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Simple Summary: The emerging era of digital pathology and Artificial Intelligence provides a better
tool for the assessment of multiple morphological features extracted from scanned histological images.
In this study, we aimed to develop an AI-based algorithm to measure and quantify features that
represent intra-tumor heterogeneity in breast cancer and present them as an index. In our study,
162 features were extracted and quantified from whole slide images. These features showed a signifi-
cant association with patient outcomes. When an overall heterogeneity score was used, it stratified
luminal breast cancer patients into low- and high-risk groups, which can help in personalized therapy.

Abstract: Intra-tumor heterogeneity (ITH) is a fundamental characteristic of breast cancer (BC),
influencing tumor progression, prognosis, and therapeutic responses. However, the complexity
of ITH in BC makes its accurate characterization challenging. This study leverages deep learning
(DL) techniques to comprehensively evaluate ITH in early-stage luminal BC and provide a nuanced
understanding of its impact on tumor behavior and patient outcomes. A large cohort (n = 2561)
of early-stage luminal BC was evaluated using whole slide images (WSIs) of hematoxylin and
eosin-stained slides of excision specimens. Morphological features of both the tumor and stromal
components were meticulously annotated by a panel of pathologists in a subset of cases. A DL model
was applied to develop an algorithm to assess the degree of heterogeneity of various morphological
features per individual case utilizing defined patches. The results of extracted features were used
to generate an overall heterogeneity score that was correlated with the clinicopathological features
and outcome. Overall, 162 features were quantified and a significant positive correlation between
these features was identified. Specifically, there was a significant association between a high degree
of intra-tumor heterogeneity and larger tumor size, poorly differentiated tumors, highly proliferative
tumors, tumors of no special type (NST), and those with low estrogen receptor (ER) expression.
When all features are considered in combination, a high overall heterogeneity score was significantly
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associated with parameters characteristic of aggressive tumor behavior, and it was an independent
predictor of poor patient outcome. In conclusion, DL models can be used to accurately decipher the
complexity of ITH and provide extra information for outcome prediction.

Keywords: breast cancer; intra-tumor heterogeneity; artificial intelligence

1. Introduction

Breast cancer (BC) is a heterogeneous disease with variable tumor characteristics
and patient outcomes [1]. In addition to the inter-tumor heterogeneity that distinguishes
patients with BC, each tumor also exhibits genetic, immunophenotypic, and morphologic
variability in distinct tumor foci, termed intra-tumoural heterogeneity (ITH) [2]. ITH de-
scribes the presence of various cell subpopulations, including tumor and stromal cells that
are distributed throughout the tumor areas. These subpopulations differ in their cellular
and biologic properties within a specific primary tumor location (spatial heterogeneity)
and between the primary tumor and its metastases (temporal heterogeneity) [1,3].

BC is well known to have significant spatial ITH, which can be represented in two
categories: histologic and functional ITH [4,5]. The term “histologic ITH” refers to the
morphological tumor features that can be assessed using histopathologic examination such
as histologic tumor type, tumor differentiation, architecture, cellularity, stromal response,
and immunologic response [5]. Functional ITH refers to differences in the genetic makeup
of the malignant cells within the same tumor and determines their behavior [5] and these
can be assessed using various molecular techniques such as single-cell RNA sequencing
(scRNA-seq). However, assessing ITH in BC through genetic or epigenetic assays can
be quite challenging in routine clinical practice [1,6]. Traditional methods often involve
complex genetic analysis of micro-dissected multi-regions from the same tumor, which is
difficult to replicate consistently [7]. These methods can also produce a lot of noise, making
it hard to obtain clear results. Contrasting this, the morphologic features of the tumor
represent the end product of the functional activity of thousands of genes working together
to determine tumor phenotype [8].

Morphologic heterogeneity is documented in several studies but remains challenging
to assess in clinical practice. Theoretically, assessment of histologic ITH could be performed
visually from the whole slide in a way similar to the assessment of ITH in the expression of
Ki67 [9] estrogen receptor (ER) [10] PDL1, and tumor-infiltrating lymphocytes (TILs) [11–16].
However, such visual assessment is still limited by the capacity of pathologists to assess
the complex cellular and spatial distribution of often subtle features or to integrate multiple
features that represent ITH in a meaningful score that can be applied in clinical practice [17].
In addition, the molecular subtype of BC can potentially impact the assessment of ITH [18].

The emerging era of digital pathology and rapid development of deep learning (DL)
methodologies have enabled fast and automatic extraction of clinically relevant information
from whole-slide images (WSI) [19]. In addition, Artificial Intelligence (AI)-based tools for
high throughput analysis of complex morphologic features retrieved from WSI provide
avenues for an objective and standardized approach to the assessment of tumor-related
morphologic features beyond the capacity of the human eye such as ITH. Furthermore,
AI-based algorithms enable the quantification of complex features of tumor phenotype
in the spatial context of the tissue, which is imperative for ITH assessment [8]. AI-based
methods have shown promise in quantifying intra-tumor heterogeneity (ITH) for various
downstream tasks. For instance, texture features from predicted spatial gene heatmaps
have been found to provide independent prognostic value for BC [20,21]. Additionally,
DL-based cell segmentation and classification have been used to model spatial immune
infiltration, classifying tumor regions into immune hot and cold subtypes, which correlate
with relapse risk in lung cancer [22]. Another ITH study based on hexagonal grid analytics
enabled the quantification of proliferation ITH in BC [23]. However, the challenge of lacking
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ground truth for ITH assessment remains significant. Many methods that aim to detect
and quantify subvisual features cannot rely on ground truth data obtained through visual
assessment [24].

In this study, we investigated ITH, using AI and digital pathology technology for inter-
pretable features, in a large cohort of luminal (ER and progesterone receptor (PR) positive and
human epidermal growth factor 2 (HER2) negative) BC to eliminate the impact of molecular
subtype on the morphologic features of the tumors. To address the challenge of interpret-
ing features from DL-based models, the proposed AI pipeline integrates well-established
domain-specific features, such as co-occurrence and contrast, to enhance interpretability. This
study provides evidence that ITH can be deciphered using AI to further refine BC prognostic
stratification that can be applied in a routine clinical setting.

2. Material and Methods
2.1. Study Cohort and Image Acquisition

This study was carried out using a large cohort (n = 2561) of ER-positive and HER2-
negative BC patients presented at Nottingham University Hospitals, Nottingham, UK. The
clinicopathologic data for this cohort included the patient’s age, tumor size, histological
grade, histological tumor type, lymph node (LN) status, lymphovascular invasion (LVI),
and Nottingham prognostic index (NPI) (Supplementary Table S1). In this study, we
chose only a cohort of luminal BC, which is considered a challenging group of BCs with
indeterminate recurrence risk. We have selected this uniform cohort (ER+/HER2−), which
is less likely to be heterogenous and to eliminate the impact of molecular classes because
HER2+ and triple-negative BC have different morphology.

The median follow-up time was 138 months with available outcome data, including
BC-specific survival (BCSS), defined as the time (in months) from the date of the primary
surgery to the time of death from BC, and distant metastasis-free survival (DMFS), defined
as the time (in months) from the primary surgery until the first event of distant metastasis.

Out of this cohort, 1933 patients showed no LN invasion (LN0), while 628 patients
showed LN stage 2 (1–3 involved nodes). A total of 93% of patients in this cohort received
adjuvant endocrine therapy and only 7% received both endocrine therapy and chemother-
apy. Biomarker expression data including PR and Ki67 were also available using full face
sections as previously described [25–27]. Hematoxylin and eosin (H&E)-stained slides were
scanned into high-definition digital images by high-resolution scanning (0.19 mm/pixel)
with a high throughput scanner (Panoramic 250 Flash III; 3DHistech, Budapest, Hungary).

2.2. Algorithm Training

In order to identify the morphologic features of tumors for assessing ITH, a group of
qualified pathologists thoroughly annotated different morphological features of BC using a
large, sizeable subset of BC cases to train the detection algorithm. The annotated tumor
features included tumor grade components (tubule formation, degree of polymorphism in
tumor cell nuclei, and mitotic figures), ductal carcinoma in situ (DCIS) regions, different
components of the tumor microenvironment (TME), such as tumor-associated stroma,
which lay immediately adjacent to the cancer cells, fibrofatty stroma, and both intra-tumor
and stromal (TILs) [28,29] (Figure 1).

2.3. Deep Learning-Based Feature Computing

A deep learning (DL) pipeline was developed to extract morphological features of
tumors and stroma (Figure 2). Thresholding and morphological operations were applied
to create a tissue mask, ensuring that only the relevant tissue areas were processed in
subsequent steps. This step eliminates background regions, artifacts, or non-tissue areas,
allowing the model to focus solely on the tissue for further analysis, including DCIS filtering
and feature extraction. A convolutional neural network (CNN)-based model (CNNDCIS)
was employed to exclude DCIS regions from the tissue followed by CNNReg to segment
tumors, stroma, and other tissue. CNNNuc was used to segment and classify different
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nuclear types, with tumor and stromal nuclei being used to derive nuclear-related features.
Similarly, CNNDG predicted digital grade and pleomorphism for patches of a WSI.
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Figure 1. The different annotated morphological features at 40×, (a) normal glands (annotated with
green lines), (b) ductal carcinoma in situ, annotated with blue lines, (c) mitotic figures, annotated with
light green dots (d) different pleomorphic cells, annotated with red dots, (e) tumor-associated stroma,
annotated with yellow lines, (f), tumor-infiltrating lymphocytes (TILs) annotated with pink dots.
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Figure 2. Deep learning (DL)-based morphological feature extraction: A convolutional neural
network (CNN), CNNDCIS, first filters out ductal carcinoma in situ (DCIS). Next, CNNNuc segments
and classifies nuclei, followed by CNNReg, which segments regions. CNNDG assigns digital grade
to tissue. The outputs from nuclear classification, regional segmentations, and digital grading are
utilized to compute a range of morphological features. S: stroma, I: immune, T: tumor, G: grade, P:
pleomorphism, TR: tumor region, TAS: tumor-associated stroma.
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2.3.1. DCIS and Other Region Segmentation

To exclude DCIS regions from downstream analysis, an efficient U-Net-based semantic
segmentation model (CNNDCIS) [20], trained on pathologist-annotated tumors and DCIS
regions, was applied to the tissue. The areas identified as DCIS were removed from all
subsequent processing steps.

The U-Net model [5] (referred to as CNNReg) was modified by adding two additional
encoding and decoding blocks for the semantic segmentation of tumor, stromal, and other
non-ROI regions, and trained using pathologist-annotated regions. The training parameters
were as follows: patch size of 512 × 512 pixels with 96-pixel context on all sides; learning
rate starting at 0.01 for the first five epochs, reduced to 0.001 for epochs 6–10, and further
to 0.0001 for epochs 11–30; momentum set to 0.9; batch size of 8; and cross-entropy loss
function. Additional settings included normalizing the input to {0, 1} and applying various
augmentations (random rotation, random brightness, and median blur) with a probability
of 0.5.

2.3.2. Nuclei Segmentation and Classification

A custom-built nuclear segmentation and classification model, HoVer-Net, was used to
identify and categorize different types of nuclei [21]. The model, initially pretrained on the
breast cancer subset of the PanNuke dataset, was further fine-tuned for the target dataset,
resulting in CNNNuc. The fine-tuning process used a patch size of 256 × 256 pixels, with a
learning rate of 0.0001 for the first two epochs, followed by 0.00001 for subsequent epochs,
and a batch size of 8. Figure 3a shows some qualitative results of nuclear segmentation and
classification. During inference on a WSI, the nuclear mask was created by assigning each
detected nucleus to its corresponding type or class at the nucleus centroid in a five-times
down-sampled WSI (Figure 3b).
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maps for texture feature calculation; (c) qualitative results of digital grade prediction from CNNDG.

2.3.3. Tumor Differentiation (Digital Grade Prediction)

To build a model for predicting tumor grade and pleomorphism from an input patch,
we enhanced the Inception V3 network [30] by adding two linear layers with ReLU acti-
vation, along with a fully connected layer referred to as CNNDG. Pretrained ImageNet
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weights [31] were retained for the unchanged layers. For training, one ROI per WSI from the
discovery set of each split was selected, and model selection was based on performance on
the validation set. ROIs measuring 5600 × 5600 pixels at 40× magnification were selected
based on tumor cell density. CNNDG was trained using a batch size of 8, a learning rate
of 0.001, a momentum of 0.9, and a cross-entropy loss function. Inputs were normalized
using ImageNet statistics, and various augmentations from the torchvision library were
applied, including random cropping, random horizontal flips (p = 0.5), and color jittering
(brightness, contrast, saturation, and hue adjustments set to 0.3). The trained model was
later used to predict digital grade and pleomorphism for the entire WSI on a patch-by-patch
basis (Figure 3).

2.4. Defining the Morphological Features to Assess ITH

From the available annotated data and the DL pipeline, features related to tumor and
stroma were defined and calculated for each patient to assess ITH. These features were
extracted from several patches (each is 62 µm2 size) from each of the WSI (Figures 3 and 4).
By computing a number of variables and producing a co-occurrence matrix (CM), Haralick
texture indicators can quantify morphological features that represent ITH in the form of
uniformity measures and spatial entropy, which integrates proximity between features
as a key spatial component into ITH measurement [32]. Features were calculated using
a standard Python library Scikit-image [33]. These features are mainly related to tumor
differentiation, TME, which including stroma, and TIL heterogeneity. For each feature,
several measures were calculated and recorded; colocalization represents the percentage of
each feature in an area. A colocalization value of 0 means the features do not colocalize,
whereas a value of 1 means the same percentage of the features found together [33]. The
total number of co-occurrences (representing the frequency of each component of these
features in close proximity to other components) was divided by 2 and these values
were then normalized (i.e., each value is divided by the total sum of the values), and the
resulting values were termed as CM. CM was used to calculate different features including
homogeneity and heterogeneity features such as contrast, dissimilarity, and correlation
as previously described [34,35]. The sum of squared elements in the matrix, also known
as uniformity, which ranged between 0 and 1, was also calculated where a contrast of
0 means a constant image. Energy is quite similar to contrast but with a linear-dependent
off-diagonal of the CM [36]. While homogeneity measures the closeness of the element’s
distribution in the CM diagonally, heterogeneity was calculated as (1—homogeneity) [37,38].
Tumor differentiation features were mainly related to tumor architecture, tubule formation,
mitosis, nuclear, and cytologic features. The TME includes stromal features, (which were
related to only the tumor associated stroma within the context of tumor cells). It also
includes stromal and tumor TILs, their spatial distributions, and the co-occurrence between
these features. Co-occurrence scores representing the frequency of each component of these
features in close proximity to other components were also calculated. All measures of tumor
differentiation features were normalized (0–100) and combined into one score. The same
was performed for measures of stromal and TILs features. Supplementary Table S2 shows
an overview of texture features employed in current study.

To develop an overall heterogeneity score in luminal BC, all extracted features
related to tumor differentiation, stroma, and TILs were tested against BC outcomes in
univariate analysis. Overall heterogeneity (ITH) score was calculated using multiple lin-
ear regression as follows [39]. Out of the 162 extracted features, 72 exhibited a significant
association with patients’ outcomes. Then, a multivariate Cox regression-based analysis
for each of the 72 significant variables was carried out. The overall heterogeneity score
was calculated from the beta (b) value generated from each of the significant features in
the multivariate analysis and multiplied by the feature values. Overall heterogeneity
score = a + b1 × 1 + b2 × 2 + b3 × 3, etc. The overall heterogeneity score and the
individual heterogeneity features were tested against the available clinicopathological
data, outcome, and adjuvant therapy.
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Figure 4. Sample heterogeneity feature calculation. (a) A WSI along with digital pleomorphism (P1-3)
prediction from CNNDG; (b) enlarged ROIs from panel (a); (c) example of co-occurrence matrix for
three features (F1-3) showing the eight directions used for features calculation.

2.5. Statistical Analysis

Statistical Package for the Social Sciences software v.26.0 (SPSS, Chicago, IL, USA) was
used for statistical analysis. The Chi-square test was used for the analysis of categorical
data while the Pearson test was used to assess the correlation between continuous vari-
ables. Mean heterogeneity scores across tumor grades and other clinical parameters were
compared by ANOVA test. To assess the best cut-off point to dichotomize the scores of ITH
morphological features into low and high degree of heterogeneity, X-tile bioinformatics
software version 3.6.1 (School of Medicine, Yale University, New Haven, CT, USA) [40] was
used. Patients having values greater than the cut-off were deemed as the heterogeneous
group, and, otherwise, they were considered as in the low heterogenous category.

For statistical analysis, Ki67 expression levels were categorized into low and high
using a 10% cut-off [25,41]. For studying the association of heterogeneity with the levels of
ER expression in tumors, ER expression levels were classified into 3 groups: lower ER < 10%,
ER intermediate (11–99%), and highest expression (100%) [42]. PR expression levels 10%
cut-off was used to categorize PR as low and high groups as previously defined [26,41]. X-
tile was also used to determine the best cut-off, which was 4.9 to dichotomize the ITH score
into low and high groups. Then, it was correlated with the available clinicopathological
and outcome data. Considering the individual features of ITH, measures of each feature
were combined into one score and this score was categorized into 2 groups based on X-tile
for statistical analysis.

Outcome analysis was assessed using Kaplan–Meier curves and the log-rank test. A
Cox regression model was used for multivariate analysis. The proportionality assumption
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of the Cox model for the ITH score was satisfied using the computed time-dependent
covariate test.

3. Results

Overall, 162 features related to tumor morphology and TME were identified, extracted,
and quantified from WSI patches in large early-stage luminal BC to assess ITH in BC using
the DL model. These features were assessed individually, and then all features were compiled
into one score. A significant positive correlation was found between morphological features
of tumors (p < 0.0001). There was not only a positive correlation between tumor features but
also between tumor and stromal features (p < 0.0001).

3.1. Performance of the DL Models

Table 1 lists the details of the validation of the DL models in terms of different metrics.
Similarly, Table 2 lists the cell classification results of different models as compared to
CNNNuc. It can be observed that fine-tuning the pretrained model on the target data helped
improve the results.

Table 1. Training and validation of DL models.

Module Metric Subset ROI Size

DCIS filter
(CNNDCIS)

F1-score 5-fold cross-validation on annotated
tiles (n = 13,981) of size

1024 × 1024 pixels extracted from ROIs
in the discovery set

Variable size box drawn
at 5× magnification to

cover a visual field
Tumor DCIS

0.71 ± 0.03 0.90 ± 0.01

Region segmentation
(CNNReg)

Dice coefficient Holdout validation (trained on
annotated ROIs (n = 193) [3] in the

discovery set, validated on ROIs (n = 48)
in the internal validation set)

Variable size box drawn
at 5× magnification to

cover a visual field
Stroma Other

0.76 0.69

Nuclei classification
(CNNNuc)

F1-score
3-fold cross-validation on ROIs
(n = 83) [3] in the discovery set

Variable size box drawn
at 20× magnification to

cover a visual field
Immune Tumor Connective

0.82 ± 0.06 0.92 ± 0.02 0.81 ± 0.03

Digital grade prediction
(CNNDG)

ROC-AUC 3-fold cross-validation on ROIs
(1 per WSI) from discovery set

5600 × 5600 pixels at
40× magnification0.83 ± 0.01

ROC-AUC for predicting digital grades was derived from a linear SVM trained using the proportions of local
grades in each whole slide image (WSI), with clinical grade serving as the ground truth. For feature extraction, all
models were applied to the entire slide rather than specific regions of interest (ROIs). The values are presented as
the mean ± standard deviation (x ± SD) to indicate one standard deviation from the mean.

3.2. Association of ITH with Clinicopathologic Parameters

Considering the individual morphologic tumor features of ITH, the highest degree
of intra-tumor differentiation heterogeneity was seen in histologic grade 3 (80%), and to
a lesser degree in large-size tumors (54%) and in young premenopausal patients. Lower
levels of ER expression and higher levels of Ki67 index were associated with an increased
degree of intra-tumor differentiation heterogeneity (both p < 0.0001). Special tumor types
showed the lowest levels of intra-tumor differentiation heterogeneity compared to no
special type (NST) tumors (10% versus 45%, respectively). A total of 13% of invasive lobular
carcinoma showed high levels of intra-tumor differentiation heterogeneity. The high degree
of intra-tumor differentiation heterogeneity was associated with the development of LVI by
approximately 2-fold (p < 0.0001) (Table 3).

The high degree of stromal heterogeneity was significantly associated with younger
age, premenopausal status, larger tumor size, grade 3 tumors, NST tumors, LVI, and high
Ki67 expression (all p < 0.0001). Similarly, the high degree of TIL heterogeneity showed
a strong association with clinical parameters characteristic of aggressive tumor behavior
(Table 4).
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Table 2. 3-fold cross-validation results of nuclei classification.

Model
Overall (Macro-Average)

Precision Recall F1

M1 0.69 ± 0.05 0.52 ± 0.08 0.55 ± 0.08

M2 0.66 ± 0.04 0.62 ± 0.07 0.61 ± 0.05

M3 0.68 ± 0.01 0.68 ± 0.01 0.62 ± 0.01

M4 0.69 ± 0.02 0.66 ± 0.01 0.62 ± 0.02

CNNNuc 0.82 ± 0.09 0.79 ± 0.02 0.79 ± 0.07

Cell-Wise Classification Results

Model Tumor Immune Connective Normal epithelial

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

M1 0.75±
0.02

0.95 ±
0.02

0.83 ±
0.01

0.94 ±
0.03

0.57 ±
0.11

0.71 ±
0.07

0.88 ±
0.06

0.32 ±
0.06

0.47 ±
0.07

0.18 ±
0.19

0.24 ±
0.17

0.20 ±
0.18

M2 0.91 ±
0.03

0.81±
0.02

0.87 ±
0.01

0.84 ±
0.04

0.64 ±
0.12

0.72 ±
0.10

0.82 ±
0.07

0.63 ±
0.04

0.71 ±
0.04

0.08±
0.06

0.40 ±
0.24

0.13 ±
0.08

M3 0.92 ±
0.03

0.71 ±
0.09

0.80 ±
0.07

0.89 ±
0.05

0.67 ±
0.07

0.77 ±
0.04

0.81 ±
0.04

0.65 ±
0.04

0.73 ±
0.04

0.10 ±
0.03

0.69 ±
0.05

0.18 ±
0.06

M4 0.91 ±
0.03

0.81 ±
0.01

0.85 ±
0.02

0.91 ±
0.03

0.64 ±
0.09

0.75 ±
0.06

0.83 ±
0.08

0.63 ±
0.05

0.71 ±
0.01

0.11 ±
0.04

0.55 ±
0.08

0.18 ±
0.05

CNNNuc
0.92 ±

0.01
0.92 ±

0.04
0.92 ±

0.02
0.92 ±

0.04
0.74 ±

0.11
0.82 ±

0.06
0.81 ±

0.04
0.81 ±

0.03
0.81 ±

0.03
0.60 ±

0.33
0.69 ±

0.08
0.59 ±

0.22

M1: HoVer-Net pretrained on PanNuke-Breast dataset, M2: Inception ResNet v2, M3: SC-CNN, M4: Inception V3.
M2-4 are fine-tuned on target dataset. Pr: precision, Re: recall. x ± sd for precision, recall and F1 represents one
standard deviation of the mean (mean ± standard) across 3-fold.

Table 3. Relationship between tumoral differentiation features of intra-tumor heterogeneity and
clinicopathological parameters in luminal BC.

Variables
Tumor Differentiation Heterogeneity X2

p-ValueLow (n, %) High (n, %)

Age
<50
≥50

314 (52)
1289 (67)

291 (48)
634 (33)

45.4
<0.0001

Menopausal state
Premenopausal
Post-menopausal

357 (54)
1270 (67)

302 (46)
435 (33)

33.5
<0.0001

Tumor size
≤2 cm
>2 cm

1312 (70)
314 (46)

564 (30)
386 (54)

123.3
<0.0001

Tumor grade
Grade 1
Grade 2
Grade 3

543 (90)
980 (68)
104 (20)

40 (10)
458 (32)
415 (80)

618.2
<0.0001

Histologic tumor types
No special type (NST)
Lobular
Other special types
Mixed subtype

738 (52)
286 (85)
154 (92)
449 (71)

690 (48)
50 (15)
14 (8)
180 (29)

228.3
<0.0001

Lymph node status
Negative
Positive

1299 (67)
328 (52)

638 (33)
300 (48)

45.9
<0.0001
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Table 3. Cont.

Variables
Tumor Differentiation Heterogeneity X2

p-ValueLow (n, %) High (n, %)

Lymphovascular invasion
Absent
Present

1476 (68)
151 (38)

688 (32)
246 (62)

131.8
<0.0001

Nottingham prognostic index
Good prognostic group
Moderate prognostic group
Poor prognostic group

1144 (80)
466 (45)
17 (17)

286 (20)
564 (55)
86 (83)

416.4
<0.0001

ER expression levels.
Lower < 10%
Intermediate (10–99%)
Highest (100%)

6 (22)
417 (57)
1196 (67)

21 (78)
311 (43)
592 (33)

40.9
<0.0001

PR status
Low ≤ 10%
High > 10%

305 (61)
1144 (63)

193 (39)
667 (37)

0.62
0.43

Ki67 expression
Low ≤ 10
High > 10

814 (81)
694 (50)

194 (19)
694 (50)

236.8
<0.0001

ER, estrogen receptor. PR, Progesterone receptor. Significant p values are in bold.

Table 4. Relationship between stromal and tumor-infiltrating lymphocytes (ITH) features of intra-
tumor heterogeneity and clinicopathological parameters in luminal breast cancer.

Variables
Stromal Heterogeneity X2

p-Value

TILS Heterogeneity X2

p-ValueLow (n, %) High (n, %) Low (n, %) High (n, %)

Age (years)
<50
≥50

290 (48)
1208 (63)

315 (52)
714 (35)

42.4
<0.0001 487 (80)

1674 (87)
118 (20)
248 (13)

16.19
<0.0001

Menopausal state
Premenopausal
Post-menopausal

322 (49)
1188 (63)

337 (51)
713 (37)

37.6
<0.0001 531 (81)

1657 (87)
128 (19)
244 (13)

17.1
<0.0001

Tumor size
≤2 cm
>2 cm

1288 (69)
222 (33)

588 (31)
459 (67)

268.6
<0.0001 1752 (93)

435 (64)
123 (7)
247 (36)

355.4
<0.0001

Tumor grade
Grade 1
Grade 2
Grade 3

439 (73)
868 (62)
203 (39)

165 (27)
570 (40)
315 (61)

131.9
<0.0001

393 (95)
909 (90)
253 (72)

21 (5)
101 (10)
96 (27)

99.8
<0.0001

Histologic tumor types
No special type (NST)
Lobular
Other special types
Mixed subtype

765 (54)
219 (65)
131 (78)
395 (63)

663 (46)
117 (35)
37 (22)
37 (22)

51.6
<0.0001

1179 (83)
289 (86)
160 (95)
560 (89)

248 (17)
47 (14)
8 (5)
69 (11)

28.7
<0.0001

Lymph node status
Negative
Positive

1210 (67)
300 (48)

722 (33)
328 (52)

43.2
<0.0001 1701 (88)

487 (77)
231 (12)
141 (23)

42.03
<0.0001

Lymphovascular invasion
Absent
Present

1334 (62)
176 (44)

829 (38)
221 (56)

41.7
<0.0001 1900 (88)

288 (73)
263 (12)
109 (27)

63.19
<0.0001
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Table 4. Cont.

Variables
Stromal Heterogeneity X2

p-Value

TILS Heterogeneity X2

p-ValueLow (n, %) High (n, %) Low (n, %) High (n, %)

Nottingham prognostic index
Good prognostic group
Moderate prognostic group
Poor prognostic group

1019 (71)
469 (46)
22 (21)

409 (29)
560 (54)
81 (79)

227.1
<0.0001

1159 (95)
780 (76)
49 (47)

68 (5)
250 (24)
54 (53)

307.4
<0.0001

ER expression levels
Lower < 10%
Intermediate (10–99%)
Highest (100%)

19 (70)
425 (58)
1057 (59)

8 (30)
303 (42)
730 (41)

1.57
0.46

20 (74)
609 (84)
1545 (86)

7 (26)
118 (16)
243 (14)

5.8
0.05

PR status
Low ≤ 10%
High > 10%

298 (60)
1052 (58)

200 (40)
758 (42)

0.47
0.49 413 (83)

1560 (86)
85 (17)
250 (14)

3.3
0.06

Ki67 expression
Low ≤ 10
High > 10

724 (72)
683 (49)

284 (28)
704 (51)

122.8
<0.0001 949 (94)

1101 (79)
59 (6)
286 (21)

103.2
<0.0001

ER, estrogen receptor. PR, progesterone receptor. Significant p values are in bold.

3.3. ITH Score

The mean ± standard deviation (SD) of the ITH was (10.4 ± 25.1), the median
was 2.5 and ranged from (−14.25 to 195.87). A low ITH score (≤4.9) was found in 59%
(1039/1774) of patients, while a high ITH score was observed in 41% (735/1774) of patients.

The mean ± SD of ITH score in grade 3 tumors was 15.4 ± 15.7 compared to 2.9 ± 17.9
in grade 1 tumors and this difference was statistically significant (p < 0.0001). A significant
difference in the mean ITH score was observed between grade 2 and grade 3 (p = 0.03).
This indicates a strong positive correlation between tumor grade and ITH scores with an
incremental increase in ITH scores with higher grades. With regards to tumor size, there
was a significant difference in the mean ITH score between larger and smaller (<2 cm) tumor
size with larger size tumors showing the highest degree of ITH. In terms of histologic types,
the highest ITH score was observed in tumors with no special type (NST) (mean ± SD of
12.5 ± 25.2) and mixed tumor types (mean ± SD of 11.1 ± 25.9) when compared to special
type tumors. In addition, the lowest ITH score was found in invasive lobular carcinoma of
the classical type (Supplementary Table S3).

With regard to the levels of ER expression, a higher ITH score was associated with
lower ER expression tumors with mean ± SD of 9.4 ± 21.6 compared to 7.1 ± 22.1 in the
highest ER-expressing tumors. Similarly, low PR expression tumors had a higher ITH score
compared to tumors with high PR expression (p < 0.0001). High proliferative tumors (high
Ki67 expression) showed a higher ITH score with mean ± SD of 11.9 ± 23.3 compared to
2.0 ± 17.7 in low proliferative tumors (Supplementary Table S3).

Regarding other clinical variables, high ITH scores showed a significant association
with younger age, premenopausal status, presence of LVI, and poor NPI scores(p < 0.0001)
(Table 5).

3.4. Outcome Analysis

A high degree of heterogeneity in terms of the individual features showed signif-
icant association with shorter patient survival in terms of tumor differentiation het-
erogeneity (hazard ratio (HR) 3.6 (95% CI: 2.5–4.8; p < 0.0001), TIls heterogeneity (HR)
2.5, (95% CI: 1.8–3.6; p < 0.001), and stromal heterogeneity (HR) 1.9 (95% CI: 1.4–2.6;
p < 0.0001)), (Supplementary Figures S2–S4). When the overall ITH score was considered,
there was a strong association between high overall ITH score and poor patient survival
in terms of shorter BCSS (HR) 1.4 (95% CI: 1.3–1.9; p < 0.0001) and DMFS (hazard ratio
(HR) 1.1 (95% CI: 1.0–1.4; p < 0.0001)) (Figure 5). When stratifying patients according
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to tumor grade, the ITH score dichotomized grade 2 and/or grade 3 tumors into two
distinct prognostic groups (p = 0.03 and 0.01, for grade 2 and grade, 3, respectively).
Notably, the ITH score significantly categorized patients with moderate NPI risk scores
(cohort eligible for Oncotype Dx testing) into two distinct prognostic groups (p = 0.04)
(Supplementary Figure S1). In a multivariate analysis including the potential confound-
ing factors, tumor grade, LVI, and tumor size, a high ITH score showed an independent
association with poor outcomes in terms of BCSS HR 2.2, CI (1.3–3.5), (p = 0.001) and
DMFS HR 2.3, CI (1.5–3.5), (p < 0.0001) (Supplementary Table S4).

Table 5. Relationship between overall heterogeneity score and clinicopathological parameters in the
study cohort.

Variables
Heterogeneity Score X2

p-ValueLow (n, %) High (n, %)

Age
<50
≥50

396 (66)
452 (52)

208 (34)
411 (48)

7.7
0.005

Menopausal state
Premenopausal
Post-menopausal

312 (47)
1102 (58)

347 (53)
800 (42)

22.2
<0.0001

Tumor size
≤2 cm
>2 cm

882 (64)
157(40)

498 (36)
237 (60)

73.1
<0.0001

Tumor grade
Grade 1
Grade 2
Grade 3

396 (66)
814 (57)
204 (39)

208 (34)
624 (43)
315 (61)

80.4
<0.0001

Histologic tumor types
Non-special type (NST)
Lobular
Other special types
NST mixed

716 (51)
240 (71)
126 (75)
332 (53)

712 (49)
96 (29)
42 (25)
297 (47)

78.7
<0.0001

Lymph node status
Absent
Present

11,145 (59)
269 (43)

788 (41)
359 (57)

51.6
<0.0001

Lymphovascular invasion
Absent
Present

1258 (58)
156 (39)

906 (42)
241 (61)

48.1
<0.0001

Nottingham prognostic index
Good prognostic group
Moderate prognostic group
Poor prognostic group

932 (65)
461 (45)
21 (20)

496 (35)
569 (55)
82 (80)

154.4
<0.0001

ER expression levels
Lower < 10%
Intermediate (10–99%)
Highest (100%)

10 (62)
263 (56)
762 (60)

6 (38)
207 (44)
518 (40)

1.9
0.38

PR status
Low ≤ 10%
High > 10%

316 (64)
944 (52)

182 (36)
867 (48)

20.2
<0.0001

Ki67 expression
Low ≤ 10%
High > 10%

683 (68)
633 (46)

325 (32)
755 (54)

115.7
<0.0001

ER, estrogen receptor. PR, progesterone receptor. Significant p values are in bold.
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4. Discussion

Breast cancer (BC) exhibits significant intra-tumor genetic diversity, which influences
the final morphologic and immunophenotypic features of both tumor cells and their
microenvironment [43]. ITH is closely linked to clonal evolution, whereby subclones with
a growth advantage expand, whilst less fit subclones are outcompeted and lost [44]. Such
tumor heterogeneity plays a crucial role in cancer progression, treatment outcomes, and
prognosis [45]. Luminal BC patients are treated with endocrine therapy; however, some
patients acquire resistance to targeted therapies and relapse [6]. This resistance may be a
direct consequence of pre-existing ITH [38]. However, accurately assessing ITH remains
challenging due to its complexity.

Using AI-based tools, it becomes possible to record myriads of morphologic features
including spatial architecture and cellular distribution, as well as combine several aspects into
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one score that can guide patient therapy. AI studies have demonstrated high accuracy in the
simultaneous assessment of multiple morphologic features too subtle to be detected with the
human eye and which may have the potential to revolutionize routine pathologic practice [24].
AI-based algorithms generate spatial coordinates of features within a tissue context and enable
the application of spatial analytics for various ITH aspects [46]. A previous study of kidney
cancer generated interpretable features built on the predictions of DL models in the same
way as the approach followed in this work, and that study revealed that tumor heterogeneity
patterns encode distinct cancer states [47]. Another study showed that deep learning predicted
spatial mRNA expression and enabled scalable quantification of intra-tumor heterogeneity to
predict patient survival from routine histopathology WSIs in BC [21].

Previous studies have shown that different areas in the same tumor have varying
characteristic features [48]. The concepts of ITH and tumor–host interaction within the
TME have been used in oncology and pathology to designate many crucial aspects of tumor
biology for selecting personalized cancer therapies [49]. Heterogeneity in morphological
features, especially histologic tumor grade, is well recognized in routine practice, and
the assessment of grade depends on the evaluation of all slides of the tumor to pick the
least differentiated areas for assessment of mitoses and nuclear pleomorphism. However,
subjective visual quantification of heterogeneity in BC grade is challenging, and this
subjectivity decreases the reliability of its use in routine practice [24].

In this study, the power of AI tools has been used to assess and quantify different
morphologic features related to ITH in early-stage luminal BC. AI identified and extracted
in an unbiased manner features related to the tumor and its associated TME from WSIs
using a supervised DL model. To address the challenge of interpreting features from
deep learning-based models, the proposed AI pipeline integrates well-established domain-
specific features, such as co-occurrence and contrast, to enhance interpretability. Our results
showed that most tumors had a degree of heterogeneity with regard to all extracted features
as well as the overall ITH score, supporting the concept of ITH even in the luminal class
of BC. In this study, several morphologic features showed a high degree of heterogeneity
including tumor differentiation, histologic type, tumor cell architecture, cytologic features,
tumor-associated stroma, and TILs. This demonstrated the complexity of ITH of BC and
suggests a positive correlation between various features in which some tumors show a high
degree of ITH incorporating several features, whilst others show minimal variation in the
features between different tumor areas. Therefore, analyzing multiple morphologic features
can help decipher the morphological complexity of BC and provide a tool to stratify BC
patients according to the abundance of these features.

Larger tumor size, grade 3, and NST tumor types showed higher degrees of hetero-
geneity, including tumor and stromal features, which suggests that ITH may represent the
emergence of aggressive tumor clones that drive the poor behavior of these tumors. More-
over, some BC types that are perceived as morphologically and clinically homogeneous
show subtle variations within the tumor resulting in high ITH scores and subsequently
aggressive behavior. In total, 13% of invasive lobular carcinoma showed high levels of
intra-tumor differentiation heterogeneity, which may reflect the existence of more aggres-
sive variants with this tumor type. Also, patients with the highest ER expression showed
the lowest degree of ITH compared to patients with low and intermediate ER expression.
This may reflect the good response of these patients to endocrine therapy as all tumor
cells are similar and respond to therapy, unlike those with low expression, which show a
composition of different clones with variable responses.

To further assess ITH in BC, an overall ITH score was developed based on the extracted
features, and a high score was detected in about half of the tumors. There was a significant
association between higher ITH scores and aggressive tumor characteristics, which provides
evidence for the role of ITH in determining tumor behavior.

A significant association was found between high ITH scores and poor patient out-
comes, providing further evidence that BC heterogeneity can influence patient progno-
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sis [50]. It has been previously suggested that heterogeneity in luminal BC was associated
with poor prognosis [51].

The heterogeneity in grade 2 BC suggests that patients could benefit from more precise
stratification. Using the ITH score, these tumors can be divided into two distinct risk
levels, each with significant differences in recurrence rates. This approach highlights the
importance of personalized treatment plans based on the specific characteristics of the
tumor. However, whether tumor heterogeneity influences response to treatment remains
to be defined. We found that a higher ITH score predicted poor response to endocrine
therapy alone, whilst patients with a low ITH score responded well to endocrine therapy. In
contrast, the association between poor outcomes and high ITH was lost when these patients
also received chemotherapy. This may be explained by the better response of tumors with
high ITH scores to chemotherapy, as these tumors are typically rich in aggressive highly
proliferative clones, whereas the low proliferative less aggressive clones responded to
endocrine therapy in both groups. This may support offering chemotherapy to tumors with
high ITH scores even if they do not appear clinically high risk based on traditional histologic
features. However, this assumption needs further investigation in a prospective study.
Earlier studies indicated that pre-existing ITH enhances the probability of some tumor cells
surviving treatment-induced elimination that could lead to therapy failure [6,12].

This study has some limitations. DCIS segmentation was handled separately from
other region segmentation tasks to enhance the focus on DCIS filtering. While this approach
simplifies the task, it is feasible to combine DCIS vs. rest segmentation, region segmentation,
cell segmentation and classification, and patch classification (digital grade) into a multitask
DL model, potentially improving efficiency and performance. Similarly, while nuclei
classification plays a significant role in feature calculation, segmentation performance for
cells has not been explicitly quantified. Although the quantitative results indicate good
performance, selecting an optimal model that balances both classification and segmentation
performance would likely improve overall results. Furthermore, our approach separated
the texture analysis from the CNN models. While integrating regression into the CNN
could enable an end-to-end system, we chose to perform texture analysis independently
to retain interpretability and flexibility in feature extraction, particularly for established
morphological and textural features. This approach, however, may limit the potential
efficiency gains of a fully integrated model. In this study, a cohort of luminal BC was used,
and we aim in the future to apply the same algorithm to other cohorts that represent all the
molecular classes of BC with the application of the heterogeneity score in a multicentric
study to further evaluate its clinical value in different molecular classes.

5. Conclusions

The results of this study indicate that AI-based tools can be used to assess morphologi-
cal features representative of ITH in BC. ITH provides independent prognostic information
in early-stage luminal BC that can be used to guide therapy decision making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16223849/s1, Figure S1: shows Kaplan Meier association
of heterogeneity score with breast cancer-specific in intermediate risk patients (moderate Nottingham
prognostic index); Figure S2: shows Kaplan Meier association of tumour differentiation heterogeneity
(high vs low) with breast cancer-specific survival; Figure S3: shows Kaplan Meier association of stro-
mal heterogeneity (high vs low) with breast cancer-specific survival; Figure S4: shows Kaplan Meier
association of tumour infiltrating lymphocytes (TILS) heterogeneity (high vs low) with breast cancer-
specific survival; Table S1: Clinicopathological characteristics of the study cohort; Table S2: overview
of texture features employed in current study; Table S3: Mean and standard deviation (Mean ± SD)
of heterogeneity score in the different pathological parameters; Table S4: Multivariate analysis of
overall intra-tumour heterogeneity score in luminal breast cancer with prognostic parameters.
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