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Simple Summary: The treatment paradigm for metastatic colorectal cancer has significantly evolved
over the past two decades. Investigators have focused on molecular profiling of tumors and devel-
oping targeted therapies. In turn, several first-line targeted therapies have been approved for use
in metastatic colorectal cancer with a subsequent improvement in survival outcomes. Nevertheless,
durable response to therapy and long-term survival remains elusive for patients with metastatic
colorectal cancer. Continued development of new targeted therapies and investigation of combined
targeted therapies are needed.

Abstract: Metastatic colorectal cancer is a leading cause of cancer-related death across the world.
The treatment paradigm has shifted away from systemic chemotherapy alone to include targeted
therapy and immunotherapy. The past two decades have been characterized by increased inves-
tigation into molecular profiling of colorectal cancer. These molecular profiles help physicians to
better understand colorectal cancer biology among patients with metastatic disease. Additionally,
improved data on genetic pathways allow for specific therapies to be targeted at the underlying
molecular profile. Investigation of the EGFR, VEGF, HER2, and other pathways, as well as deficient
mismatch repair, has led to the development of multiple targeted therapies that are now utilized in
the National Comprehensive Cancer Network guidelines for colon and rectal cancer. While these new
therapies have contributed to improved survival for metastatic colorectal cancer, long-term survival
remains poor. Additional investigation to understand resistance to targeted therapy and develop-
ment of new targeted therapy is necessary. New therapies are under development and are being
tested in the preclinical and clinical settings. The aim of this review is to provide a comprehensive
evaluation of molecular profiling, currently available therapies, and ongoing obstacles in the field of
colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer in the United
States, with an estimated 152,810 cases expected in 2024 [1]. CRC is the second leading
cause of cancer-related death, with 53,010 new deaths expected in 2024. The incidence
and mortality of CRC have decreased over the past decade with increased screening [2–4].
Nevertheless, 25–50% of patients will present with or develop liver metastasis during the
course of their disease [5,6]. Approximately 13–25% of patients will develop metachronous
liver metastasis after curative-intent resection of the primary tumor. The median survival
for patients with metastatic CRC (mCRC) is 32–40 months [7,8]. The expected 5-year
survival is 35–65% [9].

Over the past decade, treatment for colorectal liver metastasis has greatly improved.
Treatment options include resection, liver-directed therapies, targeted therapy, immunother-
apy, and systemic chemotherapy. The optimal approach to treatment requires a multidisci-
plinary team that involves surgeons, medical oncologists, radiation oncologists, diagnostic
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radiology, and interventional radiology [10]. Previous data suggest that a multidisciplinary
team can improve survival for patients with mCRC [11,12]. Current efforts to improve
survival for mCRC are focused on personalized approaches with targeted therapies toward
genetic mutations [13]. This review focuses on currently approved targeted therapies for
colorectal liver metastasis (CRLM), ongoing obstacles in treatment, and future directions.

2. Methods

A review of the literature was performed using medline/PubMed. The search terms
“colorectal cancer”, “targeted therapies”, “personalized medicine”, “immunotherapy”, and
“colorectal liver metastasis” were used. The search ended on 25 September 2024. P.W.U.
performed the initial literature review, and the final selection was made by T.M.P. The
selection criteria focused on clinical trials leading to currently approved therapies for
CRLM, promising new therapies, and other potential targetable mutations.

3. Genomic and Molecular Profiling in Colorectal Cancer

Systemic chemotherapy was the mainstay of treatment for mCRC, but genetic profiling
has identified several pathways in the pathogenesis of CRC with actionable targets. Current
U.S. Food and Drug Administration (FDA)-approved targeted therapies involve the epider-
mal growth factor receptor (EGFR), Vascular Endothelial Growth Factor (VEGF), HER2,
and tyrosine receptor kinase fusion pathways [14]. Additionally, checkpoint inhibition
is effective, and immunotherapy is approved for patients with microsatellite instability.
Table 1 displays the targetable pathways, prevalence, and available therapies for patients
with mCRC. With currently available therapies, multidisciplinary teams treating patients
with mCRC require rapid information on RAS mutations, BRAFV600 mutations, and
microsatellite instability [15]. The National Comprehensive Cancer Network (NCCN)
guidelines recommend testing for KRAS/NRAS and BRAF mutations, HER2 amplification,
and microsatellite instability. While genetic alterations may be tested individually, NCCN
guidelines recommend Next Generation Sequencing (NGS) that can find additional, rarer
mutations. The genetic profiles of primary tumors and metastatic lesions are generally
similar [16,17]. Overall, targeted therapies are ineffective when there are downstream
mutations from the target. Therefore, these genomic and molecular variants are critical to
determine optimal therapy for patients with mCRC.

An international consortium defined four different consensus molecular subtypes
(CMS) to classify CRC [18]. The molecular subtypes are displayed in Table 2. These
subtypes offer opportunities for classification and targeted therapy. Germline mutations
exist in about 6–10% of patients with CRC [19,20]. Lynch syndrome pathogenic variants
(MLH1, MSH2, MSH6, and PMS2) are the most common. Other high penetrance mutations
include APC, biallelic MUTYH, BRCA1/2, PALB2, CDKN2A, and TP53 [20]. NCCN guide-
lines recommend genetic testing for anyone with a personal or family history of a known
pathogenic variant, personal or family history of >10 adenomatous polyps ≥2 hamar-
tomatous polyps, or ≥5 serrated polyps proximal, personal or family history of Lynch
syndrome-related cancer.

Table 1. Targetable pathways in colorectal cancer.

Target Mutation Prevalence Therapy

EGFR N/A Cetuximab
Panitumumab

BRAF V600E 8–12% Encorafenib (with binimetinib)

RAS 50% Sotorasib
Adagrasib
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Table 1. Cont.

Target Mutation Prevalence Therapy

VEGF N/A

Bevacizumab
Aflibercept

Ramucirumab
Regorafenib
Fruquitinib

HER2 3–5%

Trastuzumab
Pertuzumab

Lapatinib
Tucatinib

Trastuzumab deruxtecan

NTRK 0.7%
Entrectinib

Larotrectinib
Repotrectinib

RET 0.2% Selpercatinib

MSI-H/dMMR 15%
Pembrolizumab

Nivolumab
Ipilimumab

Table 2. Consensus molecular subtypes of colorectal cancer.

Subtype Prevalence Features

CMS1 (Microsatellite
instability immune) 14%

Hypermutated
Microsatellite unstable

Strong immune activation

CMS2 (Canonical) 37% Epithelial
WNT and MYC signaling activation

CMS3 (Metabolic) 13% Epithelial
Metabolic dysregulation

CMS4 (Mesenchymal) 23%
TGF-β activation
Stromal invasion

Angiogenesis

4. Epidermal Growth Factor Pathway Signaling Inhibitors

The epidermal growth factor receptor (EGFR) is a transmembrane receptor in a family
of four receptor tyrosine kinases. After ligand binding, the receptor forms a dimer that
activates the downstream intracellular pathway, including RAS, RAF, MEK, and ERK. This
downstream signaling leads to cell proliferation. Figure 1 displays the EGFR pathway. The
EGFR pathway has been implicated in the carcinogenesis of multiple cancers, including
lung, colorectal, squamous cell carcinoma of the head and neck, and pancreatic cancer [21].
Multiple targeted therapies have been developed and approved by the FDA for use in CRC.
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Figure 1. The EGFR pathway and downstream targets for therapy. Figure adapted from Berg et al. 
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The EPIC trial was a multicenter, phase III, randomized controlled trial (RCT) that re-
ported improved progression-free survival (PFS) and objective response rate (ORR) 
among patients treated with cetuximab and irinotecan compared with irinotecan alone 
as second-line therapy [24]. Patients treated with cexutimab and irinotecan experienced 
4.0 versus 2.6 months median PFS. 

Further research has demonstrated that the benefits of cetuximab therapy were con-
fined to patients who had KRAS wild-type (wt) CRC [25–27]. RAS is activated by EGFR, 
which would explain the poor response to EGFR therapy in KRAS mutant CRC. The 
CRYSTAL study confirmed the value of cetuximab among patients with KRAS wt tu-
mors who were treated with cetuximab plus FOLFIRI versus FOLFIRI alone [28]. This 
study also noted that BRAF mutation was an independent predictor of poor prognosis. 
As shown in Figure 1, BRAF is a downstream protein from EGFR and KRAS. The TAI-
LOR trial, a multicenter, phase III RCT, investigated cetuximab plus FOLFOX-4 versus 
FOLFOX-4 alone as a first-line therapy for RAS (KRAS and NRAS) wt tumors [29]. The 
investigators reported that the addition of cetuximab to FOLFOX-4 significantly im-

Figure 1. The EGFR pathway and downstream targets for therapy. Figure adapted from Berg et al. [22].

4.1. EGFR Targeted Therapy

Cetuximab was the first FDA-approved targeted therapy for use in mCRC in 2004.
Cetuximab approval came after the results of the BOND trial [23]. In this trial, patients
who had disease progression on irinotecan-based regimens were randomly assigned to
cetuximab monotherapy versus cetuximab and irinotecan. Patients in the combination
therapy group experienced improved progression-free survival (4.1 versus 1.5 months).
The EPIC trial was a multicenter, phase III, randomized controlled trial (RCT) that reported
improved progression-free survival (PFS) and objective response rate (ORR) among patients
treated with cetuximab and irinotecan compared with irinotecan alone as second-line ther-
apy [24]. Patients treated with cexutimab and irinotecan experienced 4.0 versus 2.6 months
median PFS.

Further research has demonstrated that the benefits of cetuximab therapy were con-
fined to patients who had KRAS wild-type (wt) CRC [25–27]. RAS is activated by EGFR,
which would explain the poor response to EGFR therapy in KRAS mutant CRC. The CRYS-
TAL study confirmed the value of cetuximab among patients with KRAS wt tumors who
were treated with cetuximab plus FOLFIRI versus FOLFIRI alone [28]. This study also
noted that BRAF mutation was an independent predictor of poor prognosis. As shown
in Figure 1, BRAF is a downstream protein from EGFR and KRAS. The TAILOR trial, a
multicenter, phase III RCT, investigated cetuximab plus FOLFOX-4 versus FOLFOX-4 alone
as a first-line therapy for RAS (KRAS and NRAS) wt tumors [29]. The investigators reported
that the addition of cetuximab to FOLFOX-4 significantly improved survival. This study
led to NCCN guidelines recommending cetuximab in addition to systemic chemotherapy
as first-line therapy for RAS wt tumors.
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Cetuximab has been studied in the perioperative setting for patients with resectable
mCRC. A recent multicenter, phase III RCT examined the use of systemic chemotherapy with
or without cetuximab before and after liver resection [30]. In this patient population, there
was a significant decrease in median OS for patients in the cetuximab group from 81.0 months
to 55.4 months. Cetuximab, therefore, should be avoided in the perioperative setting.

Panitumumab, another EGFR antagonist, is a human monoclonal antibody that re-
ceived FDA approval in 2007. Similar to cetuximab, initial trials noted benefits in PFS for
patients with treatment-refractory mCRC [31]. A multicenter RCT in Belgium noted that
panitumumab plus FOLFIRI was superior to FOLFIRI alone as second-line therapy for
mCRC with RAS wt in PFS (6.4 versus 3.7 months) [32]. The PRIME trial, a multinational,
multicenter phase III RCT, evaluated the efficacy of FOLFOX-4 with or without panitu-
mumab [33]. Panitumumab with FOLFOX-4 had superior PFS (10.0 versus 8.6 months,
p = 0.01). The ASPECCT and WJOG 6510G trials both demonstrated non-inferiority of
panitumumab compared with cetuximab when combined with systemic therapy for KRAS
wt mCRC [34,35].

The colon has different embryologic origins. The left side of the colon is derived as
part of the hindgut with arterial supply from the inferior mesenteric artery, and the right
side of the colon is derived as part of the midgut with arterial supply from the superior
mesenteric artery. Multiple studies have noted that targeting EGFR has a significant effect
in improving PFS in left-, but not right-, sided mCRC [36,37]. This observation has led to
NCCN guideline recommendations for panitumumab or cetuximab plus systemic therapy
in patients with RAS wt left-sided mCRC.

4.2. RAS

RAS is a family of proteins in the EGFR pathway. RAS is a GTPase involved in cellular
signal transduction. When activated, RAS promotes cell growth, differentiation, and
survival. RAS variants have been implicated in many cancers [38]. KRAS mutations can be
present in greater than 50% of CRC [39]. Multiple agents have been developed to target
KRAS, and two have been approved for clinical use [40]. Sotorasib was developed to inhibit
KRAS G12C, which is present in about 4% of CRC [39]. Initial trials investigating sotorasib
monotherapy for patients with KRAS G12C mutations, including the CodeBreaK100 trial,
demonstrated minimal efficacy [41]. A recent trial published in the New England Journal of
Medicine evaluated sotorasib in chemorefractory mCRC [42]. The 3 arms of the multicenter
phase III RCT were sotorasib 960 mg daily plus panitumumab, sotorasib 240 mg daily
plus panitumumab, or the investigator’s choice of trifluridine-tipiracil or regorafenib. The
investigators reported improved PFS of 5.6 months, 3.9 months, and 2.2 months in the high-
dose sotorasib, low-dose sotorasib, and standard-care groups, respectively. The CodeBreaK
301 trial is underway, which is investigating sotorasib and panitumumab with FOLFIRI as
first-line therapy in KRAS G12C mutant mCRC [43].

Adagrasib is another inhibitor developed to target mutant KRAS G12C protein. A
phase I–II clinical trial, KRYSTAL-1, investigated adagrasib monotherapy versus adagrasib
with cetuximab in chemorefractory mCRC [44]. The monotherapy group had a PFS of
5.6 months compared with 6.9 months in the combination therapy group. The results of
this trial led to FDA approval of adagrasib in combination with cetuximab for patients with
mutant KRAS G12C previously treated with systemic chemotherapy. Current NCCN guide-
lines recommend either sotorasib or adagrasib plus cetuximab or panitumumab for mutant
KRAS G12C mCRC for patients previously treated with systemic FOLFOX/CAPEOX.

4.3. BRAF/MEK

BRAF is a proto-oncogene that encodes the B-RAF protein downstream from EGFR. It
is a growth signal transduction protein that regulates the MAPK pathway and is involved
in cell growth and division. Approximately 8–12% of patients with mCRC have a BRAF
V600E mutation [45]. Encorafenib was initially investigated as a selective inhibitor of RAF
kinase with clinical applicability in melanoma [46]. Approximately 8–12% of patients with
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mCRC have a BRAF V600E mutation [45]. This finding led investigators to study the use of
encorafenib in mCRC. Investigators evaluated combination-targeted therapies in an effort
to improve response to therapy and overcome the development of drug resistance [47].
MEK is another protein kinase in the MAPK pathway that is involved in cell growth and
division. Binimetinib was developed as an inhibitor of MEK [48].

The BEACON trial was a multinational, multicenter, phase III RCT that investigated
the use of encorafenib and binimetinib in patients with mCRC and BRAF V600E mutations
previously treated with standard chemotherapy [49]. BRAF V600E mutations were con-
firmed by a central laboratory as part of molecular prescreening. The trial enrolled patients
into three arms: encorafenib, binimetinib, and cetuximab; encorafenib and cetuximab;
or investigator choice of cetuximab and systemic chemotherapy (irinotecan or FOLFIRI).
An updated analysis of this trial demonstrated improved overall survival (OS), objective
response rate (ORR), and PFS of the encorafenib and cetuximab groups compared with
the control group [50]. The addition of binimetinib to encorafenib and cetuximab did not
improve OS versus encorafenib and cetuximab. This may be due to the rarity of MEK
mutations (1%) [51]. Therefore, the most recent NCCN guidelines recommend encorafenib
plus cetuximab for second-line treatment in mCRC.

5. Vascular Endothelial Growth Factor Inhibitors

The vascular endothelial growth factor (VEGF) pathway is another successfully tar-
geted pathway for mCRC. Figure 2 displays the VEGF pathway. VEGF is a protein produced
by a variety of cells to stimulate angiogenesis [52]. When functioning normally, hypoxic
conditions cause the release of VEGF, which then helps to create new blood vessels. Cancers
that express VEGF can develop new blood supply to help tumors grow and metastasize.
Investigators have developed several therapies to target VEGF and inhibit tumor growth.
VEGF inhibition alone is not cytotoxic to tumor cells. VEGF inhibitors are felt to be
chemosensitizers to promote tumor cell death [53]. VEGF inhibition is also studied with
immunotherapy, which is discussed further below.
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Bevacizumab is the first FDA-approved VEGF inhibitor for use in mCRC. It is a
humanized monoclonal antibody that inhibits VEGF-A isoforms. It was studied as first-line
therapy in a multicenter RCT [55]. Patients were randomized to irinotecan, fluoruracil,
and leucovorin with or without bevacizumab. Median survival was 20.3 months in the
bevacizumab group compared with 15.6 months in the control group. PFS was 10.6 versus
6.2 months in the bevacizumab and control groups, respectively. A 2 × 2 RCT was then
performed comparing XELOX versus FOLFOX-4 with bevacizumab or placebo as first-
line therapy for mCRC [56]. The investigators noted that the addition of bevacizumab to
either oxaliplatin-based regimen improved median PFS from 8.0 months to 9.4 months
and median OS from 19.9 months to 21.3 months. Another multicenter, phase III RCT
investigated FOLFOX-4 with and without bevacizumab for patients previously treated
with CRC with fluoropyrimidine and irinotecan [57]. The study investigators noted a
median survival of 12.9 versus 10.8 months in the FOLFOX-4 plus bevacizumab versus the
FOLFOX-4 alone group.

The utility of bevacizumab has been studied in several other settings. The ML18147 trial
studied continuing bevacizumab in second-line therapy after progression with first-line
chemotherapy, including bevacizumab [58]. The results of the multicenter, phase III RCT
found that maintenance of bevacizumab with second-line therapy improved OS compared
to second-line therapy without bevacizumab. The CAIRO3 study examined the mainte-
nance of bevacizumab and capecitabine for patients previously treated with six cycles of
CAPEOX and bevacizumab [59]. The results of this multicenter RCT noted that PFS was
improved in the maintenance bevacizumab/capecitabine group compared with observa-
tion. Bevacizumab has also been studied as adjuvant therapy for patients with resected
stage III CRC in the S-AVANT trial [60]. This phase III RCT reported no benefit to adjuvant
bevacizumab after curative resection.

Several other VEGF inhibitors have been studied more recently. Aflibercept is consid-
ered a “VEGF trap” as it binds to circulating VEGF. Aflibercept was studied in the phase
II AFFIRM trial [61]. Patients were randomized to mFOLFOX-6 with or without afliber-
cept. The trial noted no difference in PFS and higher levels of toxicity. Ramucirumab is a
humanized monoclonal antibody that targets VEGF Receptor-2 (VEGFR-2). Ramucirumab
was studied in the multicenter, phase III RAISE trial as second-line therapy [62]. Patients
with progression of mCRC were randomized to FOLFIRI with or without ramucirumab.
Median OS was improved at 13.3 months in the ramucirumab group versus 11.7 months in
the control group.

Regorafenib was developed as a multikinase inhibitor that exhibits effects on VEGFR,
platelet-derived growth factor receptor, fibroblast growth factor receptor, and BRAF [63]. Its
use in colon cancer has been studied in multiple trials with mixed results. The CORRECT
trial was a multicenter, phase III RCT comparing regorafenib to best supportive care in
patients with mCRC refractory to standard treatment [64]. Patients treated with Regorafenib
had 6.5 months median OS versus 5.0 months in the placebo group. The CONCUR trial was
a similar multicenter, phase 3 trial in Asian patients comparing regorafenib to placebo [65].
This trial supported the CORRECT trial findings with a median OS of 8.8 months versus
6.3 months in the placebo group. Regorafenib was studied as first-line therapy in a
multicenter, phase II RCT [66]. The trial compared mFOLFOX-6 with regorafenib to the
historical control of FOLFOX-6 alone. Unfortunately, the addition of regorafenib did not
improve OS.

Fruquintinib is another kinase inhibitor that inhibits VEGF-induced phosphorylation
of the VEGFR. Fruquintinib was studied in mCRC in the FRESCO and FRESCO-2 trials.
The FRESCO trial compared Fruquintinib versus placebo as third-line therapy in patients
with mCRC [67]. The trial was a multicenter, phase III RCT in China. Patients treated
with fruquintinib had a median OS of 9.3 versus 6.6 months in the placebo group. The
FRESCO-2 trial further supported these findings [68]. The multicenter, phase III RCT
compared fruquintinib to placebo in Japanese patients with mCRC. The median OS was
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7.4 versus 4.8 months in the fruquintinib and control groups, respectively. Fruquintinib
received FDA approval for treatment of refractory mCRC in 2023.

Taken together, these therapies and trials demonstrate VEGF as a viable target for
therapy. NCCN guidelines recommend the use of bevacizumab with FOLFOX or CAPEOX
for mCRC. Aflibercept and ramucirumab have indications for mCRC as second-line ther-
apy. Fruquintinib and regorafenib are reserved for treatment refractory mCRC that has
progressed through multiple lines of therapy.

6. HER2 Inhibitors

Human epidermal growth factor receptor-2 (HER2), also known as ERRB-2, is similar
to EGFR as it is part of the ERBB family of proteins (Figure 3). ERRB-2 has similar down-
stream pathways involving RAS/RAF/MEK. Inhibition of HER2 has been well studied in
breast cancer, in which HER2 overexpression is noted in about 20% of cases [69]. In CRC,
HER2 overexpression is only present in about 3–5% of cases [70]. Nevertheless, many of
the same treatments used in breast cancer can be used to target mCRC.
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Trastuzumab has long been approved for use in HER2-positive breast cancer. Trastuzumab
is a monoclonal antibody that binds to the HER2 receptor and inhibits cellular proliferation.
Trastuzumab was studied in combination with pertuzumab, another HER2 inhibitor, in
the phase II MyPathway trial [72]. The trial demonstrated an ORR of 32% in previously
treated patients with mCRC. The TAPUR study was a similar phase II trial that studied
trastuzumab in combination with pertuzumab and noted an ORR of 25% [73]. Trastuzumab
has also been studied in combination with lapatinib. Lapatinib is a tyrosine kinase inhibitor
that targets both HER2 and EGFR. Together, pertuzumab and lapatinib were studied in the
HERACLES trial [74]. This multicenter, phase II trial reported a 30% ORR with good overall
tolerance. The combination of trastuzumab and tucatinib, another HER2 inhibitor, was
studied in the phase II MOUNTAINEER trial for patients with chemorefractory mCRC [75].
Of the 84 patients receiving the combination, 38.1% had an objective response.
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Trastuzumab deruxtecan (T-DXd) was developed as a HER2 inhibitor and topoiso-
merase inhibitor. It was initially studied in the phase II DESTINY-CRC01 trial [76]. The
trial investigated T-DXd in patients with chemorefractory HER2+ KRAS wt mCRC to at
least 2 previous regimens. The trial reported an ORR of 45.3% with PFS of 6.9 months and
OS of 15.5 months. The DESTINY-CRC02 trial included both KRAS wt and mutant disease
for individuals with previously treated mCRC [77]. The investigators reported an ORR of
37.8% in the 5.4 mg/kg group regardless of KRAS status. The results of these trials led to
NCCN guideline recommendations for Trastuzumab with either pertuzumab, lapatinib, or
tucatinib for KRAS wt mCRC previously treated with FOLFOX/CAPEOX or T-DXd alone
for KRAS wt or mutant mCRC previously treated with FOLFOX/CAPEOX.

7. Neurotrophic Receptor Tyrosine Kinase Fusion

Neurotrophic receptor tyrosine kinases (NTRK) are a family of genes that encode
tropomyosin receptor kinases (TRK). These protein receptors are involved in neural cell
development. NTRK gene fusions lead to TRK fusion proteins with activation of the
downstream pathways leading to oncogenesis [78]. These gene fusions are extremely rare
and represent only about 0.7% of CRC [79]. Nevertheless, when identified, they represent a
target for FDA-approved therapy.

Entrectinib is a selective tyrosine kinase inhibitor used in the treatment of NTRK
fusion-positive solid tumors. Due to the rarity of NTRK tumors, its efficacy has been
studied in clinical trials of multiple solid organ tumor types. The results of three clinical
trials (ALKA-372-001, STARTRK-1, and STARTRK-2) were published together [80]. Of the
54 patients in the studies, only 4 (7%) were treated for mCRC. Of the 54 patients, 31 (57%)
experienced an objective response (OR), and 4 (7%) experienced a complete response (CR).
Larotrectinib is a tropomyosin kinase receptor inhibitor developed to target NTRK fusion-
positive tumors. Similar to entrectinib, its use was studied in three clinical trials with a
small number of patients in multiple solid tumor types [81]. In this study, 4/55 (7%) were
treated for CRC. The ORR was 75%. Among patients with a response, 71% had an ongoing
response at one year. Repotrectinib is the third FDA-approved tropomyosin kinase receptor
inhibitor. Repotrectinib use was studied in the TRIDENT-1 study [82]. The results of this
trial were reported in patients with non-small cell lung cancer and NTRK fusion-positive
tumors. Most patients had been previously treated with a different TRK inhibitor. The
investigators observed a 79% ORR and a median duration of response of 34.1 months.
The NCCN guidelines recommend the use of entrectinib, larotrectinib, or repotrectinib for
patients with mCRC and NTRK fusion-positive tumors.

8. RET Fusion

RET proto-oncogene encodes a cell surface receptor tyrosine kinase long known to be
involved in tumorigenesis. Selpercatinib was developed as a tyrosine kinase inhibitor to tar-
get RET fusion-positive tumors. Approximately 0.2% of CRCs are RET fusion-positive [83].
It was studied in the LIBRETTO-001 trial [84]. The reported results included 45 patients
with RET fusion-positive tumors, of which 10 (22%) had mCRC. The ORR was 43.9%, and
there was a 13.2 month PFS. NCCN guidelines recommend the use of selpercatinib for
patients with RET fusion-positive CRC.

9. Deficient Mismatch Repair and Immunotherapy

Immunotherapy represents another breakthrough in personalized approaches to care
for patients with mCRC. Several therapies have come onto the market for patients with
deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H) CRC. Check-
point inhibition initially demonstrated promise in melanoma [85]. It has since been studied
in many different malignancies, including CRC [86]. The most promising results of im-
munotherapy in mCRC have been with checkpoint inhibition for patients with dMMR/MSI-
H CRC. Approximately 15% of all CRCs are dMMR/MSI-H, but the prevalence falls to
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about 7% in mCRC [87]. Multiple checkpoint inhibitors have demonstrated promising
results for these patients.

Pembrolizumab is a humanized, monoclonal antibody and is a PD-1 inhibitor. It
was initially studied in a phase II clinical trial for patients with mCRC [88]. Patients
with dMMR/MSI-H and proficient mismatch repair (pMMR). The ORR was 40% for
patients with dMMR/MSI-H and 0% for patients with pMMR. A subsequent multicenter,
phase II trial evaluated pembrolizumab in patients with chemorefractory dMMR/MSI-H
mCRC [89]. The ORR was 33%. The median duration of response in patients treated
with ≥1 prior line of therapy was 4.1 months. A multicenter, phase III RCT (KEYNOTE-
177) evaluated pembrolizumab versus chemotherapy with or without bevacizumab or
cetuximab for dMMR/MSI-H mCRC [90]. The results of this trial noted improved PFS
in the pembrolizumab group compared with the chemotherapy group at 16.5 versus
8.2 months, respectively. The ORR was also improved at 43.8% versus 33.1%. An updated
analysis reported that the median overall survival was not reached in the pembrolizumab
group versus 36.7 months in the chemotherapy group [91]. This finding was not considered
statistically significant with p = 0.036 due to a prespecified α of 0.025. There was, however,
significantly improved PFS and fewer treatment-related adverse events.

Nivolumab is another humanized monoclonal antibody that targets PD-1. Initial
trials evaluated the use of nivolumab as single-agent therapy [92]. Subsequent studies
evaluated dual checkpoint inhibition with nivolumab and ipilimumab with more promising
results [93]. Ipilimumab is a monoclonal antibody that targets CTLA-4. The combination
was tested in the phase II CheckMate-142 trial in patients with dMMR/MSI-H mCRC with
no prior treatment [94]. There was a 69% ORR, and median PFS and OS were not reached
at the 24-month median follow-up. There were 13% of patients with a complete response.
The phase III CheckMate 8HW study testing nivolumab/ipilimumab versus chemotherapy
in the first-line setting is ongoing. The results of these trials have led to NCCN guideline
recommendations for immunotherapy with checkpoint inhibition (ipilimumab/nivolumab
or pembrolizumab) as first-line therapy for dMMR/MSI-H metastatic colorectal cancer.

Immunotherapy has been studied in combination with other therapies. Immunother-
apy may be synergistic with anti-angiogenic therapy and immune checkpoint inhibition [95].
Preclinical studies have evaluated the relationship between angiogenesis and immune cell
infiltration into the tumor microenvironment. These findings have led investigators to
study immunotherapy in combination with VEGF inhibition in both patients with dMMR
and pMMR. The multicenter, phase II AtezoTRIBE trial randomized patients with mCRC
to FOLFOXIRI plus bevacizumab with or without atezolizumab [96]. The atezolizumab
group experienced improved PFS at 13.1 versus 11.5 months with similar toxicity levels.
The updated results of this trial demonstrated an improvement in OS in the atezolizumab
group at 33.0 and 27.2 months [97]. Another multicenter, phase II trial evaluated the use of
XELOX plus bevacizumab with or without adoptive cell immunotherapy for patients with
mCRC [98]. The adoptive cell immunotherapy group had improved PFS at 14.8 versus
9.9 months.

10. Ongoing Challenges and Future Directions

Despite a growing number of targeted therapies available for mCRC, the prognosis for
patients with stage IV CRC remains poor [6]. Complete and/or durable responses to ther-
apy are rare [99,100]. Patients with metastasis to the liver tend to have a worse prognosis
than metastasis to other sites [101]. When targeting the EGFR pathway, downstream KRAS,
NRSA, BRAF, and PIK3CA mutations decrease the response rate to therapy [102,103]. Simi-
larly, anti-HER2 resistance can develop from downstream PIK3CA [104]. Efforts to target
PIK3CA have not been fruitful [105]. Nevertheless, tumors with PIK3CA mutations are
dependent on glutamine, and efforts to treat these patients with glutaminase inhibitors are
underway [106]. Checkpoint kinase (CHK) is another promising target in the early stages
of investigation and has demonstrated promise in preclinical studies, regardless of KRAS
status, with early-phase clinical trials underway [107,108]. Fibrocytes and receptor tyrosine
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kinase c-Met have been implicated in the resistance to VEGF inhibitors, which represents
another potentially actionable target [109,110]. Efforts to improve treatment response to
immunotherapy in microsatellite stable colon cancer are also under investigation [111].

Strategies to overcome resistance to currently available regimens involve novel tar-
geted drugs, multi-targeted therapies, and combination with immunotherapy. Scientists are
discovering new pathways involved in tumorigenesis and resistance to targeted therapy,
which offer new options for treatment. The evolution of the Consensus Molecular Subtype
discussed above offers the potential to better understand individual tumor biology and de-
termine the best treatment [112]. Another area of investigation is chimeric antigen receptor
(CAR) T-cells. CAR T-cells are modified to recognize a tumor-specific antigen. While the
use of CAR T-cells has promising results in hematological malignancies, no clinical trials
have demonstrated efficacy in treating mCRC [113]. Cancer vaccines are also in early inves-
tigation, but clinical trial data are lacking [114]. The rising cost of cancer therapies presents
a significant challenge to the field for all current treatments under investigation [115].

11. Conclusions

Molecular profiling of colorectal tumors is now the standard in CRC. Significant
achievements have been made in investigating and developing targeted therapies for
certain molecular profiles. Current therapy is more personalized than ever before. The
EGFR, VEGF, HER2, and other pathways summarized above only scratch the surface
of future therapeutic potential. Metastatic colorectal cancer continues to carry a poor
prognosis. Continued investigation into new targets and new combinations of therapy is
necessary to improve survival for these patients.
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