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abdominal artery of the lobster Homarus americanus
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1. Microfibrils are becoming increasingly recognized as an important component of the extra-
cellular matrix. However, almost nothing is known about their mechanical role in the diversity
of tissues in which they are found.

2. Microfibrils form the principal structural component in the wall of the abdominal artery of
the lobster Homarus americanus. We have used previous estimates of the mechanical
properties of these microfibrils, estimates of the fraction of the aorta wall volume occupied
by the microfibrils, and their angular distribution as a function of strain in a numerical
model that predicts the macroscopic mechanical properties of the whole tissue.

3. Microfibrils alone, when their reorientation and deformation are accounted for, characterize
the stress-strain behaviour of the vessel. Evidence of the evolutionary conservation of fibrillin
between medusans, echinoderms and vertebrates implies that the mechanical properties of
lobster microfibrils may apply to microfibrillar function in other taxa. This will have profound
implications on the perceived roles of microfibrils in development, physiology and disease.

Microfibrils form a proteinaceous component of the
extracellular matrix found in a variety of tissues in many
animals. Most research into microfibrils to date has
concentrated on their identification, description of their
ultrastructure (Keene, Maddox, Kuo, Sakai & Granville,
1991; Kielty, Cummings, Whittaker, Shuttleworth & Grant,
1991) and determination of their chemistry (Sakai, Keene &
Engville, 1986). The principal protein in vertebrate micro-
fibrils is fibrillin, and recently the organization of fibrillin in
the microfibrils has been examined (Reinhardt et al. 1996).
The functional role played by microfibrils is not understood
and may vary depending on the developmental stage of the
tissue in which they are found.

The morphology of elastic tissue containing microfibrils was
recently reviewed (Montes, 1992). Groups of bundles of
mammalian microfibrils are known as oxytalan fibres. The
ciliary zonules in mature mammals are composed solely of
oxytalan fibres. A fibre that is composed of both elastin and
microfibrils is termed an elaunin fibre. One that is chiefly
elastin, with only a microfibrillar boundary is called an
elastic fibre. During development, amorphous elastin is
deposited on the microfibrillar scaffolding. Thus, the mature
elastic fibres develop within a framework of microfibrils that
must function as a complete elastic element before the
elastin becomes functional (Mecham & Heuser, 1991; Montes,
1992; Malak & Bell, 1994).

Marfan syndrome (MFS), an important human hereditary
disease of the connective tissues, is characterized by
irregularities in the synthesis of the protein fibrillin, an
essential part of vertebrate microfibrils (Godfrey, Menache &
Weleber, 1990; Ramirez, Pereira, Zhang & Lee, 1993;
Hollister, Godfrey & Sakai, 1994; Godfrey, Michael &
Steinmann, 1995). One of the things that makes MFS so
intriguing to researchers is the fact that the profound loss of
function is completely out of proportion to the relatively
small bulk of affected tissue. Clearly the mechanical role
played by these microfibrils bears closer examination. This
study will be important for biomedical research because
little is known of microfibrillar function generally.

Microfibrils are also found in invertebrate tissues. Recently,
a homology has been reported (Reber-Miiller, Spissinger,
Schuchert, Spring & Schmid, 1995) between an extracellular
matrix protein of the jellyfish Podocoryne carnea and
mammalian fibrillins. The protein is observed to form
fibrillin-like beaded microfibrils, and a cDNA fragment of
the gene coding for this protein shows a >40% identity in
sequences to human fibrillin genes. Mechanical studies have
been performed (DeMont & Gosline, 1988) on the radial
elastic fibres in the mesoglea of another jellyfish, Polyorchis
penicillatus and from the descriptions of DeMont & Gosline,
(1988) and Reber-Miiller et al. (1995) it seems clear that they
examined the same tissues. DeMont & Gosline (1988)
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examined the energetics of locomotion and were able to
predict the modulus of elasticity of the radial elastic fibres,
which was 1P0 MPa. Thurmond (1996) performed mechanical
and biochemical analyses of microfibrils in the dermis of the
sea cucumber Cucumaria frondosa. He reported a modulus
of elasticity of 0-2 MPa, and his measurements were based
on an extrapolation from the macroscopic properties of the
sea cucumber dermis.

Microfibrils are the principal structural component of
arteries found in primitive vertebrates and invertebrates
(Davison, Wright, & DeMont, 1995). McConnell et al. (1996)
used these microfibrillar-based primitive arteries to measure
the mechanical properties of individual microfibrils. The
calculated modulus of elastcity of 1 06 MPa for microfibrils
in the abdominal aorta of the lobster is very close to the
modulus of elastin, which is 1P2 MPa (Aaron & Gosline,
1981). Since microfibrils in mammals have been previously
thought to function solely as extracellular 'scaffolding' on
which elastin is deposited in the development of elaunin
fibres (Montes, 1992), this is an intuitively reasonable result.
Because cnidarians and sea cucumbers (echinoderms) are
thought to have evolved before both vertebrates and
crustaceans, it is reasonable to speculate that there is a
homology between lobster- and mammalian microfibrils. The
observed linear deformation behaviour and modulus of
elasticity of lobster artery microfibrils imply that mammalian
microfibrils may similarly have a mechanical function as
well as the established developmental role as 'depositional
scaffolding' (Montes, 1992).

A comparative study of the structure and mechanical
properties of these microfibril-based arteries has been
completed (Davison et al. 1995). It showed that the arteries
exhibit non-linear elastic behaviour, typical of other
vertebrate (Shadwick, 1992) and invertebrate arteries
(Shadwick & Gosline, 1985) that have been studied previously.
The non-linearity is functionally important, for reasons that
have been described previously (Shadwick, 1992). For
vertebrate arteries, the non-linearity has been attributed to
deformation of the elastin component at low strains and
collagen at high strains. In this paper we develop a
mathematical model of the mechanical behaviour of the
arteries of the lobster Homarus americanus and show that
the non-linearity can be attributed to reorientation of the
microfibrils at the low end of the stress-strain curve and to
deformation of the microfibrils themselves at the high end of
the stress-strain curve.

The model
A variety of mathematical models have been published in
order to promote an understanding of fibrous composite
biomaterials in general, and arteries in particular (Bergel,
1961; Hudetz, 1979; Aspden, 1986; Ault & Hoffman,
1992a,b). One of the complications, and great challenges,
has been partitioning the stress-strain curve to account for
reorientation of reinforcing fibres, as well as their
deformation.

Ault & Hoffman (1992a, b) detail a model that takes into
account fibre reorientation, as well as fibre-matrix
interaction. The model is comprehensive, but some of its
parameters (e.g. elastic modulus and Poisson's ratio of the
matrix) are difficult to determine experimentally. The model
outputs delimit upper and lower bounds which enclose the
true material behaviour. Other methods (Bergel, 1961;
Hudetz, 1979) produced formulations that explain observed
data, but are not very predictive. Aspden's (1986) approach
deals primarily with fibre reorientation within the material.
The model assumes that the fibres are nominally infinitely
long and that the transfer length is relatively short in
comparison with the length of the fibres, and thus the fibres
are fully load bearing. With this assumption, the model is
capable of predicting longitudinal stress in a material, given
the orthogonal strains. We will not attempt to reproduce the
full derivation here; the interested reader is directed to the
original citation. However, the details of the model develop-
ment for this case may be instructive, and are included in
Appendix 1.

The model is based primarily on the definition of Young's
modulus (E). This quantity is the slope of the line of a plot
of stress (o) against strain (e). Algebraically, then, E is the
ratio of o and e. Since strain is the experimentally measured
variable, and the modulus is calculated from the measured
strain, the stress is calculable from:

a = Ee. (1)
This relation holds only for solid materials. In lobster arterial
wall, the volume is not occupied solely by microfibrils, so the
contributions made by the microfibrils and cellular matrix
must be accounted for separately:

T=EfVfCf+Em(1- Vf)Cm' (2)
where V denotes volume fraction, and variables subscripted
f are properties of the fibres, while those subscripted m are
properties of the matrix. It is explicitly assumed that the
reinforcing fibres are stiff in tension, but compliant in
compression due to buckling, and that the opposite is true of
the matrix. Applying this assumption to the geometry of
the lobster artery leads to the inference that the matrix
plays no role in carrying circumferential loads, and the
microfibrils carry none of the radial load. Note that only the
two-dimensional case need be considered. Thus, for this
case, the contribution of the matrix may be neglected and
eqn (2) rewritten as:

(T = Ef Vfef. (2a)

The innovation in Aspden's (1986) model lies in accounting
for the orientation of the reinforcing fibres with respect to
the direction of the applied load. The orientation of a single
fibre is treated as a random variable, described by a
distribution function, g(O). The actual fibre reorientation is
not treated in the conventional trigonometric fashion.
Instead of multiplying the fibre length by the cosine of the
angle that the fibre's new direction makes with the old

514 J Physiol.499.2



Microfibrils provide non-linearity in arteries

Figure 1. Fibre reorientation is better accomplished
through the use of direction cosines than conventional
trigonometry
Through an angular change of (D deg, trigonometry
underestimates the length of the fibre in the new direction by
an amount u, while the use of direction cosines preserves the
original length and changes only the fibre direction.

direction (6), the change in direction is treated with the
more rigorous application of direction cosines. Simply
multiplying the fibre length by the cosine of 6 treats the
original fibre length as the hypotenuse of a right triangle,
and so the fibre length in the new direction is shorter than
the original. A more realistic image of the reorientation,
rather than two sides of a triangle, is two radii of a circle
(Fig. 1). Using direction cosines to calculate reorientation
allows the fibre to be treated as if it were sweeping out an
arc of a circle. The reorientation does not affect the length of
the fibre, only its position in space. So, accounting for the
reorientation of a single fibre, without loss of generality:

(3)
where 11 and 1. are direction cosines and the subscripts i and
j denote summation over repeated indices. In a many fibre
system, 6 is replaced by an angular distribution function,
g(O), and the reorientation must be integrated over the
range of angles included in g(6) for each increment in strain.
Thus:

wall. The distribution may then be calculated, based on the
standard deviation of the observed angular distribution
from experimental samples, as:

g(6) = 1 exp{[-( _-)2]/[282(e)]I,S(e)VN2ir
(5)

where S(e) is the standard deviation of angles as a function
of strain, and 0 is the mean angle of the function.

Substituting eqn (5) into eqn (4), and bringing all factors
with no dependence on 6 outside the integral leaves:

VfEfA-i S()V AeIfp{[_(i -_ )2]/[2S2(6)]}l l[dM. (6)

This equation, while concise, is not in an easily computable
form. First of all, the limits of integration are artificially
wide. There is no need to integrate over an entire semicircle,
since most of the fibres will not be sufficiently aligned with
the tension vector to contribute in supporting the imposed
stress over much of the loading curve. Only those fibres in
the range 0 < 6 K Omax need be considered, where:I7/2

Aoij= VfEfAefg(O)llTdO.
-Jt/2

(4)
6max = CO 1\/(i + e )2 _ (1 +

r

)2

This, then, is the essence of Aspden's (1986) model. Each of
the factors influencing the fibre behaviour is given equal
multiplicative weight.

The fibres are assumed to be normally distributed about a
perpendicular to a radial line cutting through the vessel

Figure 2. Schematic of an artery under pressure
Internal pressure vector is balanced by an external reaction
vector (the i direction), putting the vessel in compression
radially. Only tension vectors act in the direction of component
microfibrils (the j direction).

(7)

where subscripts r and c denote radial and circumferential
quantities, respectively. Furthermore, eqn (6) represents not
one but four integrals, since the two dimensional stress is a
tensor. However, both of the off-diagonals are zero, and it is
explicitly assumed that the microfibrils are weak in
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VfEf Ir9max e (1 + c6)(l + 62)2sin2O cos26exp{[-(O - o) ]/[2S2(e)]}
Ao=22 [ + (1+ + )2 2]3/2 dO

O .2(l + 2)3sin4O exp{[-(O9- o)2]/[2S2(e)]}
Jo [(1 + e1)2cos20 + (1 + e2)2sin2]3/2 da

+ ax (1 + 61)(1 + 62)2sin2cos2Oi exp{[-(Oi -_ )2]/[2S2(e)]} dO
Jo [(1 + e1)2cos2O + (1 + 62)2sin20]3/2

+max (1 + 62)3sin4Oexp{[-(Oi - O)2]/[2S2(e)]} dO
Jo [(1 + e1)2cos2O + (1 + 62)2sin20]3/2

J+ max (1 + 62)2sin29exp{[-(Oi _ o)2]/[2S2(e)]}dt
.0 (1 + e1)2cos20 + (1 + c2)2sin2O d

Equation 8

compression, so they play no role in supporting circum-
ferential stress. That leaves only one integral shown in
expanded form in eqn (8). The subscripts 1 and 2 refer to
radial and circumferential quantities, respectively, in the
co-ordinate system defined in Fig. 2. The 'strains' in this
equation are not true strains, however, but strain
increments, so:

61 ei(n) 6i(n-1)
and:

2= j(n) j(n-1)

The model provides a means of accounting for any strain
already present when each new increment of strain is
calculated. This feature is essential for any material whose
constituents display non-linear elastic behaviour, since the
modulus of elasticity will change with changes in strain.
Since the microfibrils display linear deformation behaviour,
each strain increment produces the same amount of
deformation in a single fibril as the last, or the next.
Therefore, it is not necessary in this case to account for this
'memory of deformation'. In spite of the seeming complexity
of eqn (8), all inputs are experimentally determinable.
McConnell, Wright & DeMont (1996) measured Ef and
Davison et al. (1995) described a means of determining e6
and £2. The only parameters yet to be determined are Vf
and S(e), and the method follows.

METHODS
Data collection
Specimens of the lobster Homarus americanus were purchased
locally. All animals were maintained and killed according to the
guidelines set by the Canadian Council of Animal Care. Animals
were killed by bubbling CO2 into a container of seawater for
20 min. Abdominal arteries were removed and fixed as described in
previous work (McConnell et al. 1996).

The glutaraldehyde-only fixed vessels were postfixed for 1 h in 1%
OSO4 in seawater at room temperature. All tissues were then
dehydrated in ethanol through propylene oxide and embedded in
epon-araldite. One micrometre thick transverse sections were
mounted on glass slides and stained with Toluidine Blue. Ultrathin
sections (70 nm thick) were collected on 200 mesh copper grids and
stained with uranyl acetate and lead stain. The inner circumference
and wall thickness were measured from the Toluidine Blue sections.
Three micrographs were taken adjacent to the lumen of each
pressurized section, and four random probe micrographs taken from
each zero-stress sample. The micrographs were taken using a
Hitachi H600 electron microscope, operating at 75 kV. The final
magnification of the micrographs was x 95000. Micrographs were
analysed with Bioquant for 0S2, version 2.6 (R&M Biometrics Inc.,
Nashville, TN, USA). This software was used to digitize the
micrographs and to make all measurements.

The microfibrils are not distributed uniformly across the wall of the
vessel, but are aggregated into fibre bundles, which are distributed
evenly across the vessel wall. To measure the volume fraction of
microfibrils in a fibre bundle (VF), a variation on the point counting
method was used (Weibel, 1979). A line was marked on a digital
image of a micrograph, and the proportion of its length covered by
the microfibrils was determined. This procedure was followed four
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times per micrograph. To determine the volume fraction of fibre
bundles in the vessel wall (Vb), a similar procedure was carried out
on Toluidine Blue stained thick sections of OSO4 fixed vessels. A
radial line through the wall was measured, and the proportion of
that line covered by fibre bundles was determined. This was
repeated ten times for each thick section. The product of these two
ratios was used as the volume fraction of microfibrils (Vf).

The model parameter S(e) requires a knowledge of both the standard
deviations of the distribution of angles that the microfibrils form
with a radial line and the strains in the vessel wall which correspond
to those distributions.

The standard deviations of angular distributions were determined
from the same micrographs used in previous work (McConnell et al.
1996). The utility for measuring angles incorporated within the
Bioquant package links this measurement to the longest linear
dimension of a measured area. The system measures all angles with
respect to a horizontal line parallel to the image monitor raster lines
as the baseline. While the area measurement and the measured
angles are thus completely arbitrary, the distribution of angles is
real and experimentally relevant. These area and angle measure-
ments were made for 500 replicates per micrograph, the area
measurements discarded and angular measurements collated for
frequency distribution. An artifact of the Bioquant software is that
any ambiguous angular measurement is set equal to zero. If, for
example, an area is defined by a quadrilateral, and two non-parallel
sides are its longest dimensions, the reported angle will be zero. As
a result, after filtering all zeros from the angular distribution sets,
the number of valid measurements in different data sets was not
equal. To compensate for this, the zeros were discarded and each
data set was truncated at 400 measurements before sorting. This
distribution was linearly transformed to a mean of 90 deg by
determining the average of the raw distribution, and adding to or
subtracting from all measurements a value such that the average of
the new distribution was 90 deg. The new distribution was then
examined to find the maximum and minimum values. From all
values greater than 180 deg, 180 deg was subtracted, and 180 deg
was added to all values less than 0 deg, to bring all data within the
allowable range. This procedure allowed pooling of data from
different micrographs at the same strain. Micrographs from both
OSO4 and glutaraldehyde-fixed samples were used.

The standard deviations of the angular measurement distributions,
after truncation and rectification to 90 deg, were used to calculate a
mean standard deviation for each strain. To quantify the vessel
radial strain vs. distribution relationship, the plot of standard
deviation vs. strain had a curve fitted to it by a variety of means
and the fit that gave the highest correlation coefficient (r2) was
accepted.

Data analysis
An implicit assumption of the vessel stress calculations in the paper
by McConnell et al. (1996) was the conservation of wall cross-
sectional area. Briefly, it is assumed that, as the transmural pressure
increased, the midwall radius of the vessel increased and the wall
thickness decreased such that the area of a section through the
vessel perpendicular to its axis was conserved:

A = 7r(r 2 _ r2)
A =n(ro + ri)(ro- r1)

A =rt(ro + r,) = 7TT(Ro + R). (9)

Therefore r, + ri = A/irt Ro + Ri = A/rT,
where T is wall thickness, r. is the outer radius of the vessel, r1 is
the inner radius, and A is the wall area (Davison et al. 1995). Note
that capital letters denote resting values, taken to be in the zero-
pressure state in this case. The strain acting on the vessel wall,
then, was calculated for all vessels fixed in OSO4 from:

= rmw - Rmw
Rmw

(ro + ri )_(Ro + Ri)
2
=

(Ro + R
2

rO + ri- (Ro + Rj) (10)

Ro + Ri
rO + r1-(A/ffT)

A17rT
No zero-pressure (as opposed to zero-stress) samples were collected
when the OsO4-fixed vessel sections were prepared. In order to
calculate the strain on the vessel wall, vessel sections of four
animals were tested to determine any change in wall thickness
between zero-pressure samples and zero-stress samples. Two narrow
(2-5 mm) rings were cut from the abdominal aorta between the
heart and the first lateral arteries. The wall of one of the rings was
split to provide a zero-stress section, while the other was kept intact
as a zero-pressure section. Samples were sectioned using a cryostat
microtome at -20 °C, and wall thicknesses measured under a light
microscope, with ocular micrometer, at x 100 magnification, ten
times on each of five frozen slices through the wall perpendicular to
the axis. Student's t test, assuming unequal variances, was
performed to determine if the means differed, and their ratio taken
to transform the osmium-fixed zero-stress thicknesses to zero-
pressure thicknesses (to).
The model (Aspden, 1986) was programmed using the scripting
language of Maple V (release 2, Waterloo Maple Software,
Waterloo, Ontario, Canada). This software was also used to
compute the model output. The program was tested against data
estimated from the figures in the paper detailing the model and its
behaviour. The integrals were evaluated using Simpson's rule,
stepped over four intervals. This is the default number of intervals
provided by Maple V (release 2), and was considered adequate for a
first approximation.

The input strains, both circumferential and radial, were taken from
data collected by Davison et al. (1995). Whole vessels were
quasistatically inflated over about 25 s, each to a different strain,
and allowed to deflate over the same period. Three data sets
collected at different strain rates were chosen at random. Because
the data was somewhat noisy, it was filtered by choosing every fifth
point on the loading curve from its minimum to its maximum such
that ni+, > ni. In the event that the fifth point did not satisfy this
constraint, the next subsequent point which did satisfy it was
chosen and the count resumed from that point. Correlation
coefficients were calculated for predicted stress versus that observed
by Davison et al. (1995), and tested for significant deviation from
zero with a t test.
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Note that all experimental uncertainties were propagated and
reported as relative uncertainties unless otherwise noted.

RESULTS
Figure 3 shows the angular distribution measured from a
vessel fixed in osmium tetroxide at zero stress, and Fig. 4
shows the distribution from a vessel fixed in osmium
tetroxide at 2-64 kPa, both after linear transformation to a
mean of 90 deg. The standard deviations of these
distributions are 32-03 and 9-137 deg, respectively. The
pooled, transformed standard deviations were plotted against
circumferential strain (Fig. 5) and linear, polynomial, power,
logarithmic and exponential regressions performed to
determine the best fit. The logarithmic regression formula
was chosen because it gave the highest correlation coefficient
(r2= 0-721) of all those used (linear, 0-287; polynomial
(second order), 0-646; power, 0-518; and exponential, 0 296).
The standard deviation of the angular distribution of the
microfibrils was observed to be inversely proportional to
strain such that:

So = -191241n(e) + 12-26.

The mean wall thicknesses of zero-stress samples was
0-125 + 0-029 mm, and differed significantly (P < 0 001)
from that of zero-pressure samples, which was 0-178 +
0-026 mm. The mean ratio of zero-stress thicknesses to zero-
pressure thicknesses was 1 429 (+ 0 0387): 1. The volume
fractions of microfibrils in artery walls did not differ by
more than experimental uncertainty from a mean value of
0-282.

Figures 6, 7 and 8 compare the circumferential stresses
predicted by Aspden's (1986) model with the corresponding
data recorded by Davison et al. (1995). A correlation
analysis of the calculated to the observed stresses was
performed, and r2 = 0-9952 for Fig. 6, r2 = 0-9956 for
Fig. 7 and r2= 0 9940 for Fig. 8. All were significantly
different from zero (P < 0 001).

DISCUSSION
The correlations between the predictions from Aspden's
(1986) model and the observations from Davison et al. (1995)
(Figs 6, 7 and 8) are remarkable. The stress vs. strain curve for
the vessel is completely characterized by the reorientation
and deformation of microfibrils. In fact, it may be roughly
partitioned into two phases. Examining Figs 5 and 6 (for
example), early in the loading curve, up to a strain of about
0-60, microfibril reorientation plays the dominant role,
much as the deformation of elastin does in mammalian
arteries, or octopus artery elastomer in cephalopods (Gosline,
1980; Shadwick & Gosline, 1981; Shadwick & Gosline,
1985; Gosline, Shadwick, DeMont & Denny, 1988). At
higher strains, greater than approximately 80%, where

collagen begins to take the load in mammalian vessels, it
is the deformation of the microfibrils that supports the
circumferential stress. This may be a third evolutionary
solution to the functional problem of compliant arteries
needing to display non-linear elastic behaviour.

The evidence of evolutionary conservation of the fibrillin
protein from medusans and sea cucumbers to humans
(Reber-Miiller et al. 1995; Thurmond, 1996; Thurmond &
Trotter, 1996) implies that the mechanical properties of
lobster microfibrils may apply generally to microfibrillar
function in the animal kingdom. If that is the case, it
indicates that the role played by microfibrils must extend
well beyond their established function in elastic fibre
development (Montes, 1992). The wide range of strains over
which the microfibril-based tissues can remain operative (up
to 3 0 in Fig. 8) may provide a means of load transfer to and
from amorphous elastin in both statically loaded tissues,
such as skin, and dynamically compliant tissues, such as
arteries. The results presented here may then be used, with
appropriate volume fraction measurements and distribution
function estimates, to gain insight into microfibrillar function
in other tissues and animals.

Few studies have been able to partition fully the
contribution of fibre reorientation and/or deformation along
the stress-strain curve of composite biomaterials. Indeed,
this problem is generally very difficult to resolve, since in
situ measurements of fibre deformation are difficult to make.
The unique combination of fibres with 'built-in' markers for
in situ strain measurements and the relatively simple
architecture of the arterial wall used in this work have
allowed us to make these measurements. We found that the
change in angular distribution is inversely proportional to
the increase in strain. This supports the idea that non-linear
properties may be due, in part, to changes in the way
embedded fibres are oriented, with respect to a stress vector,
within a composite material. Essentially, the fraction of the
load borne by an individual fibre, within a composite, is
related to the angle that it makes with the stress vector. In
general, the more closely a single fibre is aligned with the
vector, the greater the load it must carry. The distribution of
angles in the population of fibres, then, decreases as the
load increases such that the stress is spread out over a
sufficient number of individuals to bear it (Fig. 5).

The microfibrillar-based arterial systems found in primitive
vertebrates and invertebrates (Davison et al. 1995) provide a
unique model system to explore in considerable detail
structure and function relationships of microfibrils, and will
provide important information for the cure and prevention
of connective tissue diseases such as Marfan syndrome. We
are presently characterizing the microfibrils found in
primitive vertebrates and invertebrates, and initiating work
to correlate changes in the morphology of microfibrils with
their mechancial function.
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Figure 3
The angular distribution measured from a vessel fixed in osmium tetroxide at zero stress after linear
transformation to a mean of 90 deg.
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y = -1-9124 ln(x) + 12-26

r2 = 0-721
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Figure 5
The standard deviation of the distribution of angles that microfibrils
inversely with circumferential strain in the vessel wall.
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A comparison of predicted and observed stress for dataset no. 607 (r2 = 0 995) from Davison et al. (1995).
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Figure 7
A comparison of predicted and observed stress for dataset no. 720 (r2 = 0 996) from Davison et al. (1995).
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A comparison of predicted and observed stress for dataset no. 737 (r2 = 0 994) from Davison et al. (1995).
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APPENDIX
Aspden's (1986) model calculates increments of stress, in a fibre-reinforced composite material, by multiplying together all of
the factors that may influence the reinforcing fibres at each particular orientation relative to the stress vectors, and summing
over all possible orientations:

7r/2
Aoiu = VfEfAefg(6)li I'dM, (Al)

where Aoiu is an increment of stress, Vf is the volume fraction occupied by reinforcing fibres, Ef is their modulus of elasticity,
Ae, is an increment of strain, g (6) is a function of the angular distribution of these fibres, and li and I' are direction cosines
for a fibre relative to the stress vector.

Equation (Al), while concise, is not in an easily computable form. In the first place, since stress is a tensor, even though the
off-diagonals are all zero, the equation represents not one but two integrals:

J Z/2

Ao11 = VfEfAef g(6) l'l'dO,
-)r/2

and:
,r/2

Ao22 = VfEfA6f g(6)l l d0. (Ala)
J-;r/2

Of these two, only the second is of interest to the investigation of the role played by microfibrils in the mechanical properties
of the artery.

Let us assume the angular distribution is Gaussian. The standard deviation of the distribution was observed to vary
inversely with strain, so it can comfortably be made a function of that quantity. The distribution function, g (6) may then be
stated:

g(6) = exp{[-(, - )2]1[2S'(6)] (A2)
S(6)\27T

where 6i is an individual angle of orientation, 6 is the mean angle of orientation and S(e) is the standard deviation of the
distribution as a function of strain.

Clearly, the denominator of eqn (2) has no dependency on 6. Neither does the volume fraction of the fibres (Vf), nor does their
modulus of elasticity (Ef). All of these quantities may be moved outside the integral, leaving equation (Al) as:

Aoii = AJAc,.exp{[-(i9 - o)2]/[2S2(e)]liul[dI . (A3)
S(c)V\27T .0f

Next let us deal with the direction cosines, 11 and 19. Aspden (1986) defines them in his eqn (2.8) as:

li+eijli
[1 + (6mnlm) + 2Cmnlmln]

expanding for the case of l':

11= (1 + 611)11 +'61212
[1 + (ell, + 612 1, + 62112 + 622 12) + 2(6l1112 + 612 11 12 + 6211211 + 622 122)]1/2

It is worth noting at this point that 6,2 = 621 = 0. Furthermore, as we are restricting ourselves to the two-dimensional case,
any cross product between el, and 622 has no meaning, and so is also set to zero. Continuing with the expansion, then:

(1 + 61)l11
I(1+ ell2 112 + 622 122 + 261,l12 + 2622122)1/2

Now, 1, = cos6, 12 = sin6, and 1,' = cos6', so:

1i = cost' = (1 + ell)cosO
(1 + ell2Cos26 + 62225sin26t + 26,,cos269 + 2,622sin219)1/2
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By Pythagoras:

1 = cos26 + sin26.

So:

=1 co6cos os6+si2 (1 + ell) Cosa
= =(C2H + sin2l + e112cos29 + e222sin26 + 2e11cos29 + 2e22sin2)1/2

Collecting like terms:

=Cosa/ (1 + ell)cos6
(ell2cos26 + 2e6 cos20 + cos26 + C222sin26 + 2e22sin26 + sin29)1/2

and factoring the denominator leaves:

cos,9' = ( +ell)cos6 A4
1l'= 8°s'= [(1 + el )2cos2O + (1 + 22)2sin2] /2(A4)

By a similar argument:

1/=sin6' = (1 + e22)sinO (AS)
[(1 + el )2cos26 + (1 + e22)2sin2l/2]A5

The strain acting on the fibres is modified by these direction cosines according to Aspden's (1986) eqn (2.14):

ef = Ciljjil- (ii' - i).
Expanding the summations and substituting from (A4) and (A5) yields:

ef = elcos6 cos6' + 612sinO cos6' + e21cosO sin6' + e22sinO sin6' - cos6 '(cos6' -cosa) - sinG '(sinO' - sin@).

Once again, all off diagonal components are zero, so:

Cf = elcosG cos6' + 622sinG sinG' -COSG2 + cosG'cosG - sinG2 + sinG'sinG,
Cf = elcosG cosG' + 622sinG sin' - (cos22G' + sin2G') + cosG 'cosG + sinG 'sinG,

and

ef = elcosGcosG' + 622sinGsinG' + cos(G'- 6) - 1. (A6)

Combining eqns (A3) and (A5) with (Al a):

A VfEf [ Aefexp{[-(Gj - O)2]/[2S(e)]} [(1 + 622)sinG ]W] (A7)
S(e)v2 Jo [(1 + 611)2COS82 + (1 + 622)2sinn2 A]

It is at this point that this development deviates from Aspden's (1986) formulations. In his development of the many-fibre
system, in order to preserve generality over systems that do not display linear deformation behaviour, his eqn (3.9) defines
the true strain increment as:

n-I

Aef = an II (1 + 8X).
i=1

In such a non-linear system, the above product takes account of strain that may already be present in the tissue. Since the
microfibrils have demonstrated linear deformation behaviour, each strain increment will deform those microfibrils parallel to
a tangent to the vessel wall by the same amount as the last strain increment, or the next. There is no need to take account of
any strain that-may already be present in the tissue, except in the angular distribution function. That is, the deformation of
the fibres is incremental, while the change in the angular distribution function is cumulative. This was accomplished by
calculating:

61 = A1ell= II,n
- eln-C

62 = AC22 = e22,n -622,n-l
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for the purposes of eqn (A7), while feeding £22,n to the angular distribution function. Thus, eqn (A7) becomes, in expanded
form:

= VfEf [61cos6 cosO / exp{[-(Oj - O)2]/[2S2(e)]} [(1 + £2) sin6]2 de
S(c)V/271T Uo (1 + 61)2COS2O + (1 + e2)2sin2O

+ V c2sin6 sinO 'exp{[-(6j - 6) ]/[2S2(e)]} [(1 + 62) sino]2
Jo (1 + e1)2cos2O + (1 + e )2sin20d

VcosO cosO'expff-(Oj - )2]/[2S2(e)]} [(1 + 62) sino]2
+J (I + ,e)2cos20 + (1 + e2)2sin2 d

f sin0sinO'exp{[-(Oi - O)2]/[2S2(e)]} [(1 + 62) sino]2
- (I + 61)2cos2O + (1 + £2)2sin2O

f exp{[-(Oi - 6)2]/[2S2(6)]} [(1 + 62)sinO]2 d
-J (1 + e )2cos2O + (1 + e )2sin2O

Substituting for cosO' and sinO' gives:

= VfEf (f 61(1 + 61)(1 + 2)2sin20 cos2Oexp{[-(Oi- O) ]/[2S2(6)]} dOSA£)V22r U0 [(1 + 6£)2 CoS2O + (1 + £2)2 sin29]3/2

[r 2(1 + £2)3sin40 exp{[-(O9j - d]/[2O2(6)]d
Jo [(1 + £1)2cos20 + (1 + C2)2sin2O]3/2

.9 (1 + £1)(1 + £2)2sin2O cos2Oexp{[-(Oi-t)2]/[2S2(6)]}
Jo [(1 + £1)2coS2t0 + (1 + £2)25in20]3/2 dO

Y (1 + 62)3sin46exp{[-(Oi - )2 ]/[2S2('e)]}
J0 [( 92o2 + (I e202i2]3/2 da

+ (1 + 62)2sin20 exp{[-(Oi - 6)2]/[2S2(6)]} do). (A8)
Jo (1 + £1)2cos2t0 + (1 + 62)2sin2O

The final items of consideration in this development are the limits of integration. Certainly, it is valid to integrate the above
equation over the maximum allowable range of angles. It is not, however, necessary to do so. The entire purpose of this model
is to account for the reorientation of supporting members, microfibrils in this case, as the material as a whole comes under
strain. It follows, then, that only the contribution of those members that are sufficiently aligned with the stress vector for
that increment being calculated to play a significant role should be included in that stress increment. A member that is nearly
perpendicular to the stress vector is not going to make a significant contribution to the increment. It is shown by Aspden's
(1986) eqn (2.14) that only members lying in the range of angles 0 < 0 0Omax play a role in supporting tension, where
(adapted to the two dimensional case from Aspden's (1986) eqn (4.1)):

Omax = (l 1- (1 + 611)2 )1/2
I + 622) 2 (1 +£11)
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So eqn (A8) becomes:

VfEf '(Omax .I(' + 61)(1 + e2)2sin2O Cos2Oexp{[-(Oi-)2]/[2S2(e)]d
Act22 =S(e)V2r U0 [(1 + 61)2COS2O + (1 + e2)2sin2O]3/2 dO

+
emax 62(1 + 62)3sin4O exp{[-(Oi -)2]/[2S2(6)]d
JO [(1 + e1)2cos2O + (1 + e2)2sin2O]3/2 de

+Jmax (1 + 61)(1 + 62)2sin2Ocos2Oexp{[-(O - &)2]/[2S2(e)]}
dO

Jo [(1 + e1)2cos20 + (1 + e2)2sin20]3/2

+
max (1 + 62)3sin4Oexp{[-(Oi-) ]/[2S2(e)]}

Jo [(1 + e1)2cos20 + (1 + 62)2sin20]3/2 da

+JOmax (1 + 62)2sin20 exp{[-(O# - )2]/[2S2(e)]} dO)
Jo (1 + e1)2cos2O + (1 + e2)2sin2/

which is eqn (8).
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