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Abstract: The correlation between epigenetic alterations and the pathophysiology of human infertility
is progressively being elucidated with the discovery of an increasing number of target genes that
exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules
are emerging as important for the future management of human infertility. In men, microRNAs
(miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ
cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health,
oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p
are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA
methylation, histone modification, chromatin restructuring, and the influence of these non-coding
RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis
and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to
reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic
development alteration. One of the primary factors contributing to changes in the key epigenetic
regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances
or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes,
aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated
with an oxidative imbalance, providing future perspectives in the diagnosis and management of
infertile couples.

Keywords: epigenetics; DNA modifications; reactive oxygen species; reproductive health; human
fertility

1. Introduction

Male infertility is the inability of a man to contribute to the conception of a child. This
condition can result from various factors that impact the number, quality, functionality, or
motility of sperm cells. Although this pathological condition is often linked to genetic irreg-
ularities and their interactions, sometimes the exact cause remains unknown. Recent studies
on male infertility cases including those of normozoospermia, oligoasthenozoospermia
(OAT), and azoospermia report epigenetic aberrations (epimutations) in spermatozoa that
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can compromise their functionality [1–4]. These encompass processes such as DNA methy-
lation, modifications to histone proteins, and the action of various types of non-coding
RNA (ncRNA), among which the most studied and well known are microRNAs (miR-
NAs) [5]. Epigenetic modifications include DNA methylation of 5-methylcytosine (5mC),
DNA methylation of 5-hydroxymethylcytosine (5hmC), and various modifications of his-
tone proteins like acetylation, methylation, phosphorylation, poly-ADP ribosylation, and
ubiquitination. Other categories involve RNA modifications such as 6-methyladenosine
(6mA), RNA methylation of 5mC, RNA methylation of 7-methylguanosine (7mG), mRNA
cap modification, and RNA methylation of 5hmC [6].

Several genes are known to exhibit epimutations that appear to be involved in the onset
of male infertility. Hypermethylation of genes such as methylenetetrahydrofolate reductase
(MTHFR), neurotrophin 3 (NTF3), insulin-like growth factor-2 (IGF2), and the H19 gene for a
long ncRNA is indicative of epigenetic changes that can contribute to alterations in semen
parameters [7]. In addition, epigenetic regulation of sperm influences the development
of the embryo following fertilization [8]. Reports indicate that examining changes in
epigenetic markers is critical for minimizing the incidence of abnormal embryo shapes and
improving fertility results in assisted reproductive technology (ART) [3].

Like in men, infertility in women is a multifaceted reproductive issue with a variety
of causes. These include factors such as the aging of eggs, pathological conditions like
polycystic ovary syndrome (PCOS), endometriosis, and repeated miscarriage—all of which
are associated with changes in the egg’s epigenetic makeup [9–12]. Much attention to these
factors is needed to understand the molecular basis of female infertility [9]. Similar to
sperm cells, oocytes undergo a range of dynamic changes at the epigenetic level, which
include DNA methylation, alterations to histones, reshaping of chromosomes, and the
presence of ncRNAs. Epigenetic modification during oogenesis directly modulates gene
expression and other nuclear processes in the oocyte. It affects oogenesis, resulting in
altered chromosome segregation in oocytes, which is associated with infertility, including
recurrent miscarriage, idiopathic infertility [10], death of embryos in the uterus [9], and
adverse ART outcomes [13]. Studies have shown that aberrant methylation of several genes
such as microsomal epoxide hydrolase (1EPHX1) [14], follistatin (FST) [15], hypermethylation of
aromatase (CYP19A1) [16], and hypomethylation of Yes-associated protein 1 (YAP1) [17] are
associated with PCOS pathogenesis.

Among the factors that can influence the epigenetics of spermatozoa and oocytes,
exposure to environmental features can disrupt DNA methylation and induce histone
modifications through oxidative stress [18]. It has been reported that superoxide (O2

−),
a potent reactive oxygen species (ROS) and precursor of various other free radicals in
biological systems, regulates key epigenetic processes, including DNA methylation, histone
methylation, and acetylation (Figure 1).

As a radical anion and potent nucleophile, O2
− can alter epigenetic processes through

nucleophilic substitution and free radical abstraction. It can neutralize the positive charges
of methyl donors, such as S-adenosyl-L-methionine (SAM) and acetyl-coenzyme A (Ac-
CoA), via nucleophilic reactions, thereby increasing their nucleophilic ability or deproto-
nating cytosine. Dioxygenase enzymes produce O2

− through reverse free radical reactions
like demethylation and deacetylation, which can then be converted into hydroxyl radicals,
leading to the removal of methyl substituents [19]. These processes may help understand
how ROS-induced epigenetic modifications contribute to various pathological conditions,
including both male and female infertility.

ROS have been shown to alter the methylation patterns of several spermatozoal genes
and regulate their expressions to adversely affect spermatogenesis [20]. Studies have
revealed that environmental factors are responsible for aberrant epigenetic regulations that
bring about deterioration in semen parameters. Previously, the generation of ROS in semen
was directly linked to an increase in sperm DNA fragmentation, while inversely relating
to sperm DNA methylation [20]. Moreover, DNA methylation has been found to bear
negative correlation with DNA fragmentation [20]. Also, infertile men demonstrated both
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higher DNA fragmentation and ROS levels as compared to fertile men [20]. The data could
imply that oxidative stress-triggered DNA damage might amplify unusual global DNA
methylation. Furthermore, it has been observed that individuals who undergo antioxidant
therapy for a period of three months exhibit a decrease in DNA damage and in ROS levels,
along with an upsurge in precise global DNA hypomethylation [20].

Cells 2024, 13, x FOR PEER REVIEW 3 of 23 
 

 

semen was directly linked to an increase in sperm DNA fragmentation, while inversely 
relating to sperm DNA methylation [20]. Moreover, DNA methylation has been found to 
bear negative correlation with DNA fragmentation [20]. Also, infertile men demonstrated 
both higher DNA fragmentation and ROS levels as compared to fertile men [20]. The data 
could imply that oxidative stress-triggered DNA damage might amplify unusual global 
DNA methylation. Furthermore, it has been observed that individuals who undergo anti-
oxidant therapy for a period of three months exhibit a decrease in DNA damage and in 
ROS levels, along with an upsurge in precise global DNA hypomethylation [20]. 

 
Figure 1. Mechanism of oxidative stress-induced epigenetic alterations and their impact on repro-
ductive health. Environmental factors, lifestyle choices, and cellular processes (A) contribute to the 
generation of oxidative stress by producing various ROS like superoxide anion (O2−), hydrogen per-
oxide (H2O2), and hydroxyl radicals (OH•) (B). This oxidative stress leads to critical epigenetic mod-
ifications, including DNA hyper- or hypomethylation, histone acetylation or methylation, and alter-
ations in non-coding RNAs, particularly microRNAs (C). miRNAs interact with epigenetic regula-
tors like DNA methyltransferases (DNMTs), histone deacetylases (HDACs), and methyltransferases, 
feedback loops where altered miRNA expression can further influence epigenetic processes, rein-
forcing conditions like oxidative stress (D). These epigenetic changes disrupt key reproductive pro-
cesses, resulting in impaired sperm motility, abnormal oocyte maturation, and compromised em-
bryonic development, ultimately contributing to reproductive disorders such as polycystic ovary 
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Figure 1. Mechanism of oxidative stress-induced epigenetic alterations and their impact on repro-
ductive health. Environmental factors, lifestyle choices, and cellular processes (A) contribute to the
generation of oxidative stress by producing various ROS like superoxide anion (O2

−), hydrogen
peroxide (H2O2), and hydroxyl radicals (OH•) (B). This oxidative stress leads to critical epigenetic
modifications, including DNA hyper- or hypomethylation, histone acetylation or methylation, and
alterations in non-coding RNAs, particularly microRNAs (C). miRNAs interact with epigenetic
regulators like DNA methyltransferases (DNMTs), histone deacetylases (HDACs), and methyltrans-
ferases, feedback loops where altered miRNA expression can further influence epigenetic processes,
reinforcing conditions like oxidative stress (D). These epigenetic changes disrupt key reproductive
processes, resulting in impaired sperm motility, abnormal oocyte maturation, and compromised
embryonic development, ultimately contributing to reproductive disorders such as polycystic ovary
syndrome (PCOS), endometriosis, and azoospermia.

The female germline is also vulnerable to oxidative insult [21]. Elevated ROS, particu-
larly O2

−, are involved in impaired chromosome segregation, senescence, and oocyte DNA
damage [21,22]. Oxidative stress-induced telomerase enzyme malfunction—leading to
point mutation or deletion in the mitochondrial genome, causing reduced ATP production,
aberrant meiotic spindle formation, and genomic instability—may finally result in oocyte
incompetency [23] and 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation. The oxidized
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structure of DNA can induce hypomethylation of DNA by interrupting DNA methylation
at nearby cytosine residue. Similarly, 5hmC-induced DNA demethylation processes lead to
DNA hypomethylation [24].

Since epigenetic modifications can be reversed, and identifying epigenetic biomarkers
of infertility could be crucial in enhancing infertility treatment to subsequently achieve suc-
cessful fertilization [6], this rapidly growing field of research is now increasingly utilizing
epigenetic analysis as an indicator of fertility. The purpose of this evidence-based study was
to elaborate upon the crucial role of epigenetic regulations in the maturation and functional
capacities of spermatozoa and oocytes, with particular attention to the impact of ROS on
these processes. Understanding how ROS can cause alterations in epigenetic mechanisms
could prove crucial in the treatment of oxidative stress-induced infertility. This article aims
to put forth the proposal for one or more specific epigenetic biomarkers to be employed as
indicators of ROS impact on the functioning of sperm and oocytes. This could potentially
enable the more accurate assessment and subsequent management of fertility issues pre-
cipitated by oxidative stress. To accomplish this objective, this evidence-based study has
been structured into three main sections: (a) a comprehensive overview of the epigenome
of sperm and oocytes, presenting a summary of the existing knowledge; (b) a forecast of
oxidative stress-induced epigenetic changes, which could enhance our comprehension
of unexplained male and female infertility; and (c) a discussion on potential epigenetic
biomarkers of male and female infertility that could serve as measurable indicators for
diagnosing fertility complications. Thus, this article seeks to deepen the understanding
of the connection between epigenetic alteration, ROS, and human infertility, ultimately
contributing to the development of more effective diagnostic and/or treatment strategies.

2. Major Epigenetic Processes

The most common and highly characterized epigenetic processes are DNA methyla-
tion, histone modifications, chromatin remodeling, and regulation by non-coding RNAs [25].

2.1. DNA Methylation

The expression of genes can be dictated by the methylation of cytosine bases, specifi-
cally at the five positions, within the context of 5′–C–phosphate–G–3′ (CpG) dinucleotides.
CpG islands, which are clusters of these dinucleotides, are located near promoter regions
and play a significant role in regulating gene expression [25]. DNA methylation, a vital epi-
genetic modification, primarily involves the addition of methyl groups to cytosine residues,
resulting in the formation of 5mC. This modification significantly contributes to epigenetic
regulation and imprinting, as hypermethylation of CpG islands is often associated with
gene silencing, while hypomethylation is linked to gene activation [26,27].

The process of DNA methylation is mediated by DNA methyltransferases (DNMTs),
which facilitate the transfer of methyl groups from S-adenosylmethionine to the cytosine
residues in CpG dinucleotides [26]. Among the DNMTs, DNMT1 is primarily responsible
for maintaining established methylation patterns, whereas DNMT3A and DNMT3B are
involved in establishing new methylation patterns [28–30]. DNMT3L, which lacks its
own enzymatic activity, serves as a co-factor for DNMT3A2, enhancing its methylation
action [31,32].

The patterns of DNA methylation can vary depending on the species, tissue type, and
even the specific cell type. It is believed that the methylation patterns are established during
embryonic development and maintained throughout life by DNMTs. However, recent
findings indicate that demethylation can occur in mammalian cells to correct improper
methylation patterns or activate previously silenced genes [33]. This demethylation process
can occur through both active and passive mechanisms, involving the action of ten-eleven
translocation (TET) proteins and the AID/APOBEC enzyme family [34].
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2.2. Histone Modifications

Another essential epigenetic process for proper cell functioning includes the post-
translational histone modifications. The N-terminal regions of histone tails are subject
to several modifications such as acetylation, methylation, phosphorylation, sumoylation,
and ubiquitylation. These combined alterations, along with the genetic data they impart,
constitute what is referred to as the histone code. Histone methylation control is facilitated
by histone methyltransferases (HMTases), a mechanism that is believed to be involved in
the suppression of relevant genes [7]. Histone 3 lysine 4 (H3K4) methylation and histone
acetylation are two types of histone post-translational modifications, which are markers of
active chromatin structure and normally associated with a lack of DNA methylation [35–37].
In contrast, the process of methylation at CpG dinucleotides fosters the formation of a
closed chromatin structure. This, in turn, impedes the action of H3K4 methyltransferases,
ultimately leading to the suppression of transcription [36,37]. DNA methylation and gene
silencing within imprinted genes are linked with other histone modifications, such as
methylation of H4K20, H4K27, and H3K8 [35–37]. H3K9 methylation is a classic example of
gene silencing and is observed in heterochromatin and silenced promoters [38]. Alterations
such as methylations on arginine and lysine residues have also been noted to facilitate the
activation of genes [39]. Moreover, histone acetylation stimulates transcription, and its reg-
ulation is managed by both histone deacetylases (HDACs) and histone acetyl transferases
(HATs). Gene expression is activated by HATs and inhibited by HDACs [40]. Bromodomain-
containing proteins can specifically recognize the acetylated lysine and augment chromatin
remodeling [41]. Gene expression may also be activated via histone phosphorylation on the
serine residues [40]. However, H2AX phosphorylation leads to chromosome condensation
and gene silencing [42]. Ubiquitylation of lysine residues of histones can aid both gene
expression and silencing. For example, ubiquitylation of histone H2A aids gene silenc-
ing [43], whereas that of H2B is associated with gene activation [44]. Other modifications of
lysines, sumoylation, or attachment of small ubiquitin-related modifier proteins (SUMOs)
lead to gene silencing and also inhibit other histone modifications [45]. The organization of
chromatin structure at local or global level varies according to the charges carried by the
functional groups. The activation or inactivation of chromatin depends on the degree of
acetylation or methylation. For instance, variations in the levels of acetylation of H3K27 and
H3K9, along with the methylation of H4K20, can influence the transition of euchromatin
to heterochromatin states. While it is true that the methylation of H3K27 and H3K9 is
often associated with the formation of heterochromatin, the role of acetylation is more
complex. Acetylation of these histones generally correlates with active transcription and an
open chromatin structure. Therefore, an increase in acetylation may lead to euchromatin
states, while a decrease may facilitate the transition to heterochromatin. Indeed, optimum
acetylation of H3K9, H3K36, and H3K4 and trimethylation of H3K79 cause the activation
of chromatin, whereas a lower degree of acetylation of H3K27 and H3K9 and methylation
of H4K20 causes a shift in euchromatin to heterochromatin state [33].

2.3. Chromatin Remodeling

Unlike the above-described epigenetic processes, chromatin remodeling does not
involve covalent interactions. Chromatin remodeling complexes are ATP-dependent, us-
ing ATP hydrolyzing energy to change the structure and/or location of nucleosomes.
These changes result in either gene expression or silencing [46]. ATP hydrolysis provides
the energy for the change in position and structure of the nucleosome and thus makes
genes accessible to transcription factors leading to the expression or silencing of the target
gene [46–49]. The ATPase responsible for chromatin remodeling belongs to the sucrose non-
fermentable-2 (SNF-2) family [9]. Studies revealed that the Brahma-related gene 1 (BRG-1)
and hBRM have a bromo domain that is susceptible to histone acetylation, leading to
chromatin remodeling [47–49].

During spermiogenesis, chromatin remodeling involves the replacement of somatic
histones with testis-specific variants and subsequent post-translational modifications. These
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changes, facilitated by enzymes like acetylase and deacetylase, lead to chromatin loosening
and DNA strand breaks induced by topoisomerase II beta (Top2β). This process allows
for the eviction of histone variants and their replacement with transition proteins (TPs),
which are crucial for protamine replacement and sperm DNA condensation in later stages
of spermiogenesis [50].

However, it remains to be clarified how transient DNA breaks are repaired. Molecular
chaperones may facilitate the replacement of transition proteins with protamines, allowing
for dense packaging of DNA. Additionally, it is still unclear how and where histones are
degraded and which factor ultimately removes the histones [51], but it has long been
established that environmental stressors can influence this process, impairing chromatin
remodeling during spermiogenesis [52].

In the neonatal ovaries of mammals, oocytes are naturally stalled in prophase I of
meiosis. During the postnatal period, these oocytes remain in prolonged meiotic suspen-
sion until puberty, when a rise in luteinizing hormone (LH) prompts the resumption of
meiosis [53]. Quiescent oocytes rely on maternal transcripts stored during their matura-
tion and growth phases to complete meiosis and support the initial stages of embryonic
development. However, the cellular and molecular mechanisms that coordinate chromatin
structure changes and the onset of transcriptional repression remain poorly understood.
Histone deacetylases are crucial for chromatin remodeling, and similar to spermiogenesis,
disruptions in this process can lead to chromatin alterations that result in abnormalities in
chromosomes and meiotic spindles [54].

2.4. microRNAs

ncRNAs are molecules that are not translated into proteins but play a crucial role in
various biological processes including development, differentiation, cell growth, apoptosis,
and pathological processes [55,56]. Mature miRNAs are a family of short single-stranded
ncRNA molecules (20–23 nucleotides) capable of regulating post-transcriptional gene
silencing through binding to their target mRNAs and degradation or translational repres-
sion [48,49]. Over the past decade, miRNAs have also been found to influence complex
biological processes such as gametogenesis [57] and are known to be associated with various
disorders; for these reasons, they are used for clinical diagnostics and treatment [33]. The
biogenesis of miRNAs initiates with the transcription of primary miRNAs (pri-miRNAs),
which adopt a hairpin structure, by RNA polymerase II. These pri-miRNAs are processed
in the nucleus into precursor miRNAs (pre-miRNAs), which are subsequently transported
to the cytoplasm. There, the DICER enzyme, also known as endoribonuclease DICER,
further cleaves them into the major and minor complexes, resulting in the formation of
mature miRNAs [58,59]. The minor strand is degraded, leaving the mature miRNA (major
complex) bound to the Argonaute (AGO) protein, forming the miRNA-induced silencing
complex (miRISC). Within this complex, miRNAs function by binding to the 3′ untranslated
region (3′ UTR) of mRNAs, leading to mRNA decay or repression of translation [60,61]. A
single miRNA can target multiple mRNA molecules, and this interaction between miRNA
and mRNA is specific to the stage of development and the type of cell [62]. Dysregulation
of certain miRNAs can lead to altered expression of genes involved in gametogenesis,
impacting fertility. For instance, miR-23b-3p and miR-320a-3p can modulate the expression
of genes critical for sperm cell development, such as 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 4 (PFKFB4), receptor for hyaluronan-mediated motility (HMMR), and
spermatogenesis-associated 6 (SPATA6), serving as biomarkers for spermatogenesis regula-
tion [63].

On the other hand, advanced maternal age is associated with recurrent miscarriage,
partly due to the influence of miRNAs. miR-16 regulates vascular endothelial growth
factor (VEGF) expression, and high levels impair the proliferation, migration, and forma-
tion of human umbilical vein endothelial cells, contributing to recurrent miscarriage [64].
miRNA alterations can affect ovarian reserve, too—miR-100-5p and miR-21-5p levels pre-
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dict anti-Mullerian hormone (AMH) levels and ovarian reserve status, which influences
folliculogenesis, granulosa cell apoptosis, steroidogenesis, and ovulation [65].

In recent years, significant strides have been made in uncovering miRNAs, identify-
ing their targets, and elucidating their functions using both biological and computational
approaches. Next-generation sequencing (NGS), including deep sequencing, has been in-
strumental in the discovery of miRNAs, with resultant sequences archived in databases [66].
Recent advancements in biochemical techniques have further enhanced our ability to iden-
tify miRNA targets. For instance, researchers have developed high-throughput sequencing
methods like high-throughput sequencing of isolated RNA by cross-linking immunopre-
cipitation (HITS-CLIP). This technique has been successfully applied to organisms such as
mouse brain and Caenorhabditis elegans, providing detailed insights into miRNA-mRNA
binding sites across both 3′ UTRs and coding regions. Compared to earlier computational
methods, HITS-CLIP offers higher specificity and a lower false discovery rate, thereby
generating comprehensive genome-wide interaction maps for specific miRNAs [67].

The advent of high-throughput technologies such as microarray, mass spectrometry,
and advanced NGS has revolutionized the profiling of various molecules at multiple levels.
These technological attributes present new opportunities and challenges in research in
this field.

3. Epigenetics in the Testes and Spermatogenesis

The epigenetic processes discussed in the above sections create discrete epigenetic
patterns in all tissues. Genome-wide analysis conveyed that the testes have unique DNA
methylation pattern. Testicular DNA consists of eight times of hypomethylated loci of
that of the somatic tissues and most of them are non-CpG islands as well as non-repetitive
sequences [68]. As the germ cell advances through the stages of spermatogenesis, the
methylation patterns of its genes also alter accordingly, irrespective of their expression
patterns [69]. Regulation of gene expression for male reproductive functions are mediated
by differentially methylated imprint control regions found between two parental chromo-
somes [70]. The male germline possesses paternally imprinted genes that are silenced via
DNA methylation. There are few genes that have been found to bear paternal imprinting,
including the GTL2, RASGRF1, and Igf2/H19 loci [71,72]. The Igf2/H19 locus is reportedly
the best-characterized among all the imprinted genes with reciprocal maternal H19 and
paternal insulin IGF-2 gene expression [26]. It has been shown that the H19 gene is physi-
cally and functionally linked to the IGF-2 gene [73–75]. On the paternal chromosome, the
H19 gene and the adjacent differentially methylated region (DMR) are methylated [73]. It
seems that the MEST hypermethylation is a marker for decreased motility and abnormal
sperm morphology [68]. Abnormal methylation in the MEST locus of paternal sperm
may contribute to imprinting disorder in children [76,77]. It has also been shown that
hypomethylation of GTL2 (a maternally imprinted gene) plays a critical role in OAT [77].
Hypermethylation of the MTHFR gene promoter in sperm is associated with idiopathic
male infertility [78]. Also, the imprinting sequences of KCNQ1 overlapping transcript 1
(KCNQ1OT1), small nuclear ribonucleoprotein polypeptide N (SNRPN), and LINE1 (L1)
have been implicated in normal chromatin structure [79]. De novo methylation of these
elements occurs in male germ cells, resulting in complete methylation in sperm [71–80].
Spermatogenesis is heavily dependent on post-transcriptional regulatory processes, of
which miRNAs are important regulators [81,82]. Testicular expression of miRNA changes
between stages of spermatogenesis has been suggested [83,84].

Recent studies have demonstrated that the production of miRNAs in semen, sperm,
and testicular tissue and the production patterns of miRNAs tightly correlate with various
male diseases and male fertility [55,56]. Furthermore, altered miRNAs have been found in
the reproductive cells of infertile patients [85,86]. It was shown that asthenoteratozoosper-
mia (AT) patients have a higher amount of seminal plasma miRNAs than the patients with
complete absence of sperm [87].
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A number of miRNAs with altered expression have been associated with male in-
fertility pathogenesis, such as Hsa-miR-30a-5p [88], miR-210 [89], miR-10b-3p [90], miR-
34b-5p [90], miR-141, miR-429 and miR7-1-3p [91], miR-19b and let-7a [92], hsa-miR-429,
hsa-miR-34b*, hsa-miR-34b, hsa-miR-34c-5p, and hsa-miR-122 [93], linking further with
non-obstructive azoospermia (NOA). Similarly, hsa-miR-525-3p [94] and miR-151a-5p [95]
have been linked with asthenozoospermia, while miR-27a [96] has been linked with as-
thenoteratozoospermia, whereas hsa-mir-21 and hsa-mir-22 [97] have been associated with
oligospermia. The altered miRNA expressions that have been identified in the above-
mentioned disorders are summarized in Table 1, with their altered function and target
genes and/or signaling pathways.

Table 1. MicroRNAs (miRNAs) associated with different male reproductive disorders.

miRNA Sample Type/
Tissue Type Expression Level Target Gene(s)/

Signal Cascade Clinical Condition Altered Biological
Function(s) Reference

Hsa-miR-30a-5p Testicular tissue Up-regulation KDM3A Non-obstructive azoospermia

Testicular malfunction
or inadequate
gonadotropin

production

[88]

miR-210 Testicular tissue Up-regulation IGF2 Non-obstructive azoospermia

Testicular malfunction
or inadequate
gonadotropin

production

[89]

miR-10b-3p Testicular tissue Up-regulation - Non-obstructive azoospermia

Testicular malfunction
or inadequate
gonadotropin

production

[90]

miR-34b-5p Testicular tissue Down-regulation - Non-obstructive azoospermia

Testicular malfunction
or inadequate
gonadotropin

production

[90]

Hsa-miR-525-3p Sperm
cells Down-regulation SEMG1 Asthenozoospermia Reduced sperm

motility [94]

miR-141, miR-429,
miR7-1-3p

Sperm
cells Up-regulation - Non-obstructive azoospermia

Testicular malfunction
or inadequate
gonadotropin

production

[91]

miR-19b let-7a Seminal plasma Up-regulation - Non-obstructive
azoospermia/oligospermia

Spermatogenesis
failure [92]

hsa-mir-21 and,
hsa-mir-22

Sperm
cells Up-regulation ERβ Oligospermia

ERβ
expression

significantly low
[97]

miR-27a Semen Up-regulation CRISP2 Asthenoteratozoospermia

Impairment of sperm
motility, acrosome

reaction and gamete
fusion

[96]

miR-151a-5p Semen Up-regulation CYTB Asthenozoospermia
Impairment of sperm
motility by reducing

ATP production
[95]

hsa-miR-429 Semen Up-regulation - Subfertile and
non-obstructive azoospermia

Impairment of sperm
production [55]

hsa-miR-34b,
hsa-miR-34c-5p, and

hsa-miR-122
Semen Down-regulation - Subfertile and

non-obstructive azoospermia
Impairment of sperm

production [55]

4. Epigenetics in the Ovary and Oogenesis

The perturbation of epigenetic components within the oocyte may precipitate female
infertility [9]. Epigenetic processes encompass a plethora of cellular and molecular trans-
formations essential for early embryonic development. The complex interplay of cellular
behaviors that dictates zygotic development is reflective of the cellular organization pat-
terns within oocytes [98]. Deviations in methylation patterns and histone modifications
may compromise oogenesis, inducing aneuploidy within the fertilized egg and potentially
culminating in embryonic mortality. Epigenetic mechanisms implicated in follicular de-
velopment encompass DNA methylation, histone methylation, and histone acetylation [9].
Oocytes have completely different DNA methylation pattern compared with the DNA
methylation pattern observed in sperm or soma [99]. In the oocyte, CpG methylation takes
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place progressively before it attains the size of 70 µm. A fully mature oocyte accumulates
methylation at cytosine residues outside the CpG nucleotide. On the other hand, non-CG
methylation represents a significant part of the total methylation in oocytes. Overall, non-
CG methylation may appear low by position; however, it is found at significantly higher
levels in oocytes compared to other cell types and tissues [100,101].

The advanced age of a mother might negatively impact epigenetic alterations in
oocytes. The rate of pregnancy in mammalian models also decreases with advanced age,
which may be due to alteration in DNA methylation in oocytes [102,103]. DNA methylation
is crucial for imprinting of the genes; failure in imprinting creates congenital anomalies
including abnormal growth of placenta, fetal brain and metabolic disorders. Imprinted
loci are composed of single or multiple genes, and their expression is controlled by the
DNA methylation status of the imprinting control region (ICR) [99]. Hypomethylation of
multiple CpG sites of the LH/choriogonadotropin receptor (LHCGR) gene results in the
elevation of LHCGR transcription levels and is one of the leading causes of anovulation
in PCOS patients [103]. With advancing age, alterations also occur in histone acetylation
and methylation and in DNMT in oocytes, compromising female fertility and reproductive
outcomes [104]. For example, defective deacetylation of H4K12, which promotes elevated
levels of ROS in the cytoplasm [105,106], can lead to improper chromosome segregation,
potentially resulting in aneuploidy [106]. In the same way, reduced expression of Dnmt1,
Dnmt3a, Dnmt3b, and Dnmt3L have been noticed in mammalian old oocytes that alter
genome-wide methylation pattern in oocytes and compromise fertility potential [102]. The
involvement of altered DNMT1 expression in the onset of female infertility is confirmed by
studies on endometriosis. Endometriosis pathogenesis, a medical condition in which the
tissue that normally lines the inside of the uterus grows outside of it, leading to fertility
problems, is mainly regulated by hypoxia that down-regulates DNMT1 through miR-148a
and causes global hypomethylation, whereas inflammation triggers a rise in DNMT3a loci-
specific hypermethylation. Both hypoxia and inflammation regulate methylation of DNA
via miRNAs [107]. Scientific reports have suggested that aberrant methylation at promoters
and/or introns [108] of different genes such as aromatase (CYP19) [109], steroidogenic
acute regulatory protein (StAR) [110], cyclo-oxygenase (COX-2) [111], estrogen receptor (ER)
b12 [112], and steroidogenic factor (SF)-1 [35] can impair reproductive functions. Recent
studies have demonstrated that a number of altered miRNAs’ expressions are linked with
female reproductive disorders. Altered expression of miR-320a [113], miR-93 [114,115],
miR-132 [116], miR-222-3p [117], miR-126-5p and miR-29a-5p [118], miR-592 [119], and
miR-21 [120] have been associated with PCOS pathogenesis. Similarly, miRNAs such as
miR-29c [121], miR-194-3p [122], miR-191 [123], miR-199a-5p [124], and miR-20a [125]
have been linked with development of endometriosis pathogenesis. Ten altered miRNAs
have been associated with recurrent pregnancy loss, namely, hsa-miR-221-3p, has-let-7e,
hsamiR-16, hsa-miR-519d, hsa-miR-410, hsa-miR-184, hsa-miR-21, hsa-miR-125, hsa-let-7a
and hsa-let-7d, and miR-126 [126].

The altered miRNA expressions identified in the above-mentioned female disor-
ders are summarized in Table 2, with their altered functions and target genes and/or
signaling pathways.

Table 2. MicroRNAs (miRNAs) associated with different female reproductive disorders.

miRNA Sample Type/
Tissue Type Expression Level

Target
Gene(s)/
Signal

Cascade
Clinical Condition Altered

Biological Function(s) Reference

miR-320a Cumulus
granulosa cells Down regulation IGF1 PCOS Impaired steroidogenesis [113]

miR-93 Ovarian
granulosa cells Up-regulation CDKN1A PCOS

Promotion cell
proliferation and

progression of G1 to S
transition

[114]

miR-93 Adipose tissue Up-regulation GLUT4 PCOS Insulin resistance [115]
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Table 2. Cont.

miRNA Sample Type/
Tissue Type Expression Level

Target
Gene(s)/
Signal

Cascade
Clinical Condition Altered

Biological Function(s) Reference

miR-132 Follicular fluid Up-regulation Foxa1 PCOS Inhibition
granulosa cell viability [116]

miR-222-3p Serum Up-regulation PGC-1α PCOS

Increased risk of
cardiovascular

complication and
diabetes

[117]

miR-126-5p and
miR-29a-5p

Ovarian
granulosa cells Down-regulation

miR-126-5p, miR-29a-
5p/klotho/insulin-IGF-

1, Wnt and Akt signaling
pathway

PCOS
Apoptosis in granulosa
cell and enhance PCOS

progression
[118]

miR-592 Serum Down-regulation LHCGR PCOS
Inhibition of cell viability
and transition of phase

G1 to phase S.
[119]

miRNA-21 Serum Up-regulation LATS1 PCOS Promotion PCOS
progression [120]

miR-29c Endometrium
tissue Down-regulation c-Jun Endometriosis

Suppression of cell
proliferation and

promotion apoptosis
[121]

miR-194-3p Endometrial
stromal cells Up-regulation - Endometriosis Decrease progesterone

receptor expression [122]

miR-191 Serum Up-regulation TIMP3 Endometriosis Increased cell
proliferation [123]

miR-199a-5p Serum Down-regulation SMAD4 Endometriosis

Promotion cell
proliferation, motility

and angiogenesis leading
to endometriosis

progression

[124]

miR-20a Ovarian tissue Up-regulation NTN4 Endometriosis

Impairment of cell cycle
pathway and promotion
endometriosis through

angiogenic response

[125]

Hsa-miR-221-3p Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

Has-let-7e Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

HsamiR-16 Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

Hsa-miR-519d Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

Hsa-miR-410 Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

Hsa-miR-184 Blood plasma Up-regulation - Recurrent
pregnancy loss - [126]

Hsa-miR-21 Blood plasma Down-regulation - Recurrent
pregnancy loss - [126]

Hsa-miR-125 Blood plasma Down-regulation - Recurrent
pregnancy loss - [126]

Hsalet-7a Blood plasma Down-regulation - Recurrent
pregnancy loss - [126]

Hsa-let-7d Blood plasma Down-regulation - Recurrent
pregnancy loss - [126]

miR-126 Blood plasma Down-regulation - Recurrent
pregnancy loss

Involved in angiogenesis
through promoting
VEGF expression

[11]

5. Oxidative Stress and Critical Epigenetic Changes in Male Infertility

One of the most evident reasons for alterations in the sperm epigenome is its in-
teraction with both external and internal ROS. Furthermore, environmental factors, bio-
logical characteristics, aging, illness, obesity, and infertility also play significant roles in
these changes.

Evidence suggests that the environmental influences cause not only epigenetic modifi-
cations in the exposed organism but can also produce endogenous ROS through multiple
cellular mechanisms such as NADPH oxidase (NOX) complexes in cell membranes, mi-
tochondria, peroxisomes, and endoplasmic reticulum [19]. Evidence for the role of ROS
in modulating the DNA methylome has emerged from studies on cancer cells. These
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cells, often under oxidative stress, exhibit significant changes in their methylation sta-
tus [30]. Nevertheless, in non-cancerous tissues too, ROS may induce alteration in the
methylome [127–130].

A recent study has reported that higher oxidative stress level leads to hypermethyla-
tion of repetitive elements like LINE1 [131]. Several mechanisms may link increased ROS
levels to changes in DNA methylation patterns. For example, ROS-induced DNA damage
can modulate DNMT activity and alter the binding of DNMT-containing complexes [132].
Yet another study has demonstrated a noteworthy augmentation in the methylation of the
MLH1 gene promoter in patients suffering from oligozoospermia, when compared with con-
trols who had normal sperm count. This pattern has been found to be positively correlated
with heightened levels of ROS in semen. MLH1 gene plays a critical role in the DNA mis-
match repair process and in the crossing over during meiosis, making it a significant factor
in male fertility issues [133]. Oxidative stress may affect the sperm chromatin structure and
the epigenetic regulation in at least two relevant manners including the protamine content
and the epigenetic markers [134]. Therefore, it may induce DNA methylation alteration,
chromosome instability, DNA fragmentation, and sperm aneuploidy [135]. Studies have
demonstrated the association of semen ROS with abnormalities in transition of sperm
histone. Protamine in mature sperm can alter DNA neutrality, prevent RNA synthesis, and
restrict the expression of sperm genes [136–178]. Abnormalities in histone-to-protamine
transition may hinder sperm DNA stability and interfere with normal depolymerization
occurring in the sperm nuclei, thus deteriorating the fertilizing potential of sperm, as well
as embryonic development [139,140]. High ROS levels, via interference in sperm epigenetic
stability, turns out to be one of the most sorted risk factors in unexplained miscarriages and
failure in embryo development. Detailed mechanisms of ROS-induced abnormalities in
histone transition have not been documented yet.

To our knowledge, there is no study that has specifically investigated the effect of
oxidative stress on the alteration of DNA methylation in paternally and maternally im-
printed genes like H19/IGF2 and PEG1/MEST loci. In germ cell recombination process,
homologous chromosome hotspots remain hypomethylated and decondensed, and full
chromatins are condensed to facilitate the heterochromatin state [140,141]. Additionally,
it has been reported that the guanosines in telomeres, which are repeated TTAGGG se-
quences enriched with guanosine and several thousand base pairs long, are prime targets
for oxidative damage that structurally persists and cannot be repaired. Besides chromatin
methylation, telomere oxidation also contributes to gamete aneuploidy [142].

6. Oxidative Stress and Critical Epigenetic Changes in Female Infertility

Optimum levels of free radicals are crucial for the processes of cell communication,
correct operations in the formation of ovarian follicles, egg cell maturation, degradation of
corpora lutea, and the embedding of embryos and their subsequent growth [143–145]. ROS
result from exogenous oxidizing agents that include hypoxia, Hb, heme, and heavy metals
or from spontaneous reactions carried out in mitochondria or in metabolic process. Major
ROS include superoxide anion radical, hydrogen peroxide, and hydroxyl radical, which
play an important role in regulating cell survival, senescence, and aging through a variety
of mechanisms [146]. In endometriosis pathogenesis, oxidative stress plays a significant
role. Oxidative stress generates from hemoglobin (Hb)-, heme-, and ion accumulation-
induced ROS due to repeated hemorrhage [147]. Oxidative stress can alter epigenetic
processes by removing DNA and histone methylation marks. ROS convert Fe2+ to Fe3+,
thereby inhibiting Jumonji family histone demethylase activity and enhancing DNMT
activity [146–148]. On the other hand, ROS may cause site-specific alteration in the methy-
lation pattern through regulating the expression of DNMTs. Hydrogen peroxide (H2O2)
may induce hypermethylation at the target site by recruiting DNMTs [149]. Uncontrolled
methylation in endometriosis can cause activation or suppression of target genes involved
in hormonal regulation, cell cycle, cell adhesion, and tumor suppression activity. Oxidative
stress-induced DNA hypermethylation leads to defective endometrium maturation [147].
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In contrast, excess ooplasmic ROS has been linked to hyperacetylation of histone H4 at
lysine 12 in mammalian PCOS ovaries. Such altered epigenetic modification impairs the
maturation of oocytes, too [149]. As mentioned earlier, methylation takes place at CpG
islands, and guanine (G) is most sensitive to oxidative insult, leading to the formation
of 8-ox-deoxyguanosine. Similarly, oxidative byproducts of cytosine (C) include 5-OH C,
5,6- diOH C, and C glycol [150]. Due to base oxidation alterations to DNA site interactions
and transcription factors, aberrant heritable epigenetic changes may occur. An elevated
amount of 5HmC—a byproduct of C oxidation—contributes to alteration of epigenetic
process via disruptive DNA demethylation [32].

7. Male Infertility Candidate Epigenetic Biomarkers

In the context of fertility, a biomarker provides information about reproductive health
or the ability to conceive [63]. miRNAs can serve as biomarkers of male fertility or infertility
due to their regulatory roles in gene expression and their involvement in various reproduc-
tive processes. Changes in the expression profile of miRNA in patients experiencing various
forms of spermatogenic dysfunction could potentially lead to the development of novel
biomarkers for diagnostic use [56,85–87,91,93]. In germ cells, miR-34c is produced in the
late stages of meiosis (pachytene spermatocytes and round spermatids) [83,84,151]. It plays
a vital role in apoptosis, p53-mediated cell death, and the control of cell cycle, especially
the first cell division via modulation of Bcl-2 expression [83,84,151]. miR-34c expression
has been reported to be down-regulated in the seminal plasma of azoospermia patients
and up-regulated in the seminal plasma of AT patients [87]. miR-34b has reportedly been
down-regulated in both OA and azoospermia patients and highly expressed in normal
adult testis [152]. The putative target gene regulated by miR-34b and miR-34c is notch
gene homologue 1 (NOTCH1), which is highly expressed in mature testis and is requisite
for the differentiation and survival of germ cells [83,153]. miR-34b* has been observed
to be lowered in individuals diagnosed with NOA as well as in men having subfertility
issues associated with OAT [56,85]. miR-122 has been linked with reproductive health
issues, infections, inflammation, cell death, abnormal testis growth, and sperm produc-
tion [154,155]. It helps decrease the production of transition protein 2 (TNP2) by targeting
TNP2 mRNA’s UTR [156]. Structurally similar miR-449 is a possible indicator for sperm
production and testicular health [151,157–159]. It is expected to target genes involved
in apoptosis (caspase-2 and BCL2), transcription (NOTCH1), and hormone regulation
(inhibin βB) [160,161]. E2F transcription factor 1 (E2F1) positively influences miR-449 ex-
pression [162,163]. If E2F1 is lacking, sperm cell proliferation declines significantly, leading
to testicular shrinkage [164]. miR449 promotes cell death independently of p53, suggesting
that imbalances in these miRNAs could lead to increased cell death [85,165,166]. miRNAs
that seem to play a crucial role in oxidative stress and mitochondrial dysfunction have been
reported previously [167]. Excessive ROS or aging can also decrease sirtuin 1-targeting
(SIRT1) miRNA expression [168]. SIRT1 activation can improve oxidative stress response
and promote eNOS-derived NO bioavailability and mitochondrial biogenesis [169]. No-
tably, SIRT1 is also a target of miR-34, which significantly increases in the pro-apoptotic
pathway [169,170], as mitochondrial injury has been shown to correlate with oxidative
stress and specific miRNAs can affect mitochondrial integrity. miR-16 is a regulator of
ATP levels and down-regulates the expression of the ADP ribosylation factor-like 2 (Arl2)
mRNA as a common protein target [135]. In summary, most of these miRNAs likely have a
common function of limiting sperm production and promoting cell death.

8. Female Infertility Candidate Epigenetic Biomarkers

miRNAs are differentially expressed in different types of reproductive disorders, and a
single miRNA may target hundreds of genes and thus be involved in the complex molecular
network of female reproductive health [171]. miR-100-5p expression profiling may help in
the diagnosis of infertile female patients. It may serve as a diagnostic tool for identifying
the ovarian reserve in the female experiencing fertility related issues [172]. Additionally,
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miR-100-5p overexpression has been noted in endometriosis pathophysiology [173] while
lower expression of miR-100-5p was observed in the case of ectopic pregnancy [174]. In
patients with PCOS, there has been a noticeable decrease in the levels of miR-483-5p and
miR-486-5p in the cumulus cells of metaphase II oocytes. miR-483-5p has a significant
role in insulin resistance, and the reduced presence of miR-486-5p has been linked to
an increase in PTEN expression within cumulus cells. This overexpression of PTEN is
considered one of the potential causes of PCOS [175]. Expression profiling of both these
miRNAs can be a potential marker in the evaluation of PCOS. During follicular develop-
ment, miR-320 maintains steroidogenesis by targeting E2F1 and SF-1, and overexpression
of miR-320 in granulosa cells in PCOS pathogenesis has been associated with estrogen
deficiency via targeting RUNX2 [176]. In mammalian models, miR-28-5p has reportedly
reduced PCOS pathogenesis by targeting the 3′-UTR of PROK1, which has involvement
in the PI3K/AKT/mTOR signaling pathways, indicating the miR-28-5p/PROK1 axis as a
potential target in PCOS treatment [177]. Screening of a panel of five miRNAs—miR-17-5p,
miR-20a-5p, miR-143-3p, miR-199a-3p, and let-7b-5p—as an epigenetic signature with
high sensitivity (0.96) and specificity (0.79), similar to laparoscopy, has been suggested
in order to distinguish normal healthy females from endometriosis patients [178]. The
critical function of miRNAs in sustaining female fertility cannot be overstated, and any
modification(s) to these miRNAs can have negative implications for fertility capabilities.
For example, studying miR-100-5P, miR-483-5p, and miR-486-5p may shed light on the
complex molecular processes behind changes in female fertility.

Recent literature supports the hypothesis that miRNAs and oxidative stress are linked
through a vicious cycle and that oxidative stress regulates the biosynthesis of numerous
miRNAs. In contrast, aberrant expression of miRNAs leads to the development of oxidative
stress by facilitating the generation of ROS or reducing endogenous antioxidant poten-
tial [179–182]. It has been shown that up-regulation of miR-200c impairs the regulatory loop
among SIRT1, FOXO1, and eNOS and elevates ROS production and reduces cellular NO
level, leading to endothelial cell growth disruption. This event promotes ROS production
and decreases NO, contributing to endothelial dysfunction and apoptosis [183]. In the case
of endometriosis, miR-21, miR-23a-3p, and miR-9-5p have been linked to the regulation of
ROS production. Both miRNAs and oxidative stress may generate separate effects such as
increased invasiveness, proliferation, and apoptosis, leading to endometriosis [184,185].

9. Conclusions and Future Perspective

Epigenetic processes significantly maintain male and female fertility, with emerging
data implicating epigenetic alterations in idiopathic infertility. This involves DNA methy-
lation, histone modifications, and miRNA-mediated post-transcriptional gene regulation
affecting physiological and pathological functions, including spermatogenesis, oogene-
sis, and associated reproductive disorders. An exhaustive literature survey underscored
aberrant miRNA concentrations in human semen during NOA, oligospermia, and astheno-
zoospermia, and in follicular fluid in clinical conditions like PCOS, endometriosis, and
recurrent pregnancy loss, revealing that specific miRNAs are emerging as crucial biomark-
ers for the diagnosis and management of infertility in both men and women (Figure 2).

In men, miRNAs such as miR-34c, miR-34b, miR-122, and miR-449, which are involved
in key processes related to sperm production, germ cell survival, and testicular health, ap-
pear to be the main candidates. For instance, miR-34c and miR-34b regulate apoptosis and
cell cycle progression, which are vital for maintaining normal spermatogenesis. Meanwhile,
miR-122 is associated with reproductive health issues such as infections and abnormalities
in testicular growth. The role of these miRNAs in regulating oxidative stress and mito-
chondrial function further underscores their potential in the diagnosis and development of
therapeutic strategies for male infertility.

In women, miRNAs such as miR-100-5p, miR-483-5p, and miR-486-5p are essential for
assessing ovarian reserve and are implicated in conditions like PCOS and endometriosis.
Dysregulation of these miRNAs can impact hormonal regulation, insulin resistance, and
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oxidative stress, contributing to fertility issues. Additionally, panels of miRNAs, including
those like miR-17-5p and let-7b-5p, are being studied for their potential to provide accurate
diagnoses for conditions such as endometriosis, thus assisting healthcare providers in
making informed therapeutic decisions. These findings validate the potential of ncRNAs as
diagnostic and prognostic biomarkers, augmenting the therapeutic management of infertile
couples and addressing unexplained infertility issues.

Cells 2024, 13, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 2. Key candidate microRNAs and other molecules as biomarkers of human fertility. miRNAs 
are involved in the regulation of gene expression in key processes of male reproduction such as 
sperm production, apoptosis, cell survival, and oxidative processes. In women, they are associated 
with ovarian reserve and conditions like polycystic ovary syndrome (PCOS) and endometriosis. The 
analysis of their expression profiles can provide valuable information for the diagnosis and man-
agement of fertility issues. 

While considerable progress has been achieved in epigenetic drug development for 
pathological conditions, such as cancer, we still need to tread a significant path for fertility 
treatment. The aim in infertility management should be pre-empting epigenetic altera-
tions. A robust association exists between oxidative stress and certain epigenetic changes, 
with excess ROS leading to alterations in DNA methylation, acetylation patterns, and the 
biosynthesis of fertility-related miRNAs. Thus, combating oxidative stress may offer an 
immediate, simpler strategy to prevent epigenetic disorders inducing reproductive fail-
ure. 

Multiple studies attest to the positive impact of antioxidants on seminal parameters 
and female reproductive functions [186–189], thereby suggesting their potential role in 
modulating ROS-dependent epigenetic mechanisms causing infertility. 

Future research should focus on the epigenomic evaluation of post-antioxidant ther-
apy in infertile individuals to elucidate the specific molecules’ influence on the reproduc-
tive epigenome. Current evidence supporting antioxidants’ benefits on fertility suggests 
their potential as a basis for developing efficacious infertility therapies. 

Figure 2. Key candidate microRNAs and other molecules as biomarkers of human fertility. miRNAs
are involved in the regulation of gene expression in key processes of male reproduction such as
sperm production, apoptosis, cell survival, and oxidative processes. In women, they are associated
with ovarian reserve and conditions like polycystic ovary syndrome (PCOS) and endometriosis.
The analysis of their expression profiles can provide valuable information for the diagnosis and
management of fertility issues.

The precise identification of epigenetic modifications facilitates comprehensive infertil-
ity diagnosis, superseding traditional methods. As epigenetic modifications are potentially
reversible, unlike genetic mutations, they propel scientific efforts towards novel therapeu-
tics to reinstate proper epigenetic expression.

While considerable progress has been achieved in epigenetic drug development for
pathological conditions, such as cancer, we still need to tread a significant path for fertility
treatment. The aim in infertility management should be pre-empting epigenetic alter-
ations. A robust association exists between oxidative stress and certain epigenetic changes,
with excess ROS leading to alterations in DNA methylation, acetylation patterns, and the
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biosynthesis of fertility-related miRNAs. Thus, combating oxidative stress may offer an
immediate, simpler strategy to prevent epigenetic disorders inducing reproductive failure.

Multiple studies attest to the positive impact of antioxidants on seminal parameters
and female reproductive functions [186–189], thereby suggesting their potential role in
modulating ROS-dependent epigenetic mechanisms causing infertility.

Future research should focus on the epigenomic evaluation of post-antioxidant therapy
in infertile individuals to elucidate the specific molecules’ influence on the reproductive
epigenome. Current evidence supporting antioxidants’ benefits on fertility suggests their
potential as a basis for developing efficacious infertility therapies.

This comprehensive study provides invaluable insights into the intricate interplay
of epigenetic processes in fertility and infertility, emphasizing the need for further inves-
tigation and development in this area. The revelations contained herein are of pivotal
importance to the field of reproductive medicine, heralding new avenues for diagnosing,
preventing, and treating fertility issues.
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