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Abstract: Bladder cancer (BLAC) is a malignant tumor with high morbidity and mortality. The estab-
lishment of a prognostic model for BLAC is of great significance for clinical prognosis prediction and
treatment guidance. Lactylation modification is a newly discovered post-transcriptional modification
of proteins, which is closely related to the occurrence and development of tumors. Multiple omics
data of BLAC were obtained from the GEO database and TCGA database. The Lasso algorithm was
used to establish a prognostic model related to lactylation modification, and its predictive ability was
tested with a validation cohort. Functional enrichment analysis, tumor microenvironment analysis,
and treatment response evaluation were performed on the high- and low-risk groups. Single-cell
and spatial transcriptome data were used to analyze the distribution characteristics of model genes
and their changes during epithelial carcinogenesis. A prognostic model consisting of 12 genes was
constructed. The survival rate of the high-risk group was significantly lower than that of the low-risk
group. The multiple ROC curve showed that the prediction efficiency of the model was higher than
that of the traditional clinical tumor grading. Functional enrichment analysis showed that glycolysis
and hypoxia pathways were significantly upregulated in the high-risk group. The high-risk group
was more sensitive to most first-line chemotherapy drugs, while the low-risk group had a better
response to immunotherapy. Single-cell sequencing analysis revealed the dynamic changes of model
genes during the transition of epithelial cells to squamous-differentiated cells. Spatial transcriptome
analysis showed the spatial distribution characteristics of the model genes. The lactylation-related
models have a satisfactory predictive ability and the potential to guide the clinical treatment of BLAC.
This model has significant biological implications at the single-cell level as well as at the spatial level.
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1. Introduction

Bladder cancer (BLAC) is the fourth most common malignant tumor worldwide [1].
This malignant disease is increasing at a rate of approximately 500,000 new cases and
200,000 deaths per year [2]. BLAC can be divided into muscle-invasive BLAC and non-
muscle-invasive BLAC. For the former group, the 5-year survival rate is less than 40%, and
nearly half of the patients will develop distant metastasis within 3 years after surgery [1,3,4].
Although the prognosis of non-muscle-invasive BLAC is relatively better, it is one of the
most costly tumors to treat, owing to the frequent need for cystoscopy and transurethral
resection of the bladder tumor (TURBt) [5]. Therefore, it is of great significance to study
the occurrence and development of BLAC and to predict the prognosis of patients and
guide treatment.

Lactylation modification is a novel post-translational modification of proteins. Zhang
et al. first discovered and described histone lactylation modifications in humans and mice
by using high-performance liquid chromatography (HPLC)–tandem mass spectrometry
(MS/MS), and since then, lactate has also been shown to play an important role in the
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field of epigenetics [6]. As research on this specific protein modification continues to
advance, lactylation modification has been demonstrated to play a decisive role in a
variety of key biological processes, such as biochemical pathways related to glycolysis [7],
neurodevelopmental processes [8], immunosuppression [9], tumor promotion [10], and
macrophage polarization [6,11].

In the tumor microenvironment, tumor cells metabolically reprogram the entire mi-
croenvironment through autocrine and paracrine mechanisms [12]. This metabolic repro-
gramming causes the entire tumor microenvironment to become locally hypoxic and lactate
rich, a phenomenon known as the Warburg effect [13]. Recently, increasing evidence has
shown that an increase in lactate level in the tumor microenvironment can directly lead
to an increase in intracellular protein lactylation level in the environment [14–17]. This
increased level of lactylation in turn regulates transcription, exacerbating the malignant
behavior of tumor cells [18,19]. On the other hand, the function of immune infiltrating cells
is inhibited [6,17,20]. In conclusion, the upregulation of protein lactylation modification is
often a favorable factor for the development and progression of tumor cells.

Most of the current studies have found that lysine 18 of histone H3 (H3K18) is exten-
sively modified in tumors. In BLAC, histone H3 lysine 18 lactylation (H3K18la) has been
shown to confer enhanced resistance to cisplatin in a cisplatin-resistant subpopulation of
epithelial cells [21]. Another study demonstrated that CircXRN2 could exert anti-tumor
effect by inhibiting H3K18la [10]. PFK-1 can also inhibit the progression of BLAC by sup-
pressing H3K18la [22]. In conclusion, lactylation modification plays a key role in BLAC.
However, a prognostic model for BLAC based on lactylation modification is not available.

In this study, we first established a novel prognostic model for BLAC based on the
lactylation modification-related genes by using the least absolute shrinkage and selection
operator (Lasso) algorithm. External data were introduced to validate the strong predictive
power of this prognostic model. Functional enrichment analysis showed that glycolysis
and hypoxia pathways were significantly upregulated in the high-risk group. In addition,
the differences in tumor microenvironment and treatment response between high- and
low-risk groups were carefully compared. Moreover, this study employed cutting-edge
transcriptomic methodologies, such as single-cell transcriptomics and spatial transcrip-
tomics, to delve deeper into the prognostic models. It is noteworthy that this paper revealed
the alterations of model genes as bladder cells progress from urothelial to squamous ep-
ithelial cancer at the single-cell level. Furthermore, spatial transcriptomic sequencing data
uncovered the spatial distribution characteristics of model genes. In conclusion, this study
established a new prognostic model based on lactylation modification, which is of great
significance for clinical diagnosis, prognosis evaluation and treatment guidance.

2. Material and Methods
2.1. Data Retrieval and Processing

The mRNA transcriptome profiles and corresponding clinical information for the
TCGA-BLAC project were retrieved from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/, accessed on 1 October 2023). Similarly, the data for
308 samples of the GSE32894 project were sourced from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 October 2023). Both
the TCGA-BLAC project and GSE32894 project datasets were integrated to form the training
cohort of the model. The external validation cohort was composed of the samples from
the GSE13507 project within the GEO database. Batch effects were corrected using the SVA
package in R. Single-cell sequencing data and spatial transcriptome data were obtained
from GSE135337 and GSE182211 projects of GEO database, respectively.

Seven lactylation-modified writing and erasing enzymes were reported in previously
published studies [6,23]. Wan et al. identified a series of lactylation modification sites
in human cell lines [24]. Based on the above findings, 332 genes related to lactylation
modification were obtained.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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2.2. Identifying Prognostic Lactylation-Related Genes

Transcriptome data were analyzed using the “limma” package. The guidelines for
the identification of DEGs are a false discovery rate (FDR) < 0.05 and |log2 FC| ≥ 1.25.
Differential gene expression heatmaps were produced using the “pheatmap” package.
Univariate cox analysis was used to analyze the transcriptome information and survival
information to obtain prognostic genes. A Venn diagram was generated using the “venn”
package. The “survival” package was used to generate the forest plot of genes related
to lactylation modification. The PPI network was constructed using the string website
(https://string-db.org/cgi/input.pl, accessed on 1 October 2023), and Cytoscape was used
to optimize the network picture.

2.3. Functional Enrichment Analysis

Using the R package “limma”, a Wilcoxon test was performed with a threshold
of FDR < 0.05 and |log2 FC| ≥ 1, in order to identify differentially expressed genes
between the two groups. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses were conducted utilizing the R packages
“clusterProfiler”, “org.Hs.eg.db”, “stringi” and “ggplot2” to annotate biological functions
and pathways significantly associated with the differentially expressed genes. Gene Set
Enrichment Analysis (GSEA) was carried out using the GSEA website (https://www.gsea-
msigdb.org/gsea/, accessed on 1 October 2023) to investigate the enrichment of pathways
such as glycolysis, among others.

2.4. Construction of Lactylation-Related Score Model

A gene model was developed leveraging the “glmnet” and “survival” R packages.
To pinpoint an appropriate collection of potential genes as prognostic biomarkers, Lasso
regression was applied. Lasso regression was chosen for its effectiveness in handling
high-dimensional data and its ability to perform variable selection, allowing us to identify
the most relevant genes while minimizing overfitting. This process involved generating the
most favorable penalty parameter λ to ascertain the weight coefficients for the genes within
a risk score equation. A risk score model was built using the training dataset as follows:

Riskscore =
N

∑
i=1

(exp × coe f )

N is the number of model genes; exp represents the expression value of the gene; coef is
the coefficient for each gene. Patients in the training set were divided into two groups, and
Kaplan–Meier analysis was performed to assess the difference in overall survival time (OS)
between the two groups. Kaplan–Meier analysis was selected because it provides a clear
and informative visual representation of survival probabilities over time, which is crucial
for understanding the prognostic implications of the identified genes. Receiver operating
characteristic (ROC) curves were generated using the R package (R 4.3.2) “timeROC” to
assess the sensitivity and specificity of the risk model. ROC analysis was employed
to evaluate the diagnostic accuracy of our risk score, helping to determine the optimal
threshold for patient stratification. An external validation cohort was used to validate
the model.

2.5. Mutation Analysis

Mutation data from the TCGA-BLAC project were downloaded from the TCGA
database. The overall picture of the mutated genes for BLAC was obtained by using
the “plotmafSummary” function in the “maftools” package. The “oncoplot” function was
used to plot the twelve model genes.

https://string-db.org/cgi/input.pl
https://www.gsea-msigdb.org/gsea/
https://www.gsea-msigdb.org/gsea/
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2.6. Tumor Immune Microenvironment Analysis

The ssgsea algorithm was used to analyze the immune cell infiltration and immune
function in the tumor microenvironment. The “limma”, “GSVA”, and “GSEABase” pack-
ages were used for analysis. The “reshape” and “ggpubr” packages were used for sub-
sequent analysis and drawing. Heatmaps of the relationship between model genes, risk
scores, and the immune microenvironment were produced by “pheatmap”. The “esti-
mate” package was used for overall assessment of the tumor microenvironment and tumor
purity analysis.

2.7. Assessment of Treatment Response

Drug sensitivity assessment was implemented through the “pRRophetic” package, and
the basic idea relied on the construction of statistical models that first use gene expression
data from large cancer cell line databases to determine the IC50 sensitivity threshold of
different drugs to the cell line. The model is then applied to gene-expression profiling data
from tumor samples to predict their likely susceptibility to specific drugs. When the results
are shown, boxplots are used to compare the IC50 distribution of each therapeutic drug
with significant differences between the experimental and control groups. The response to
immunotherapy was assessed with access to Tumor Immune Dysfunction and Exclusion
(TIDE), an online tool available from Harvard University (http://tide.dfci.harvard.edu/,
accessed on 1 October 2023). The TIDE framework quantitatively assesses the possibility of
tumor evasion from an immune system attack based on the gene expression characteristics
of tumor samples.

2.8. Single-Cell Analysis

Single-cell analysis was mainly achieved through the “seurat” package. After quality
control, data standardization, and unsupervised clustering, the umap method was used
to reduce the dimension of the analysis. Marker genes of cell subsets were examined
using the “findallmarkers” function. The “SingleR” package was used to assist the cell
annotation work.

Specifically, it is worth mentioning the annotation of the squamous differentiated cell
cluster. This cell cluster was classified as epithelial cells in the SingleR annotation results.
However, in the UMAP plot, this cell cluster is located relatively far from the actual epithe-
lial cell cluster, indicating a certain degree of differentiation distance from epithelial cells.
Moreover, only this cell cluster highly expresses S100A7 and S100A8. Through the Cell-
Marker website (http://biocc.hrbmu.edu.cn/CellMarker/, accessed on 1 October 2023),
we found that these two markers have been reported as markers of squamous cell carci-
noma [25,26]. Therefore, based on the combination of machine and manual annotation, this
cell cluster was ultimately annotated as squamous differentiated epithelial cancer cells.

Cell communication analysis was performed using the “cellchat” package and the
“tidyverse” package. Squamous differentiated and epithelial cell types were selected for
the pseudotime analysis, which was implemented on the basis of the “monocle” package.

2.9. Spatial Transcriptome Analysis

Spatial transcriptome analysis was conducted based on the “seurat”, “dplyr”, “patch-
work” and “ggplot2” packages. The “Load10X_Spatial” function was used to read spatial
transcriptome data. The spatial transcriptome data were normalized using the SCTransform
algorithm. The expression distribution map of genes in space was completed using the
“SpatialFeaturePlot” function.

3. Results
3.1. Identification of Prognostic Lactylation-Related Genes in BLAC

Figure 1 shows the overall flow of the article. Based on transcriptome expression
data derived from BLAC and normal bladder tissue samples, the expression information
of lactylation-related genes was selectively extracted for further analysis. Through dif-

http://tide.dfci.harvard.edu/
http://biocc.hrbmu.edu.cn/CellMarker/
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ferential analysis, 174 differentially expressed genes (DEGs) were identified in BLAC. A
heatmap was constructed to visualize the expression patterns of these differential genes
across tumor and normal groups (Figure 2A). Survival analysis of the transcriptomic data,
informed by survival information from BLAC patients, resulted in the identification of
97 genes significantly associated with patient prognosis. As depicted in a Venn diagram
(Figure 2B), an intersection was identified between the set of DEGs and the set of prog-
nostic genes, resulting in the extraction of 75 lactylation-associated genes common to
both analyses. A forest plot was then generated to display the hazard ratios of these
75 intersecting genes (Figure 2C). Gene Ontology (GO) enrichment analysis revealed that
these lactylation-modified genes were significantly enriched in cellular components re-
lated to cell junction structures and involved in binding processes with numerous other
biomolecules, such as cadherins (Figure 2D). Moreover, Protein–Protein Interaction (PPI)
network analysis indicated that these genes exhibit a complex and highly interconnected
relationship (Figure 2E).
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3.2. Construction of Lactylation Risk Model

Lasso–Cox regression analysis was conducted on the training cohort composed of
TCGA-BLAC and GSE32894 projects, resulting in a risk scoring model comprising 12 genes.
The score formula for the prognostic model is as follows (each gene symbol represents its
mRNA expression level): score = 0.013329729 × ARID3A + 0.060866365 × PRDX1 + 0.001150845
× MKI67 + 0.11019392 × CNN3 + 0.061662743 × XPO5 + 0.165375341408274 × G6PD +
0.0918858789393128×CALM1 − 0.00915801596702691 × ECHDC1 + 0.00813049916598936 ×
CALD1 + 0.0814907938842537 × LGALS1 − 0.0677031902775691 × SATB1 + 0.057526713 ×
CALR. Based on this model, the training cohort was stratified into high-risk and low-risk
groups. The Kaplan–Meier survival curve (Figure 3A) revealed significantly lower survival
rates for the high-risk group compared to the low-risk group (p = 6.036 × 10−12). ROC
analysis was performed to evaluate the predictive capability of the model (Figure 3B). The
scores of the training cohort are shown in Figure 3C. Subsequently, a validation cohort
composed of the GSE13507 program was used to assess the overall predictive power of
the model. As anticipated, the model demonstrated robust predictive capacity in the vali-
dation cohort, with significantly decreased survival rates observed in the high-risk group
relative to the low-risk group (p = 6.918 × 10−4) (Figure 3D). The ROC curves showed
area under the curve (AUC) values of 0.750, 0.770, and 0.791 at one year, three years, and
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five years, respectively (Figure 3E). A scatter plot was plotted to depict the scores in the
validation group (Figure 3F). Moreover, multiple ROC curves were constructed based
on the risk scores from the validation cohort juxtaposed against other established clinical
characteristics. These multi-ROC analyses indicated that the risk score had the highest AUC
among all clinical traits, outperforming the traditional clinical grading system (Figure 3G),
thus further substantiating the satisfactory predictive ability of the lactylation-related gene
prognosis model. Principal Component Analysis (PCA) and t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) dimensionality reduction confirmed that the model effectively
segregated samples into two distinct categories (Figure 3H,I). Overall, there is a consistent
trend where higher risk scores in the model correspond to shorter survival times in patients
(Figure 3J,K). In conclusion, the risk scoring model derived from the Lasso–Cox regression
has shown compelling prognostic value across both the training and validation cohorts,
providing a promising tool for predicting patient outcomes. Immunohistochemical staining
confirmed that the differential expression of the twelve model genes is consistent with the
results described above (Figure 4).
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the prognostic genes and DEGs. (C) A forest plot of prognostic lactylation-related DEGs. (D) A bar
plot of GO analysis based on DEGS. (E) A PPI network showing known and predicted interactions of
proteins and genes among the prognostic lactylation-related DEGs.
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Figure 4. Validation of immunohistochemical staining from the HPA database. The differential
expression of the twelve model genes in bladder cancer compared to adjacent normal tissue is
consistent with the results from RNA-seq analysis.

3.3. The Prognostic Value of the Lactylation Risk Model

Independent prognostic analysis was performed on combined transcriptomic and
clinical information to assess the predictive value of the risk model related to lactylation-
associated genes in the prognosis of BLAC. In the training set, univariate independent
analysis identified T stage, grade, and risk score as significant risk factors for BLAC
(Figure 5A). Subsequent multivariate independent prognostic analysis revealed that the
risk score remained a statistically significant risk factor for BLAC (Figure 5B). In the
validation cohort, both univariate and multivariate independent prognostic evaluations
consistently showed that the risk score functioned as a significant risk determinant for
BLAC (Figure 5C,D). Collectively, these results affirm that the risk score derived from the
lactylation-related gene risk model serves as an independent risk factor for BLAC.
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3.4. Mutation Analysis and Functional Enrichment Analysis

Tumor gene mutation analysis was performed to investigate the mutation status of
risk model genes in BLAC patients. The overall profile of gene mutations in BLAC is
first shown in Figure 6A–F. Among all mutation types, missense mutations and single-
nucleotide mutations had the highest frequency. TTN, TP53 and MUC16 are the three most
frequently mutated genes in BLAC. A mutation waterfall plot was generated to display
the mutations of the risk model genes in BLAC (Figure 6G). In addition, functional and
pathway enrichment analysis was performed on the high- and low-risk groups divided
by the risk model. The results of GSEA enrichment analysis showed that glycolysis and
hypoxia pathways were significantly enriched in the high-risk group (Figure 6H,I). This
is consistent with our expectation because the level of lactylation modification is closely
related to the anaerobic glycolysis pathway in the tumor microenvironment. Moreover,
DNA repair, the epithelial–mesenchymal transition, and the p53 pathway are also enriched
in the high-risk group (Figure 6J–L). In addition, cellular processes such as the epithelial–
mesenchymal transition and signaling pathways such as the KRAS pathway were also
enriched in the high-risk group (Figure 6M). GO analysis showed that many processes
related to extracellular matrix construction and degradation were enriched, suggesting
the possibility of tumor cell metastasis and enhanced matrix remodeling capacity in the
high-risk group (Figure 6N). KEGG analysis demonstrated the involvement of numerous
signaling pathways (Figure 6O).

3.5. Tumor Immune Microenvironment Analysis

The immune microenvironment is an important part of the tumor microenvironment,
a key factor influencing the onset, progression, and prognosis of tumors, as well as an
important guiding indicator for the development of treatment strategies. In order to
elucidate the differences in the immune microenvironment between the high-risk and
low-risk groups as defined by the risk model, a comprehensive depiction of cell infiltration
and cellular functions within the microenvironment is initially presented (Figure 7A,B). In
the high-risk group, the infiltration scores of dendritic cells (DCs), neutrophils, Th1 cells,
and Tregs are relatively higher, indicating a higher level of infiltration of these cells in
the high-risk group. In contrast, B cells and NK cells show relatively higher infiltration
levels in the low-risk group. Such distribution differences may reflect distinct immune
microenvironment characteristics between high- and low-risk patients. Two heatmaps
were specifically constructed to elucidate the intricate and significant relationship between
the risk model genes, risk scores, and the immune microenvironment, indicating that the
twelve lactylation modification-associated genes, along with the risk scores, have profound
correlations with various immune cell infiltrations and immune functions (Figure 7C,D).
Furthermore, we utilized the ESTIMATE algorithm to analyze the tumor microenvironment
from a different perspective, which revealed that the stromal score, immune score, and
ESTIMATE score were significantly higher in the high-risk group compared to the low-risk
group (Figure 7E). Additionally, the tumor purity in the high-risk group was found to be
lower than that in the low-risk group (Figure 7F).

3.6. Treatment Responsiveness Evaluation

Pharmacogenomic sensitivity analysis was conducted to assess the predictive capacity
of lactylation modification-related gene models in guiding treatment strategies. Among all
drugs with statistically significant findings, frontline chemotherapeutic agents for BLAC
were of particular interest, such as cisplatin, gemcitabine, paclitaxel, and others. The
results indicated that high-risk patients demonstrated increased sensitivity to first-line
chemotherapy drugs. Specifically, for cisplatin (Figure 8A), gemcitabine (Figure 8B), pa-
clitaxel (Figure 8C), and vinblastine (Figure 8D), the high-risk group exhibited stronger
drug sensitivity, suggesting that this subset of patients is more likely to benefit from these
chemotherapy regimens. Conversely, the low-risk group showed higher sensitivity to
erlotinib (Figure 8E), while the high-risk group was more sensitive to sunitinib (Figure 8F).
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Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) analysis was performed
to assess the sensitivity of high- and low-risk groups to immunotherapy. TIDE analysis is a
widely used method to predict the response of patients to immunotherapy. A high TIDE
score implies a higher probability of benefiting from immunotherapy. The TIDE scores
were found to be higher in the high-risk group than in the low-risk group (Figure 8G,H),
signifying a stronger capacity for immune escape in the high-risk group. Moreover, when
compared to the low-risk group, the high-risk group exhibited lower Microsatellite In-
stability (MSI) scores (Figure 8I) and correspondingly higher TIDE scores (Figure 8J),
indicating that patients in the high-risk group are likely to respond less effectively to
immunotherapy treatments.
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3.7. Single-Cell RNA-Seq Profiling in BLAC

Single-cell sequencing offers a more granular perspective on the transcriptomic infor-
mation within tumors. To investigate the biological significance of lactylation modification-
related prognostic models at the single-cell level, we analyzed seven BLAC single-cell
samples (comprising a total of 36,788 cells) from the GSE135337 project. Firstly, UMAP
dimensionality reduction clustering was carried out on the obtained transcriptome data
(Figure 9A). The merged representation of the seven BLAC samples is shown in Figure 9B.
Based on the annotations in the original literature in combination with SingleR annota-
tion, we identified and annotated six distinct cell types: endothelial cells, epithelial cells,
fibroblasts, monocytes, squamous differentiated cells (a type of malignant BLAC cell),
and T cells (Figure 9C). A bubble plot was created to visualize marker genes specific to
each cell type (Figure 9D). Subsequently, the risk model was applied to assign scores to
each cell type (Figure 9E), revealing that fibroblasts had the highest risk scores. Moreover,
squamous differentiated cells displayed higher risk scores compared to epithelial cells.
The expression profiles of the twelve risk model genes across the various cell types are
presented in Figure 9F.
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3.8. Cell Communication Analysis, Pseudotime Analysis, and Functional Enrichment Analysis

Cell communication analysis was performed for diverse cell types to elucidate the
intercellular communication in BLAC. In terms of the communication intensity, epithelial
cells exhibit the strongest communication with themselves and other cell types (Figure 10A).
In regard to the quantity of communications, fibroblasts demonstrate the most extensive
exchanges with themselves and other cells (Figure 10B). A bubble plot was constructed
to illustrate the receptor–ligand pairs involved in the communication between epithelial
cells and other cell types (Figure 10C). In addition, considering that squamous differen-
tiated cells are highly malignant epithelial cells, we performed a pseudotime analysis of
these cells and epithelial cells to explore the genetic alterations during this differentiation
(Figure 10D). Figure 10E presents the expression changes of twelve genes from the risk
model as they pertain to the transition process from epithelial cells to squamous differ-
entiated cells. Functional enrichment analysis of differentially expressed genes between
squamous differentiated cells and epithelial cells revealed enrichment in “peptidyl-lysine
modification”, “protein acetylation” (an epigenetic modification sharing enzymes with
lactylation modification), and “histone modification” (Figure 10F). These results suggest
the significant role of lactylation modification in the process of epithelial-to-squamous cell
carcinoma transition in bladder cancer.
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epithelial cells to squamous cells. (E) Changes in the expression of the 12 model genes as epithelial
cells differentiated into squamous cells. (F) GO analysis based on differentially expressed genes in
squamous differentiated cells and epithelial cells.
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3.9. Spatial Transcriptome Analysis in BLAC

Spatial transcriptomics enables researchers to explore gene expression profiles in
relation to spatial characteristics. Publicly available spatial transcriptomics data from
muscle-invasive BLAC were processed using the “Seurat” package and dimensionally
reduced via the umap method (Figure 11A,B). Figure 11C,D illustrates the cellular clustering
derived from cell annotation and their corresponding spatial distribution characteristics.
Upon assigning scores to cell populations using the risk model, it is evident that cancer
cells exhibit significantly higher scores compared to epithelial cells (Figure 11E), which
corroborates the findings from single-cell analysis. Bubble plots further indicate that twelve
model genes are highly expressed in tumor cells (Figure 11F). Lastly, Figure 11G presents
the spatial expression patterns of these model genes across the tissue section.
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4. Discussion

Lactate is an important metabolite. It was once regarded as a byproduct of an organ-
ism’s ability to maintain its energy supply in the absence of oxygen. However, the discovery
of lactylation modification in 2019 has greatly overturned people’s understanding of it.
With the continuous advancement of research, lactylation modification has been proved to
play a crucial role in many fields. In various cancers, lactylation has been shown to be an
important way for tumor cells to modify the tumor microenvironment and exacerbate their
malignant behavior [27–32]. However, in the field of BLAC, although researchers have
found that lactylation modification is significant for the occurrence and development of
BLAC [10,21,22], no prognostic model based on this biological process has been proposed.
This study addresses this knowledge gap in the field of BLAC research.

In this study, a prognostic model of BLAC based on lactylation modification genes
was established. Twelve genes were identified in this prognostic model: ARID3A, PRDX1,
MKI67, CNN3, XPO5, G6PD, CALM1, ECHDC1, CALD1, LGALS1, SATB1, and CALR.
ARID3A encodes a DNA-binding protein. ARID3A promotes tumor growth by interact-
ing with CEP131 to promote the expression of stem cell-like genes [33]. PRDX1 encodes
a peroxidase. Celastrol upregulates the reactive oxygen species (ROS) level and pro-
motes apoptosis in colorectal cancer (CRC) cells by inhibiting the antioxidant activity of
PRDX1 [34]. MKI67 encodes an important marker protein for tumor proliferation activity.
CNN3 encodes a calcium regulatory protein that acts as a potential oncogene in cervical
cancer [35]. Exportin-5 (XPO5) encodes a protein responsible for the delivery of precur-
sor mirnas out of the nucleus. A member of the nucleoprotein family, it is a key protein
responsible for the transport of precursor mirnas from the nucleus to the cytoplasm. In
a cohort of colorectal cancer patients, high XPO5 expression was associated with lower
survival and worse pathological features [36]. G6PD encodes a key enzyme mediating
the pentose phosphate pathway. In cervical cancer, the lactylation of DCBLD1 stabilizes
its conformation and inhibits the degradation of G6PD, which in turn upregulates the
pentose phosphate pathway within tumors and promotes cervical cancer progression [37].
In addition, HPV16 E6 can promote G6PD activity by inhibiting its lactylation, which also
leads to upregulation of the pentose phosphate pathway and promotes the progression
of cervical cancer [38]. CALM1 encodes a calcium-binding protein that is associated with
esophageal squamous cell carcinoma and resistance to EGFR-antagonistic muscle [39].
ECHDC1 encodes an enoyl-CoA hydratase. A multi-modal meta-analysis has suggested
that ECHDC1 can be used as a new breast tumor suppressor [40]. Silencing ECHDC1 in
bladder cancer cell lines induces upregulation of p27, ultimately leading to cell cycle arrest
and reduced proliferation [41]. CALD1 encodes a calmodulin-binding protein, which is
closely related to tumor-associated fibroblasts in BLAC and significantly affects the progres-
sion and prognosis of BLAC [42]. LGALS1 encodes galectin-1. This protein can promote
the occurrence and development of BLAC through the JNK pathway [43]. SATB1 encodes
a multipotent nuclear matrix-binding protein, which can promote the development of
prostate cancer by regulating the epithelial–mesenchymal transition [44]. CALR encodes
mainly involved in protein folding and quality control and it is closely related to myelo-
proliferative neoplasms [45]. In summary, the twelve model genes not only have sites for
lactylation modification [24], but also have an inseparable relationship with the occurrence
and development of tumors. In addition, there are few studies on the above-mentioned
genes in bladder cancer and lactylation modification. The results in this study suggest the
potential of these genes as research targets for lactylation modification in bladder cancer.

Based on the aforementioned model, an independent prognostic analysis was first
conducted. Univariate and multivariate Cox analyses demonstrated that the risk scores
derived from the model could serve as independent risk factors for bladder cancer in both
the training and validation cohorts. Next, an analysis of the immune microenvironment
was performed. On the one hand, the high-risk group exhibited heightened immune
suppression: in terms of immune cell infiltration, there was increased infiltration of regu-
latory T cells and suppressed dendritic cells, alongside decreased NK cell infiltration; in
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terms of immune function, a significant increase in the co-inhibition of antigen-presenting
cells and T cells was observed. However, on the other hand, immune activation was
also upregulated in the high-risk group. Due to the limited interpretative capacity of
transcriptomic data regarding immune status, we speculate that this result may be due to
immune heterogeneity among patients. However, a more detailed explanation relies on
further research. Although the immune infiltration algorithm provides a comprehensive
description of the immune infiltration status in patients, the conclusions drawn in this
section still require experimental validation. Lactylation has been shown to suppress the
immune activity of macrophages [46,47] and CD8+ T cells [48]. Therefore, co-culturing
tumor cells with immune cells from different immune score groups could further validate
the conclusions presented in this study. Tumor microenvironment analysis showed that
the high-risk group had lower tumor purity, which is consistent with previous reports that
lower purity in bladder cancer is associated with poorer prognosis [49,50]. Subsequent
analysis of treatment responsiveness indicated that the high-risk group was more sensitive
to most first-line chemotherapeutic drugs for bladder cancer, but showed poorer efficacy
with some targeted therapies such as erlotinib. It should be noted that due to algorithmic
limitations, we used IC50 to represent drug sensitivity. However, IC50/EC50 is a better
representation of drug sensitivity. Although patients in the high-risk group theoretically
exhibit greater sensitivity to chemotherapy, validation through in vitro and in vivo experi-
ments is particularly crucial. In this study, the high-risk group exhibits higher glycolytic
activity, suggesting an elevated level of lactylation. High lactylation levels in bladder cancer
have been shown to confer resistance to cisplatin-based chemotherapy [21]. Furthermore,
the upregulation of lactylation on NBS1 has been associated with enhanced resistance
to chemotherapy-induced DNA damage [51]. This is consistent with the findings of our
study. Future research could further validate this issue. TIDE analysis suggested that the
high-risk group had a lower response rate to immunotherapy. Considering the results from
enrichment analysis, which showed significant upregulation of hypoxia and glycolysis
pathways in the high-risk group, it is believed that the elevated glycolytic metabolism in
the high-risk group leads to increased environmental lactate concentration. The elevated
environmental lactate concentration raises the level of protein lactylation modifications in
infiltrating cells, ultimately creating an immunosuppressive microenvironment, resulting
in a poorer response to immunotherapy.

Multi-omics analysis is a promising method for advanced analysis. The advantage of
using different omics data allows researchers to analyze biological processes from multiple
perspectives. In this paper, based on the use of bulk RNA-seq data, single-cell transcriptome
data and spatial transcriptome data were used to further explore the biological significance
of prognostic models. In the results presented here, GO analysis of 75 genes related to
lactylation modification revealed extensive enrichment in the cell–matrix junction structure
and the connection of various cytoskeletal proteins. GO analysis of differentially expressed
genes in the high- and low-risk groups revealed enrichment in extracellular matrix con-
struction and degradation. Interestingly, fibroblasts obtained the highest lactylation-related
model score in single-cell sequencing. It has been reported that the expression of Glucose
transporter 1 (Glut1) in tumor-associated fibroblasts of hepatocellular carcinoma (HCC) is
upregulated, promoting the glycolytic pathway [52]. In oral tongue squamous cell carci-
noma, clinical data prove that fibroblasts are positively correlated with the glycolysis level
of the tumor microenvironment [53]. Cancer-associated fibroblasts in pancreatic cancer
reutilize lactate produced by tumor cells through monocarboxylate transporter 1 to promote
their own proliferation and create a fibrotic tumor microenvironment [54]. In addition,
fibroblasts can also elevate the glycolysis level of head and neck squamous cell carcinoma
by secreting hepatocyte growth factor (HGF). In conclusion, the results presented here and
existing literature reports together demonstrate a complex and tight link between lactate,
lactylation modification, and fibroblasts. On one hand, the fibroblasts in the tumor microen-
vironment may promote the enrichment of lactate in the microenvironment by increasing
the glycolysis level, thereby elevating the level of cellular protein lactylation modification in
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the microenvironment. On the other hand, the increased level of lactylation modification is
likely to modify the biological behavior of fibroblasts, facilitating tumor cells to accomplish
the remodeling of the microenvironment matrix. Additionally, this study used pseudotime
analysis of single-cell sequencing to demonstrate the dynamic changes of the 12 model
genes during the transition of bladder epithelial cells to squamous cell carcinoma. Our
analysis highlights the correlation between risk scores and the transition to squamous cells,
underscoring a key aspect of bladder cancer progression. While our findings are com-
pelling, we urge the research community to exercise caution regarding these results until
further validation is conducted. Lactylation has been shown to be significantly upregulated
in various cancers, including breast cancer [55], liver cancer [56], colorectal cancer [20],
and glioma [28]. Our single-cell results indicate an elevation in glycolytic activity during
the development of bladder squamous cell carcinoma, suggesting that the intracellular
level of lactylation may also be increased during this process. Future studies could further
validate this hypothesis using the SCaBER cell line, a bladder squamous cell carcinoma
cell line. More importantly, GO analysis indicated that “peptidyl-lysine modification”,
“protein acetylation” and “histone modification” are the significantly enriched biological
pathways for the differential genes between these two cell types. Firstly, all known lactyla-
tion modifications occur on lysine residues [57]. Secondly, the GO database currently lacks
pathways specifically labeled as “lactylation modification”, while acetylation modification
is a post-translational modification highly similar to lactylation. These two modifications
share many writer and eraser enzymes [6,23]. This raises an important question regarding
the role of the interaction between acetylation and lactylation modifications in the epithe-
lialization of bladder cancer. Lactylation and acetylation share many common histone
modification sites, such as H3K18, H3K27, and H3K23 [6]. In normal cells, the concen-
tration of lactyl-CoA is approximately 1/1000th that of acetyl-CoA [58], suggesting that
lactylation has a limited competitive capacity in the context of the intense competition
between the two modifications. Understanding how lactylation competes with acetylation
during the development of bladder squamous cell carcinoma is an intriguing question.
Lastly, histone modification is one of the most important ways lactylation modification
regulates the cellular metabolic network [59]. In summary, the results of this study suggest
a probable presence of significant lactylation modifications during the transition of bladder
epithelium to squamous carcinoma. Furthermore, both single-cell analysis and spatial
transcriptome analysis indicated a significant enhancement in the model scores of epithelial
cells after carcinogenesis, as anticipated.

To enhance the clinical applicability of our scoring system, it is crucial to validate its
effectiveness in external BLAC patient cohorts. Prospective studies will enable us to collect
data during actual treatment processes, allowing for further assessment of the association
between treatment response and survival rates. This not only provides a reference for
clinicians but also offers better treatment options for patients. Additionally, future research
utilizing immunoprecipitation and mass spectrometry can delve into the specific sites of
lactylation and their roles in tumor biology. Such detailed analyses will help elucidate how
lactylation affects protein function and its potential impact on tumor behavior, thereby
providing new insights for future targeted therapeutic strategies.

In conclusion, this study reported a novel prognostic model of lactylation modification
in BLAC. This model possesses satisfactory predictive power and holds the potential to
guide clinical treatment. In addition, the model has significant biological implications
at both the single-cell level and the spatial level. However, this study still has certain
limitations: as the research in the field of lactylation modification is still in the preliminary
stage of exploration, how the 12 model genes affect tumors through lactylation modification
remains an open issue. In addition, the results obtained in this paper still need to be verified
by larger scale clinical data to achieve a better translational effect. Nevertheless, we believe
that these issues will be addressed in the near future as researchers increasingly focus on
and understand the modification of lactylation.
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