offers several benefits over spatial convolution. It
reduces computational costs, requires less memory, and can achieve comparable or even
improved performance.

According to Figure 1a, for an input of size m × m × c and a kernel size of k × k × c,
total number of weights for c’ such kernels is as follows:

WSC = k × k × c × cc′ (1)

And the total number of operations is as follows:

OSC = m × m × k × k × c × cc′ (2)

For computational simplicity, the height and width of the output feature map were
considered to be the same as the input (m = m′) and the stride was considered to be 1.
Similarly, the total number of weights and operations for DSC in Figure 1b can be expressed
as the following:

WDSC = k × k × c + c × cc′ (3)
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ODSC = m × m × k × k × c + m × m × c × cc′ (4)

Thus, the total number of weights and operations are reduced by DSC and the reduc-
tion factor can be calculated as the following:

RW =
WDSC
WSC

=
1
c
+

1
K2 (5)

RO =
ODSC
OSC

=
1
c
+

1
K2 (6)

2.5. Proposed Network Architecture

Each SC layer of the base classifier was replaced by a DSC layer. Figure 2 illustrates the
proposed architecture of the individual models. Each DSC layer is represented by DSCk,c′

notation where k represents the kernel size and c represents the number of channels in
the output feature maps as shown in Figure 1. In the case of the ECG-based model, the
input is initially subjected to batch normalization, followed by the application of three
DSC layers. These layers possess varying configurations: the first DSC layer comprises
3 kernels with a size of 100, employing a stride of 2; the second DSC layer incorporates
50 kernels with a size of 10, and the third DSC layer encompasses 30 kernels with a size
of 30. Analogously, the SpO2 model adopts a parallel architecture, employing three DSC
layers. Specifically, the first DSC layer consists of 6 kernels with a size of 25, the second
layer integrates 50 kernels with a size of 10, and the third layer encompasses 30 kernels with
a size of 15. Subsequent, to each DSC layer, a maxpooling layer with a size and stride of 2 is
applied. Following the final maxpooling layers, flatten layers are employed, accompanied
by dropout layers with a ratio of 0.25. The output layer of both the ECG and SpO2 models
assumes a dense configuration, comprising two neurons with softmax activation. It is
important to note that all other layers within the architecture adopt the rectified linear unit
(ReLU) activation function.
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Transfer learning is a machine learning technique that leverages knowledge gained
from training one model on a specific task and applies it to a different but related task [46,47].
It involves reusing the learned features or representations from a pre-trained model and
using them as a starting point for training a new model on a different task or dataset. The
idea behind transfer learning is that the knowledge acquired by a model during training
on a large and diverse dataset can be useful for solving related problems, even if the new
task or dataset is different from the original one. Instead of training a model created from
scratch, which can be computationally expensive and requires a large amount of labeled
data, the transfer of learning allows us to benefit from the knowledge already captured
by pre-trained models. In this study, the pre-trained ECG and SpO2-based models were
taken and concatenated at the flatten layer that creates the proposed fusion model which is
illustrated in Figure 3.
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3. Results

The ECG and SpO2 recordings were acquired from Apnea-ECG and St. Vincent’s
University Hospital Database [41,42]. Since an apneic activity is marked by its persistence
for at least 10 s, the signals were divided into segments of 12 s to ensure that each segment
has sufficient data points for accurate inference. The distribution of the 12 s segments is
presented in Table 1. The segmentation of the signals revealed a class imbalance, with
approximately 80% of the segments belonging to the normal class for the ECG signal.
Similarly, around 91% of the segments from the SpO2 signal were classified as normal. To
address this significant imbalance, a technique called the synthetic minority oversampling
technique (SMOTE) was employed, followed by an augmentation method that doubled
the total number of segments [43]. In this augmentation technique, each segment was
flipped to increase the number of training data for better generalization of the model. The
table provides details on the distribution of signal segments in the training, validation,
and test sets (8:1:1). Upon closer examination, it is evident that the number of segments
obtained from the SpO2 signal was lower than that of the ECG signal. This disparity can be
attributed to the Apnea-ECG dataset containing only 8 SpO2 recordings compared to the
70 ECG recordings, resulting in a smaller number of SpO2 segments.
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Table 1. Distribution of signal segments with a processing window of 12 s.

ECG SpO2

Train Validation Test Train Validation Test

Total 214,264 8267 8264 152,364 5216 5222

Apnea 107,132 1572 1570 76,182 456 460

Normal 107,132 6695 6694 76,182 4760 4762

John et al. proposed a CNN model for OSA detection using raw physiological signals
from multiple sensors, which has been adopted as the baseline classifier in this study [48].
In this study, we replaced each spatial convolution (SC) layer of the baseline classifier with
a DSC layer to explore the potential of DSC in reducing computational complexity while
maintaining performance. Figure 4 illustrates the performance metrics obtained by the
baseline SC model and the proposed DSC implementation for both ECG and SpO2 signals. It
is evident from the results that the baseline model outperformed the DSC implementation
for both types of signals across all reported performance metrics, including accuracy,
precision, recall, F1 score, and specificity. However, the performance of the DSC model
for ECG signals remained competitive, as shown in Figure 4a, with performance metrics
exceeding 90% for both networks. This demonstrates that while the DSC implementation
sacrifices some accuracy compared to the baseline, it still provides reliable results for ECG
signal-based OSA detection. Conversely, the DSC model showed a more significant decline
in performance for SpO2 signals, as presented in Figure 4b. The performance metrics,
including accuracy and recall, were lower than those of the baseline model, indicating that
the DSC-based architecture is less effective for SpO2 signal processing in this context. The
results suggest that further optimization might be necessary to enhance its suitability for
specific physiological signals like SpO2.
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Furthermore, two fusion models were developed to explore the possibility of more
accurate inference. One of the models was the fusion of the baseline classifiers: SC-based
ECG model and SC-based SpO2 model. The second one was the fusion of the DSC-based
models. Figure 5a shows the performance comparison of SC-fusion and DSC-fusion models
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and Figure 5b compares the performance of the DSC-fusion with the individual baseline
classifiers. Although both models had ~94% recall value, the SC-fusion model outper-
formed the DSC-fusion model in all other performance metrics. However, a significant
improvement in the performance was observed when DSC-fusion was compared with the
individual baseline classifiers. Accuracy, precision, and specificity yielded by the DSC-
fusion and individual baseline models were ~95%, ~94%, and ~94%, respectively. Although
the recall (~94%) value and F1-score (94) of the DSC-fusion model were lower than those
of the baseline models, they were clearly higher than the pre-fusion DSC-based classifier
shown in Figure 4.
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There are reports of evaluating the computational complexities of models by quantify-
ing the number of multiplications and additions needed per second [48,49]. This calculation
relied on a straightforward filtering calculation count for the convolution layers [50]. As for
the maxpooling layers, the process of selecting the maximum value was approximated as an
addition operation. The estimation of the overall energy consumption during prediction is
conducted based on certain assumptions. Specifically, it is assumed that a 16-bit multiplica-
tion accumulation (MAC) operation consumes approximately 0.39 pJ of energy, as indicated
by previous studies [51,52]. Additionally, a 16-bit adder is estimated to consume approxi-
mately 20 fJ of energy in 28 nm FD-SOI technology [53]. The total number of parameters and
floating point operations (multiplication and addition) involved with both the base models
and proposed models are shown in Table 2. Overall, the table showcases the variations
in parameter counts, floating point operations, and energy consumption among different
models. The use of DSC models reduces the number of parameters and floating-point
operations, consequently resulting in lower memory requirements and energy consump-
tion compared to the corresponding baseline models. Although the DSC-fusion model
required the most number of parameters, floating point operations, and consequently the
highest energy consumption per inference (0.27 mJ) among all the DSC-based models listed
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in Table 2, it required lower energy than all the SC-based baseline models. In fact, the
DSC-fusion model was 9.4, 1.85, and 11.3 times more energy efficient than SC-based ECG,
SpO2, and fusion models, respectively.

Table 2. Complexity analysis of the baseline model and the proposed model and energy requirement
per inference.

Model Parameters Multiplication Addition Energy (µJ)

SC-ECG 51,389 6,534,116 6,546,647 2.55

DSC-ECG 7872 579,439 580,311 0.23

SC-SpO2 26,702 1,270,016 1,272,876 0.50

DSC-SpO2 3693 103,866 105,432 0.04

SC-Fusion 78,089 7,809,352 7,824,743 3.05

DSC-Fusion 11,563 683,303 684,721 0.27

4. Discussion

In our previous research endeavors, our primary focus has been on optimizing hard-
ware design to achieve energy-efficient AI inference on dedicated hardware platforms.
We have dedicated our efforts to developing innovative architectures and algorithms that
minimize energy consumption during AI inference tasks. Our work has involved, exploring
various techniques such as hardware acceleration, custom circuit design, and low-power
optimizations, all aimed at enhancing the energy efficiency of AI hardware systems [54,55].
In our current work, we have shifted our attention towards optimizing the network itself
with the goal of further improving energy efficiency. Specifically, we are actively working
on reducing the number of parameters and floating-point operations (FLOPs) within the
network architecture. This reduction in parameters and FLOPs not only enhances the
computational efficiency of the network but also facilitates better hardware design, as
it enables the development of specialized hardware architectures tailored to the specific
requirements of the optimized network.

DSC reduces the computational complexity associated with conventional convolu-
tional operations. However, further simplification can be achieved by applying additional
techniques such as pruning, quantization, and other optimization methods. Pruning in-
volves identifying and removing redundant or insignificant connections within the DSC
architecture. This can be accomplished by setting small weights or pruning entire channels
that contribute minimally to the network’s overall performance. Pruning not only reduces
the model’s memory footprint but also decreases the number of computations required
during inference, leading to improved efficiency. Quantization is another technique that
can be applied to simplify DSC models. It involves reducing the precision of weights
and activations from floating-point to lower-bit representations, such as fixed-point or
binary values. By quantizing the parameters, the memory requirements and computational
complexity of the DSC network can be significantly reduced. Additionally, specialized
hardware accelerators can be leveraged to exploit the efficiency of quantized operations.
These simplification methods strike a balance between model size, computational require-
ments, and performance, enabling the deployment of lightweight and energy-efficient DSC
models without sacrificing accuracy.

This study has several limitations. First, the signals used in this study, ECG and SpO2,
may not fully capture all relevant physiological markers for sleep apnea detection, such as
airflow or respiratory effort, potentially limiting the model’s diagnostic capability in more
complex cases. Additionally, the dataset lacks diversity in terms of population, which could
affect the generalizability of the models when applied to broader, more heterogeneous
populations with varying degrees of apnea severity and comorbid conditions. Moreover,
we did not perform a statistical analysis to compare the models because our conclusion
is not centered on demonstrating that the DSC model is equivalent to the SC model in
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terms of performance. Rather, the conclusion highlights that, despite a slight reduction in
performance, the DSC-based model’s energy efficiency outweighs this drawback, making
it a preferable choice for scenarios where power consumption is a primary concern. For
future work, incorporating more diverse datasets and additional physiological signals
could improve the model’s accuracy and robustness. Finally, implementing these models
in real-time monitoring devices, such as wearables, with personalized adaptive algorithms
could enhance their practical utility in detecting apnea in diverse and real-world settings.

AI-driven apnea detection systems have the potential to transform healthcare by seam-
lessly integrating into various settings. In sleep clinics, these systems automate sleep study
analysis, saving time and improving diagnostic accuracy. Instead of manually reviewing
hours of recorded sleep data, AI algorithms can quickly and accurately identify apnea
events, allowing clinicians to focus on interpreting the results and designing appropri-
ate treatment plans. In hospitals, AI algorithms continuously monitor at-risk patients,
promptly detecting apnea episodes and enabling timely intervention. The real-time mon-
itoring can enhance patient safety and facilitate early intervention, reducing the risk of
complications associated with apnea, especially with patients recovering from surgery or in
critical care units. Figure 6 illustrates the AI-driven apnea detection system using ECG and
oxygen saturation signals in healthcare applications. Moreover, wearable devices equipped
with AI can track sleep patterns and detect apnea events in home-based care, allowing for
remote monitoring and personalized interventions. Overall, AI-driven apnea detection
systems enhance diagnostic efficiency, patient safety, and accessibility, revolutionizing the
management of apnea in healthcare.
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5. Conclusions

Although accurate and precise detection of a clinical event is the primary objective of
a diagnosis or monitoring tool, achieving higher performance is often the most challenging
task for an AI-embedded system due to resource constraints. This study proposes an
energy-efficient and low-parametric model using DSC that requires ~2–~11 times lower
storage capacity and computations per inference. DSC is widely used in mobile computer
vision tasks; however, its potential in clinical application on 1-D signal was unexplored.
The adoption of DSC in AI-embedded system for apnea detection can strike a balance
between performance and computational requirements. Although the SC-based fusion
model outperformed the DSC implementation, the DSC-based model is still preferable due
to its high energy efficiency with acceptable performance.
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