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Abstract: The identification of informative molecular markers is useful for linkage mapping and
can benefit genome-wide association studies by providing fine-scale information about sequence
variations. However, high-throughput genotyping approaches are not cost-effective for labs that
require frequent use, such as breeding programs that need to perform genotyping on large populations
with hundreds of individuals. The number of single nucleotide polymorphism markers generated
by those approaches can be far more than needed for most breeding programs; instead, breeders
focus on the use of at most hundreds of polymorphic molecular markers for analysis. To help
make use of molecular markers a routine tool for breeding programs, we aim to develop a cost-
effective genotyping system by using the Tecan Allegro Targeted Resequencing V2 kit. This provides
a customized probe design, which indicates that all the DNA fragments synthesized are known
targets. SNPs obtained from previous peanut next-generation sequencing data were pre-filtered
and selected as targets. These SNP targets were polymorphic among different tetraploid accessions
and were selected to be distinguishable from paralogs. A total of 5154 probes were designed to
detect 2770 SNP targets and were tested on 48 accessions, which include some closely related sister
lines from a breeding population. The results indicated that genotyping by a targeted resequencing
approach reduced the cost from around USD 28 (SNP chip and GBS) to USD 18 per sample, while
providing polymorphic markers with accurate SNP calls. With this cost-effective genotyping platform,
pre-selected SNP markers can be used effectively and routinely for more breeding programs.

Keywords: genotyping; resequencing; SNP; target; genome

1. Introduction

Genotyping has been used broadly for years in multiple scientific programs to pro-
vide deoxyribonucleic acid (DNA) information by detecting sequence variations. These
genetic variations can be designed into molecular markers and are useful for research
such as linkage mapping, quantitative trait locus (QTL) analysis, genome-wide association
studies (GWAS), and marker-assisted selection (MAS). Traditional methods of genotyping
use molecular markers by running gel electrophoresis, which is now considered low-
throughput due to the limited number of samples per run and the need for a larger amount
of DNA, extra time, and effort [1]. High-throughput genotyping approaches, including
whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) chip DNA
microarrays, usually generate tens of thousands or more markers. However, the number
of SNPs generated from these approaches is far more than needed for most breeding pro-
grams; instead, breeders generally focus on the use of a few to hundreds of polymorphic
molecular markers at most for linkage mapping and QTL analysis [2]. One limiting factor
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is that the statistical power is decided more by the population size than the number of
markers [3]. Additionally, it is expensive for labs that require marker use as a routine tool,
such as breeding programs that need to perform genotyping on large populations with
hundreds of individuals. When the breeding population is large, the cost of genotyping
could become too high. Therefore, developing a more economical genotyping system of
marker analysis in breeding populations can help make the use of molecular markers a
routine and affordable tool for breeding programs.

Peanut, Arachis hypogaea, as one of the most important legume crops, involves intensive
breeding programs that require large populations with hundreds of accessions. The peanut
genome is complex due to being polyploid, and the A and B genomes share around
98% similarity [4,5]. Before the Tifrunner reference genome was sequenced, employing
Hi-C sequencing and Pac-Bio reads, the highly similar homoeologous and paralogous
sequences increased the error rate of sequence alignment, which made accurate genotyping
a challenging task [6]. When diploid sequences were the only available peanut genome
references, SNP data were either analyzed by aligning sequence reads against diploid
references or generated using the SNP chip array, which was also designed based on
diploid references [6,7]. SNPs identified from the SNP chip array were designed to be
only true SNPs, which were polymorphic among individuals at each pair of chromosomes,
instead of between subgenomes [8]. However, version 1 of the SNP chip suffered from a
lower-than-expected resolution of homoeologous sequences [9]. Version 2 used improved
tools to enhance the resolution of such sequences [8].

Identifying true SNPs is important for accurate genotyping and mapping results. Since
the tetraploid genome reference was released in 2017, it has provided more useful sequence
information for projects that use tetraploid cultivated peanuts as materials [4]. Performing
a basic local alignment search tool (BLAST) search for sequences against the Tifrunner
genome reference can help identify highly similar sequences such as homoeologs and
paralogs [6,10,11]. It is beneficial to distinguish sequences among homologous regions
using a BLAST search for a more accurate sequence alignment and genotyping. To facilitate
peanut breeding programs, it becomes important to develop an economical platform
featuring flexibility to select the true SNP targets. Based on pre-existing SNP knowledge
such as the polymorphism information content (PIC), number of paralogous regions, and
significance associated with traits of interest, sequencing efforts would be made to cover
genome regions that provide useful genetic information. This reduces the need to sequence
for more reads and, therefore, reduces the cost of genotyping.

The Tecan Allegro Targeted Resequencing V2 kit (Tecan Trading AG, Männedorf,
Switzerland) provides a customized probe design, which allows customers to select their
own SNP targets and send target chromosome/position and reference genome sequence
information to Tecan Allegro for designing the probes. In use, probes are ligated to the
regions of the target sites, and the DNA fragments are amplified using reagents in the Tecan
Allegro Targeted Resequencing V2 kit. The kit is compatible with Illumina sequencing
platforms, such as HiSeq, MiSeq, MiniSeq, NextSeq, and NovaSeq, and has been used for
at least 85 different species, such as mouse, sheep, horse, black poplar, and maize [12–15].
While the SNP chip and genotyping by sequencing (GBS) approaches can generate around
15 to 50 or more thousand SNPs, the numbers of markers are far more than a breeding
program would need, and the cost is from USD 28 to USD 50 per sample. Using this
genotyping by targeted resequencing system reduces the cost, with hundreds or thousands
of useful SNP markers generated, making it a suitable and cost-effective genotyping
platform for breeding programs. In addition, unlike a SNP chip, for which targets are fixed,
or unlike restriction site-associated DNA sequencing (RAD-Seq), where targets cannot be
selected, this targeted resequencing system provides the availability to customize probes.

This research proposes to develop a reduced-cost genotyping system by using the
Tecan Allegro Targeted Resequencing V2 kit with a goal to reduce the cost to around USD
15 to USD 20 per sample. We aim to select true SNPs that are highly polymorphic as this is
an important step for developing useful SNP markers, and this helps increase the accuracy
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rate of calling SNPs, with a reduced chance of misalignment due to short reads. In this
research, we chose to select true SNPs that are distinguishable from their homoeologs
and paralogs, using SNPs obtained from previous peanut next-generation sequencing
(NGS) data, including the Arachis Affymetrix Axiom_Array2 SNP chip [8,9], RNA-Seq,
Kompetitive Allele-Specific PCR (KASP) markers, and WGS data. To test the probes
on multiple peanut accessions, we screened a subset of 48 peanut accessions, including
check varieties, minicore accessions, closely related breeding lines, and some diploids. We
expect these DNA samples would predict the utility of these markers among accessions
of a large germplasm array. The identified SNP markers that are polymorphic among
closely related peanut accessions and breeding populations will be useful for future peanut
breeding programs.

2. Materials and Methods
2.1. Target Selection

The Tecan Allegro Targeted Resequencing V2 kit supports up to 2500 targets for
192 samples. To use it as a trial experiment (see Figure 1 for the workflow), the targets were
selected from different sources including SNP chip targets, transcriptome sequence data,
KASP markers, and WGS data.
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2.1.1. SNP Chip Data

The SNP chip data were collected from minicore samples of a drought experiment in
2017 (Sung and Burow, unpublished) using the Affymetrix Arachis Axiom_Array2 (Thermo
Fisher Scientific Inc., Waltham, MA, USA) [8,9]. The information about the chromosomes
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and positions of the 8189 “PolyHighResolution” SNPs was first used to extract sequences
flanking the two sides of each SNP site from the diploid reference sequences. Each extracted
sequence was 601 bases long, with 300 bases flanking each side of the SNP site. These
8189 sequences were then aligned against Tifrunner reference (ver. 1) [4] using BLAST (ver.
2.11.0) [16–18] with an e-value of 1 × 10−50 to examine the number of matches. BLAST was
performed locally on a Supermicro AMD server running the CentOS 6 operating system.

Sequences with many BLAST matches may have many paralogs, which would result
in greater difficulty in obtaining accurate sequence alignment and genotyping. To eliminate
sequences with a large number of paralogs, we first dropped sequences that had more than
55 BLAST hits; this threshold removed approximately 40% of the targets. After removing
sequences that had more than 55 BLAST hits against Tifrunner per locus, there were 5653
sequences left (Table 1). The SNP chip genotype data of these 5653 sequences were then
used to calculate the polymorphism information content (PIC) value for each marker, using
the genotypes of the minicore accessions to measure the informativeness of polymorphic
DNA markers using the following equation [19–21]:

PIC = 1 −
n

∑
i=1

pi2 − 2
n−1

∑
i=1

n

∑
j=i+1

pi2pj2

where pi was the frequency of the marker allele, and n was the number of different
alleles. There were 3339 SNPs with PIC values greater than 30% (Table 1). Each of the
3339 sequences was then compared with its output from the BLAST results to filter out
sequences that were identical to any homoeologous or paralogous region within the range
of 300 bases on each side. An example of this step was shown in Figure 2 using BLAST
results with four matches, where the first match with the highest score was the best match,
and it was taken as the target sequence. For example, the target sequence was located on
chromosome A03; therefore, one of the other matches on B03 could be the homoeologous
sequence, and the rest would be paralogous sequences (Figure 2). It would be difficult
to distinguish the target genotype from the homoeologs and paralogs if their sequences
flanking the target site were identical. Therefore, it was important to make sure that none of
the homoeologous/paralogous sequences was identical to the target sequence. Only targets
with distinguishable homoeologs and paralogs were selected. In the example in Figure 2,
the 21st nucleotide (circled in red) was the target site, and the nucleotides that were pointed
out by green arrows were the flanking SNPs, which made them distinguishable from the
target sequence. The flanking SNPs were important, because they provided information to
distinguish targets from homoeologs and paralogs and helped to select true SNPs.

Table 1. The number of remaining target sites for each filtering step using SNP chip data.

Minicore SNP Chip Data Filtering Steps # Sites

Total raw sites 47,837
Only select “PolyHighResolution” 8189
BLAST matches < 56 (each query) 5653

PIC > 30% for the SNP target 3339
Matched to Tifrunner with the target site 3339

With distinguishable paralogs/homoeologs 3178
True SNPs (final targets) 2128

After filtering out sequences that were identical to any homoeologous or paralogous
region, each of the remaining 3178 sequences was then examined at the target site for the
bases of the target and its possible homoeolog (Table 1). Due to the high similarity of
A and B genomes, sequence reads that had different bases appearing at the target sites
on both the target sequence and the homoeologous sequence could be aligned together
in error and called as a SNP that was not a true SNP. To reduce the chance of selecting
targets that are not true SNPs, we examined each of the 3178 sequences by comparing its
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target sites at the target sequence and the homoeologous sequence based on the Tifrunner
reference output from BLAST results (see Figure 2 as an example). If different nucleotides
are observed, there is a higher chance that the polymorphisms previously detected in the
SNP chip analysis were just differences between targets and their homoeologous sites. After
removing 1050 sequences that had polymorphisms between targets and their homoeologous
sites, a total of 2128 sequences that had the same nucleotide at target sites were kept. These
2128 target sites were then selected for designing probes and were named with a beginning
of “M_”.
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2.1.2. RNA-Seq Data

A total of 306,820 SNPs were identified from a de novo assembly of RNA-Seq data
using the OLin transcriptome sequence as a reference [22]. Among the 12 tetraploid
cultivated accessions (BSS56, COC155A (PI502111), COC224 (PI290538), COC367 (PI268868),
COC559 (PI158854), PI648241, PI648242, Jupiter, New Mexico Valencia C (NMValC), OLin,
Tamrun OL07, and UF439), there were 87,782 SNPs showing polymorphism, and 73,872
of them had PIC values greater than 30% (Table 2). Among them, there were 43,946 SNPs
with a read depth (DP; summed across the 12 accessions) greater than 99 (Table 2). After
removing SNPs with a DP of less than 10 for any accession, there were 8119 SNPs left
(Table 2). These SNPs were filtered with a genotype quality (GQ) greater than 29, leaving
5297 SNPs (Table 2). A total of 5171 SNPs that had the contig sequences available were
then prepared into shorter sequences with the SNP sites as the start positions for BLAST
against the Tifrunner reference (ver. 1). Transcriptome sequences were cDNA sequences,
which consisted of only the DNA sequences of the exons. After running BLAST against the
genome reference, some results showed up as fragmented matches because the gaps were
introns, making it challenging to trace the same SNP positions. Therefore, using the SNP
site as the start position for BLAST was important to keep track of the target position. The
purpose of running this first BLAST was to obtain the corresponding information about the
chromosome and position on the Tifrunner reference (ver. 1) for each SNP.

Table 2. The number of remaining SNPs for each filtering step using transcriptome data.

Transcriptome SNP Data Filtering Steps # SNPs

Total raw SNPs 306,820
Polymorphic among 12 tetraploid accessions 87,782

PIC > 30% 73,872
Overall DP > 99 43,946

Individual DP > 10 8119
Individual GQ > 30 5297

With available contig sequences 5171
BLAST matched to Tifrunner 4802

Matched to Tifrunner with the SNP site 3092
Mapped to more than one chromosome 514

Matched target/homoeologous chromosomes 279
With distinguishable paralogs/homoeologs 180

True SNPs (Final targets) 160
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After BLAST, sequences that had no match to the Tifrunner reference were removed,
and the remaining 4802 sequences were then checked at their first positions to remove the
ones that did not have a match at the SNP sites (Table 2). There were 3092 sequences left,
and they were checked for the number of chromosomes mapped to (Table 2). Ideally, each
sequence should map to at least two chromosomes, which are the target chromosome and
its homoeologous chromosome, with zero to a few matches at the paralogous sites. At
this step, sequences that were mapped to only one chromosome were removed, resulting
in 514 sequences left (Table 2). This was because the SNPs used here were called in the
past without examining whether they were true SNPs or not; therefore, obtaining base
information from both the target site and its possible homoeologous site was important.
The expected polymorphism should be among different accessions instead of between the
target site and its homoeologous site. If the base on the target site was different from the
base on the homoeologous site, there was a higher chance that this SNP was not a true
SNP. For a better resolution of selecting true SNPs, it was important to compare the bases
on both the target site and its possible homoeologous site and make sure they were the
same. This might remove some true SNPs that had different bases on the target site and
its homoeologous site, however. This step was not performed in the SNP chip dataset,
because the SNP chip Affymetrix Axiom_Arachis2 was already designed to be able to
distinguish the homoeologs [10]. The transcriptome SNP data were not examined in the
past by any filtering methods such as SWEEP or BLAST to distinguish A and B genomes;
therefore, there was a need to examine the SNP sites on both the target chromosome
and its homoeologous chromosome to have higher confidence of selecting true SNPs. By
completing this step, 279 sequences had BLAST results matched on both the target site and
its possible homoeologous site (Table 2).

The information about the chromosome and position of each of the 279 SNPs was used
for extracting flanking sequences using the Tifrunner reference (ver. 1). Each extracted
sequence was 601 bases long, with 300 bases flanking each side of the SNP site. These
279 sequences were then used for the second BLAST run against the Tifrunner reference
(ver. 1) with an e-value of 1 × 10−50 for a better search of paralogs. Running the second
BLAST using Tifrunner sequences could provide a better search of the sequences on
the homoeologous and paralogous regions. To be able to distinguish the targets from
the homoeologous and paralogous reads, each sequence flanking the SNP site should
be different from any of its homoeologous and/or paralogous sequences. Each of the
remaining 180 sequences was then examined at the SNP site for bases on both A and B
homoeologous positions (Table 2). To reduce the chance of selecting targets that are not
true SNPs, a total of 160 SNPs that had the same bases on the homoeologous positions
were kept based on the SNP data of the Tifrunner reference output from the BLAST results
(Table 2). These 160 SNPs were selected as targets for designing probes and were named
with a beginning of “T_”.

2.1.3. KASP Data and WGS Data

There were five KASP markers used in this research, including three root-knot ne-
matode (RKN [23]) resistance SNP markers and two fatty acid desaturase SNP markers
(FAD2A and FAD2B [24]). The chromosome and position information about these five SNP
targets was collected for designing probes and named with a beginning of “K_”. Also,
611 SNP targets from WGS using the ICRISAT reference data with Tifrunner (ver. 2) were
included in this research [25]. These 611 SNPs were selected as targets for designing probes
and were named with a beginning of “R_”. The chromosome and position information
about these SNP targets from various sources was then combined. A total of 2904 targets
were selected, and the information along with the references were sent to Tecan Allegro for
the designing of custom probes (Table 3).
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Table 3. A total of 2904 targets were selected and sent to Tecan Allegro for the designing of
custom probes.

SNPs Sources Polymorphic in A
Genome

Polymorphic in B
Genome Total

SNP Chip 872 1256 2128
Transcriptome 100 60 160

KASP SNPs 4 1 5
WGS 353 258 611

Total 1329 1575 2904

2.2. DNA Extraction

The Tecan Allegro Targeted Resequencing V2 kit is designed to include 48 samples at
a time to process for one DNA library. To test the kit and run a trial experiment, 48 out of
192 reactions of the kit were used in this research. A total of 48 different peanut accessions
were chosen for this trial experiment as representatives of different types of populations to
check if there will be SNPs identified among closely related accessions, such as sister lines
in a breeding population and some U.S. peanut minicore collections that shared similar
admixture proportions based on their STRUCTURE graph (Sung and Burow, unpublished).
These 48 genotypes were categorized into 16 groups, and DNA was prepared from seed
samples including eight wild species accessions (seven diploid genotypes and one synthetic
tetraploid genotype, TxAG-6) and 40 cultivated genotypes (Table 4).

DNA was extracted using a modified Qiagen (Qiagen Inc., Valencia, CA, USA)
DNAeasy protocol for peanut seeds. The end of each seed was cut as approximately
a 20 mg cotyledon piece from the distal end and placed into a 1.5 mL centrifuge tube.
After adding 600 µL of peanut nuclei lysis buffer (PNLB) [42] into each tube, samples were
ground with a pestle until no large pieces remained. Then 6 µL of RNase A (10 µg mL−1)
was added, followed by vortexing, and then tubes were incubated for 10 min at 65 ◦C.
Tubes were inverted two to three times during incubation. Then 200 µL of 5M KOAc pH
4.8 were added into each tube, followed by mixing and incubation for five minutes on ice.
After incubation, the lysate was placed into a microcentrifuge and run for five minutes at
20,800× g. Then 400 µL of supernatant were transferred to a new 1.5 mL centrifuge tube
without disturbing the cell debris pellet. After adding 600 µL of binding buffer AP3/E
(one part 5M guanidine hydrochloride to which were added two parts ethanol before
use), the sample was mixed immediately by pipetting, and 650 µL of the mixture were
transferred to an EconoSpin DNA/RNA mini spin column (Epoch Life Science, Houston,
TX, USA) placed in a collection tube. After centrifuging for one minute at 20,800× g, the
flow-through was discarded. The remaining sample mixture was transferred to a spin
column and centrifuged for one minute at 20,800× g. After discarding the flow-through,
500 µL of washing buffer AW/E (10mM Tris HCl pH 8.0, to which are added four parts
ethanol) were added to wash away salts. After centrifuging for one minute at 20,800× g,
the flow-through was discarded. Then 500 µL of Buffer AW/E were added again for a
second wash, followed by centrifuging for two minutes at 20,800× g. Then the spin column
was transferred to a new 1.5 mL centrifuge tube with 100 µL of elution buffer AE (10 mM
Tris HCl pH 8.0) directly added onto the membrane. After five minutes of incubation at
room temperature, each tube was centrifuged for one minute at 20,800× g to elute the DNA.
The final tubes with 100 µL extracted DNA were stored in the −20 ◦C freezer.

The extracted DNA samples were measured for concentration using the QuantiFluor
dsDNA system (Promega, Madison, WI, USA) on a Tecan F200 Infinite plate reader fluo-
rometer (Tecan, Zürich, Switzerland).
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Table 4. The list of 48 genotypes categorized into 16 groups with DNA concentration in ng/µL.

Group # Genotypes Notes Descriptions Conc.

1
1 A. duranensis GKBSPSc 30067 A genome

Diploid parents
16

2 A. ipaënsis GKBSPSc 30076 B genome 16

2
3 Georgia-09B [26] run
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Similar admixture proportions
(runner)

16

4 COC155B (PI502111) [27] run 16

3
5 COC080 (PI494018) [28] Spa Similar admixture proportions

(Spanish)
16

6 COC082 (PI494034) [28] Spa 16

4
7 COC233 (PI290536) [29] run Similar admixture proportions

(Virginia/bunch)
16

8 COC246 (PI343398) [28] Vir bun (Spa bun) 16

5
9 COC038 (PI493581) [29] Val Similar admixture proportions

(Valencia)
16

10 COC053 (PI493729) [28] Val 16

6

11 COC310 (PI337406) [28] Val
Similar admixture proportions

(Valencia)

16

12 COC334 (PI159786) [28] Val 16

13 COC760 (PI471952) [28] Val-Spa 16

7

14 TxL054529-27 Val

Valencia sister lines

16

15 TxL054529-33 Val (TAMVal OL14 [30]) 16

16 TxL054529-48 Val 16

8

17 TxL080243-06 run (Tamrun OL19 [31])

runner sister lines

16

18 TxL080287-05 run 6.30

19 TxL080256-02 run (Tamrun OL18L [31]) 16

9

20 TxL090106-15 Vir
Virginia sister lines

16

21 TxL090105-07 Vir 16

22 TxL090206-41 Vir 16

10
23 TxL054520-27 Spa

Spanish sister lines
16

24 Schubert [32] Spa 16

11

25 Tamspan 90 [33] Spa (TS90-1)
Bulk variety of 38 lines

16

26 Tamspan 90 Spa (TS90-2) 10.77

27 Tamspan 90 Spa (TS90-3) 16

12
28 TxL100212-03-03 Single seed (Higher yield) Drought test breeding line and

the parent
16

29 ICGS 76 [34] Drought parent (Lower yield) 16

13

30 OLin [35] High O/L Spa High and low O/L checks for
FAD2A and FAD2B; Four

cultivars represented four market
classes in the Southwestern

United States

16

31 Tamrun OL07 [36] High O/L run 16

32 Jupiter [37] Low O/L Vir 5.13

33 NMValC [38] Low O/L Val 16

14

34 A. cardenasii GKP10017

RKN resistant Parents of TxAG-6

16

35 A. diogoi GK10602 16

36 A. batizocoi K9484 16

37 TxAG-6 [39] RKN resistant 16

38 UF439-16-10-3-2 RKN susceptible Florunner component line
recurrent parent 16

39 BC1-43 [40] BC1

BC1 lines from
TxAG-6 × UF439-16-10-3-2 cross

16

40 BC1-46 BC1 16

41 BC1-50 BC1 16

42 BC1-60 BC1 16

43 BC3-43-09-03-02 [40] BC3
BC3 lines from

TxAG-6 × UF439-16-10-3-2 cross

16

44 BC3-60-02-03-02 BC3 16

45 BC3-63-04-02-02 [40] BC3 16

15
46 A. magna K30097of Orange flowers

Different flower colors
6.61

47 A. magna K30097yf Yellow flowers 16.25

16 48 Tifrunner [41] run Reference accession 16
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2.3. Library Prep and Sequencing
2.3.1. Enzymatic Fragmentation

The steps of the library preparation were completed by following the Tecan Allegro
Targeted Genotyping V2 user guide (Publication Number: M01501; Revision: v2; https:
//www.tecan.com/doc/allegro-targeted-genotyping-v2-user-guide-pdf-m01501, accessed
on 1 April 2022). Before starting, the 48 peanut genomic DNA samples were pipetted
into a 96-well plate at a concentration of approximately 80 ng in 5 µL of nuclease-free
water for each sample. The fragmentation master mix was made by combining 184.8 µL
of fragmentation buffer mix and 79.2 µL of fragmentation enzyme mix. After adding
5 µL of fragmentation master mix to each DNA sample and mixing well, the 96-well plate
was sealed and placed in a thermal cycler programmed to run Program 1 (Enzymatic
Fragmentation: 25 ◦C—15 min, 75 ◦C—20 min, hold at 4 ◦C).

2.3.2. Adapter Ligation

After Program 1, each of the 48 fragmented samples (10 µL) was mixed with a unique
single-index barcoded adapter (3 µL). The ligation master mix was made by combining
158.4 µL ligation buffer mix, 39.6 µL ligation enzyme mix, and 118.8 µL nuclease-free water.
After adding 6 µL ligation master mix to each sample and mixing well, the 96-well plate
was sealed and placed in a thermal cycler programmed to run Program 2 (Adapter Ligation:
25 ◦C—30 min, 70 ◦C—10 min, hold at 4 ◦C).

2.3.3. Probe Binding, Hybridization, and Extension

After Program 2, the 48 reactions were pooled into a single 2.0 mL Eppendorf LoBind
tube with a total volume of approximately 900 µL and mixed with 450 µL of room-
temperature Agencourt (Beckman-Coulter, Brea, CA, USA) beads. Beads carrying DNA
were then washed with 70% ethanol. After the purification and elution steps, 32 µL of
the purified pool were transferred to a 0.2 mL tube. The target extension master mix was
made by combining 7 µL of target extension buffer mix and 10 µL of Allegro custom probe
mix (number ST2291G_1). After adding 17 µL of target extension master mix to the 32 µL
pooled sample and mixing well, the 0.2 mL tube was sealed and placed in a thermal cycler
programmed to run Program 3 (Probe Binding, Hybridization, and Extension: 95 ◦C—
5 min, 200 cycles (80 ◦C—10 s, decrease temp 0.1 ◦C each cycle), 60 ◦C hold, 72 ◦C—10 min,
hold at 4 ◦C). It is important to note that the incubation step at 60 ◦C should be held for
more than 12 h. While the tube was still in the thermal cycler at 60 ◦C, 1 µL target extension
enzyme was added to the tube and mixed well before the thermal cycler was advanced to
the 72 ◦C step.

2.3.4. Library Amplification

After Program 3, post-enrichment purification steps were performed by adding 50 µL
of room-temperature nuclease-free water to bring the total volume of the sample to 100 µL
and mixing with 80 µL of room-temperature Agencourt beads. Beads were then washed
by using 70% ethanol for purification. After the purification and elution steps, 24 µL of
the enrichment pool was transferred into a fresh tube for further library amplification.
To determine the appropriate number of library amplification cycles, real-time PCR was
performed. The real-time PCR master mix was made by combining 13.2 µL amplification
buffer mix, 5.28 µL amplification primer mix, 1.32 µL amplification enzyme mix, 2.64 µL
amplification enhancer mix, 3.3 µL 20X EvaGreen (Biotium, CA, USA) reagent, and 27.06 µL
nuclease-free water. The enrichment pool was diluted 1:8 by combining 2 µL of the
enrichment pool with 14 µL of nuclease-free water. In this study, we made three duplicates
of the diluted enrichment pools for real-time PCR. After adding 8 µL of the real-time
PCR master mix to 2 µL of each of the three diluted enrichment pools and three no-
template controls and mixing well, the qPCR plate was sealed and placed in the Roche
LightCycler® (F. Hoffmann-La Roche, Basel, Switzerland) 480 instrument programmed
to run the real-time PCR program (37 ◦C—10 min, 95 ◦C—3 min, 35 cycles (95 ◦C—30 s,

https://www.tecan.com/doc/allegro-targeted-genotyping-v2-user-guide-pdf-m01501
https://www.tecan.com/doc/allegro-targeted-genotyping-v2-user-guide-pdf-m01501
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62 ◦C—15 s, 72 ◦C—20 s)). The amplification plot was examined, and the cycle number for
late exponential phase amplification was determined to be 22.

The appropriate number of library amplification cycles was 19, which was calculated
by subtracting three cycles from the 22 cycles determined based on the real-time PCR result.
The library amplification master mix was made by combining 20 µL amplification buffer
mix, 8 µL amplification primer mix, 2 µL amplification enzyme mix, 4 µL amplification
enhancer mix, and 46 µL nuclease-free water. After adding 80 µL of the amplification
master mix to 20 µL of the enrichment pool and mixing well, the PCR tube was sealed and
placed in a thermal cycler programmed to run Program 4 (Library Amplification: 37 ◦C—
10 min, 95 ◦C—3 min, 19 cycles (95 ◦C—30 s, 62 ◦C—15 s, 72 ◦C—20 s), 72 ◦C—2 min, hold
at 10 ◦C).

2.3.5. Final Library Purification

After Program 4, the final library purification steps were performed by mixing the
sample with room-temperature Agencourt beads for 70% ethanol purification. The eluted
library was then checked for the quantitative and qualitative assessment by running 1 µL of
5 ng/µL of the library on a Tapestation 4200 platform with High Sensitivity D1000 Screen-
Tape (Agilent, Santa Clara, CA, USA) before sending it for sequencing. After confirming the
library concentration, 20 µL of the sequencing-ready library (with an average size of 382 bp)
with a concentration of 29.2 ng/µL and 10 µL of custom R1 primer initial stock at 100 µM
were sent for MiSeq sequencing at the Texas A&M Veterinary Medicine Genomics Center.

2.4. Bioinformatics Data Analysis

All the bioinformatics analyses were completed using the laboratory Supermicro server,
CentOS release 6.10, with 16 processor cores and 32GB RAM. A total of 96 fastq files were
received, including two paired-end files for each of the 48 accessions, and the 23,035,880 raw
reads were aligned against an artificial reference that consisted of 7755 contigs using the
Burrows–Wheeler Aligner (BWA ver. 0.7.5a) [43]. The artificial reference was created using
DNA sequences flanking the 2770 targets and their homoeologous and/or paralogous
sites extracted from the Tifrunner references. Each contig sequence was 301 bases long,
with 150 bases flanking each side of the target site. Paired-end alignments were created in
the Sequence Alignment Map (SAM) format using BWA SAMPE, then the sam files were
compressed in binary format to bam files using SAMtools (ver. 0.1.19) to save space [44].
After adding or replacing read groups, files were sorted to group reads that map to the
same contig using SortSam in Picard Tools (ver. 1.98; http://broadinstitute.github.io/
picard, accessed on 1 April 2022). Duplicate reads were marked and removed using
MarkDuplicates, and the files were indexed using BuildBamIndex in Picard Tools, then the
48 bam files were processed to be ready for variant calling.

Variants were called using the Genome Analysis Toolkit (GATK ver. 2.8-1; https:
//gatk.broadinstitute.org/hc/en-us, accessed on 1 April 2022) Haplotype Caller to identify
SNPs compared to the reference [45]. The 48 Variant Call Format (vcf) files were then
merged into one single vcf file for identification of SNPs among genotypes. Data were
then filtered by using two different criteria, hereafter called “Filter One” for the dataset
with SNPs filtered out with a GQ less than 30 or a DP less than 10 and “Filter Two” for the
dataset with SNPs filtered out with a GQ less than six or a DP less than two. Command
lines in Bourne-Again Shell (bash) scripts and notes used for analysis are included on
GitHub (https://github.com/JoyCJS/ReseqPipeline, accessed on 1 April 2022). Microsoft
Excel (ver. 2206) and R (ver. 4.3.0) were used for further data analysis and visualization.

This approach employed sequence analysis steps that are also used in other GBS
methods; therefore, these methods provide similar genotyping efficiency with built-up
pipelines. Specifically, for peanut research, this approach helped remove highly similar
genetic regions that could generate wrong SNP calls (not true SNPs), and we propose that
this approach could maintain high genotyping accuracy by its feature to capture true SNPs.

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://github.com/JoyCJS/ReseqPipeline
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3. Results
3.1. Custom Probe Design

Among the 2904 targets sent to Tecan Allegro, 5154 probes were designed successfully
to cover 2770 targets, including 2093 targets from the U.S. minicore SNP chip data, 136 tar-
gets from the transcriptome RNA-Seq sequencing data, 536 targets from WGS, and five
targets from KASP SNP data (Supplementary Table S1). The final design included 2384 tar-
gets covered by two probes and 386 targets covered by one probe. The targets covered
by two probes had sequences read from both directions of the target SNP sites, while the
targets covered by one probe were read from one of the two sides of the target SNP sites.
Targets covered by two probes benefit from an increasing read depth for variant calling
and can avoid artifacts from only reading in one direction. Two probes have redundancy
in case one probe fails because the Tecan Allegro design was in silico only and was not
verified experimentally to work prior to the sequencing experiment. These probes were
received as a single tube of reagents included in the Tecan Allegro Targeted Resequencing
V2 kit and were used during the steps of the library preparation for the trial experiment on
48 selected accessions.

3.2. Bioinformatics Data Analysis

On average, there were 2.8 matches per BLAST search across the 2770 target sequences,
ranging from one to 79, with a median of two matches, making a total of 7755 sequences
(Figure 3). Close to 90% of the targets had fewer than five BLAST matches. These 7755 se-
quences were then used as contigs (artificial chromosomes) and combined into an artificial
reference, consisting of 2770 target contigs and 4985 homoeologous and paralogous contigs.
Among the 23,035,880 raw reads, 13,402,453 reads (58.18%) were mapped to the artificial ref-
erence, with an average of 279,218 reads per accession and 4838 reads per target (including
reads mapped to its homoeologous and paralogous contigs), resulting in an overall average
of 36 reads per accession per contig. Among the 13,402,453 mapped reads, 8,825,651 reads
(65.85%) were mapped to the target contigs with a range of two to 10,645 reads for each
target, and the rest (4,576,802 reads; 34.15%) were mapped to the homoeologous and paral-
ogous contigs. In general, the number of mapped reads averaged across 48 accessions for
each marker ranged from 0.04 (M_727) to 911 (M_6224), with a mean of 101 and a median
of 87 reads for each marker (Figure 4).
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Figure 4. A bar plot showing the number of mapped reads averaged across 48 accessions for each
marker (sorted from high to low).

By using the 7755 sequences (301 bases long for each contig sequence, with 150 bases
flanking each side of the targeted locus) as the artificial reference for variant calling, there
were 1,332,912 SNPs called and merged into the final vcf file. These called SNPs were
located on the 7755 contigs (artificial chromosomes) and were polymorphic between each
accession and the reference (Tifrunner). Because the target sites were in the middle of each
target sequence, SNPs at the target site were expected to be called at the 151st positions
on the artificial chromosomes made of the target sequences. Among these 2770 target
sequences, 2638 of them had polymorphisms between the Tifrunner reference and at least
one accession at the target sites (the 151st positions), showing a recovery rate of 95%. After
removing sites that had only missing data and the 0/0 genotype (reference genotype),
there were 121,572 SNPs identified among 48 accessions located on 5372 contigs, including
2620 target sequences. Among these 2620 target sequences, 1547 of them had a SNP at the
targeted locus (the 151st position). These 1547 SNPs were used for further analyses due
to the presence of polymorphism at the 151st locus among the 48 accessions. The other
1073 sequences had no SNPs at the targeted locus but had additional SNPs in the flanking
regions instead. The genotypic data of the 1547 SNPs were then compared within each of
the 16 groups of peanut accessions for the identification of SNPs among closely related
accessions within each group.

3.3. SNPs Identified Among Closely Related Genotypes

The overall numbers of SNPs identified from the 16 groups are listed in Table 5. In total,
there were 1327 SNPs identified among 48 accessions using Filter One, and 1507 SNPs when
Filter Two was used. Groups two to six included accessions (mostly minicore accessions)
that showed similar admixture proportions in the STRUCTURE analyses of our SNP chip
GWAS study (Sung and Burow, unpublished). Generally, there were fewer than 80 SNPs
identified within each group, and all these SNPs were from the SNP chip and WGS datasets.
There were two accessions in groups two to five, with a mean of 32.5 SNPs across groups
when using Filter One and a mean of 50 SNPs across groups when using Filter Two. More
SNPs were identified in group six than in groups two to five, which was expected because
there was one more accession included in group six.
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Table 5. The overall number of SNPs identified in each of the 16 groups.

Group Filter
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lines. Based on the results, two of them were almost identical to each other (TS90-1 and 
TS90-2), showing very similar genotypes, while the third one (TS90-3) showed different 
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Groups seven to 10 included closely related sister lines for each of the four major
U.S. market types. There were three accessions in groups seven to nine, with a mean of
51.7 SNPs across groups when using Filter One and a mean of 75.7 SNPs across groups
when using Filter Two. As expected, there were fewer SNPs identified in group 10 than
in groups seven to nine because there were only two accessions included in group 10.
All these groups provided great estimations for genotyping in breeding programs. For
example, TxL090206-41 from group nine was one of the accessions that performed well
under water deficit stress [46], and TxL054520-27 from group 10 was used as a parent of
one drought population, and it was also one of the accessions that performed well under
water deficit stress [46]. These groups provided useful pilot insights demonstrating the use
of this genotyping by resequencing platform for the MAS of peanut water deficit stress
tolerance accessions.

Groups 11 to 13 included varieties commonly used as parents in breeding programs,
and the results provided an estimation of useful SNPs and genetic variation between the
varieties using this resequencing platform along with custom probes. Group 11 included
three randomly picked seed samples of Tamspan 90, a bulked composite of 38 component
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lines. Based on the results, two of them were almost identical to each other (TS90-1 and
TS90-2), showing very similar genotypes, while the third one (TS90-3) showed different
genotypes from the other two samples. Surprisingly, there was so much variation among
the component lines of a variety that plants appeared to be very similar phenotypically,
suggesting that there was more variation than expected for accessions that look highly
similar. The results revealed the ability of this platform to provide fine-scale genotyping
for the determination of genotype similarity and variation. Group 12 included a single-
seed drought test breeding line, TxL100212-03-03, and one of its parents, ICGS 76, which
is tolerant to water deficit stress but shows a lower yield compared to TxL100212-03-03.
The results showed a similar estimation of SNP numbers as the other groups with two
accessions. Group 13 included four varieties, each from one of the four major U.S. market
types; two of them were high oleic (OLin and Tamrun OL07), and the other two were
low oleic (Jupiter and NMValC). These accessions were used as check varieties for FAD2A
and FAD2B markers in the transcriptome sequencing study [22]. It is to be noted that
SNPs were identified among any two of the accessions in the group; therefore, few of
the SNPs were associated with high oleic traits. Based on the prior knowledge of oleic
content in these accessions, SNPs with identical genotypes between OLin and Tamrun
OL07 that were different from Jupiter and NMValC could be associated with high oleic
phenotypes. Specifically, K_4 (FAD2A), included in this study as a control marker, was
identified in group 13 (Filter Two), where the genotypes of OLin, Tamrun OL07, and
NMValC were detected as A/A, A/A, and G/G, just as expected (G is the wild-type allele
and A is the mutant-type allele; Supplementary Table S2). It was missing data for the K_4
genotype in Jupiter, likely due to its low coverage of mapped reads that was due to a low
DNA concentration.

Group one included the two diploid accessions, A. duranensis (collection number
30067; A genome) and A. ipaënsis (collection number 30076; B genome), representing the
parental species of the cultivated peanut, A. hypogaea (AB genome). The results of group
one showed that targets on the A chromosomes were mostly matched to A. duranensis,
while targets on the B chromosomes were mostly matched to A. ipaënsis. It was also noticed
that, among all SNPs identified in group one, only one SNP target was located on the A
genome chromosome, and all others were from the B genome chromosomes. Including
more SNP markers by selecting new targets using the diploid references could help provide
a better inference. The small numbers of SNPs between A. duranensis and A. ipaënsis may be
explained by the fact that SNP targets in this study were designed to eliminate homoeologs
between A and B genomes because they were not considered as true SNPs.

Group 15 included two samples of A. magna (B genome) that had different flower
colors, K30097of (orange flowers) and K30097yf (yellow flowers). Both group one and
group 15 included diploid accessions and showed few SNPs identified, which could be due
to the low number of reads mapped to the reference. The possible reason that there were
fewer reads could be because we used Tifrunner for target selection and mapping instead
of using diploids references. Results also showed that the A genome accessions had most
of the missing data from the SNPs that were selected from the Tifrunner B chromosomes,
while both B and K genome accessions had most of the missing data from the SNPs that
were selected from the Tifrunner A genome chromosomes, suggesting that the K genome
had higher similarity to the B genome than the A genome.

Group 14 included five parental accessions (A. cardenasii GKP10017 (A genome), A.
diogoi GK10602 (A genome), A. batizocoi K9484 (K genome), TxAG-6, and UF439-16-10-3-2),
four offspring from the BC1 population (BC1-43, BC1-46, BC1-50, and BC1-60), and three
offspring from the BC3 population (43-09-03-02, 60-02-03-02, and 63-04-02-02). TxAG-6 is a
synthetic tetraploid accession derived from the cross [A. batizocoi × (A. cardenasii × A. dio-
goi)]4× [39]. The three diploid parents are known to be root-knot nematode (RKN) resistant,
whereas TxAG-6 inherited resistant alleles from them. The cultivated tetraploid parent,
UF439-16-10-3-2, was a component line of Florunner, and was susceptible to the RKN. To
introduce the resistant alleles to cultivated tetraploid peanuts, a backcross population was
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generated between TxAG-6 (donor parent) and UF439-16-10-3-2 (recurrent parent), and
succeeding generations of the BC1 population were used to develop RKN-resistant cultivars
such as COAN [47], NemaTAM [48], and Webb [49]. Similar to groups one and 15, there
were diploid accessions, and therefore, a relatively lower number of SNPs were identified.
This matched the heatmap in Supplementary Figure S1 (Supplementary Table S3), where
diploid accessions had fewer reads mapped to the reference. Additionally, the results
showed that there were more heterozygous genotypes in BC1 accessions than in BC3, which
were more than in the parental accessions (Supplementary Table S2). This observation
met biological assumptions and indicated good genotyping results for both homozygous
and heterozygous genotypes using this platform. Furthermore, we identified all three
RKN KASP markers (K_1, K_2, and K_3) that were included as control checks using the
Filter Two criteria (Supplementary Table S2), suggesting that this platform was effective for
genotyping in breeding populations.

Group 16 included only one variety, Tifrunner, the cultivated peanut reference geno-
type. Results of Tifrunner genotypes provided information about how accurate this geno-
typing system was by using the targeted resequencing platform. Results under Filter One
showed that among the 1547 SNP targets, 1158 were missing data, 62 were data that did not
pass the GQ or DP filtering, and 327 (21.1%) had genotype data. Among those 327 SNPs,
311 (95.1%) of them had a homozygous genotype (0/0) that matched the Tifrunner reference
data, 15 had a heterozygous genotype (0/1), and one had a homozygous genotype (1/1)
that did not match the Tifrunner reference data. Results under Filter Two showed that,
among the 1547 SNP targets, 1158 were missing data, 16 were data that did not pass the GQ
or DP filtering, and 373 (24.1%) had genotype data. Among those 373 SNPs, 354 (94.9%)
of them had a homozygous genotype (0/0) that matched the Tifrunner reference data, 17
had a heterozygous genotype (0/1), and two had a homozygous genotype (1/1) that did
not match the Tifrunner reference data. Based on the results, using Filter Two reduced the
accuracy slightly from 95.1% to 94.9%, but most of the genotypes that had lower GQ or DP
were still called correctly. Among all 1,332,912 SNPs called and merged into the final vcf
file for Tifrunner, there were 922,615 SNPs that had missing data and 410,297 SNPs that
had data regardless of the GQ or DP. Among the 410,297 SNPs, there were 405,748 SNPs
showing the genotype 0/0, which was the reference genotype, and that indicated that
around 98.9% of the SNPs were called to match the Tifrunner reference. These implied that
Filter One provided higher quality results with strict thresholds, while Filter Two could
still be accurate and useful for data analysis even if some SNPs had lower quality and/or
read depth.

4. Discussion

Generally, the genotyping completed by the resequencing platform using the Tecan
Allegro Targeted Resequencing V2 kit was able to identify polymorphic loci within each of
the 16 groups of closely related genotypes. Additionally, most of the check targets (known
KASP markers) could be identified as expected, indicating that this platform is a reliable
tool for genotyping. The results of Tifrunner were helpful for examining how accurate
the SNPs were called. Although there were many missing data, most of the genotyping
results were correct, and the accuracy was high. However, the results of many groups
reflected that missing data could be an issue in this study, even if there were a decent
number of reads mapped. Considering that each sequence read was 151 bases long, while
each contig was 301 bases long, there could be two scenarios for each contig mapping.
If reads were mostly mapped to cover the same region, the other regions on the contig
would have only a few reads to no coverage. On the other hand, if reads were mapped
to different regions that cover the entire contig, the read depth on the target site could be
reduced. Furthermore, an optional tool argument in the GATK HaplotypeCaller program—
standard-min-confidence-threshold-for-calling (-stand-call-conf)—was set at 20 (the default
was 30) and used in this study. This filtered out variant sites with a QUAL (the phred-scaled
SNP/indel call quality) of less than 20, and only those with greater quality would be called.
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The above are possible explanations for the missing data in this study. Setting a lower
phred-scaled confidence threshold for a higher sensitivity of SNP calling might help obtain
more SNPs, and sequencing for a greater number of reads would also help by increasing
the overall coverage.

The overall mapping rate in this study is 58.18%, which is acceptable, but it could be
higher if we mapped the reads against the whole Tifrunner reference genome instead of
the selected 7755 contigs. But it would increase the number of reads mapped to paralogs.
Genomic differences between accessions and Tifrunner could also result in more unmapped
reads, especially diploid accessions and their related backcross offspring, suggesting that
this platform works better for tetraploids. Most of the mapped reads were aligned to their
corresponding top two BLAST sequences (assumably, targets and their homoeologous
sequences), indicating that this platform can catch most of the highly similar reads and
distinguish true SNPs.

In general, a less-stringent e-value (such as 1 × 10−10 or 1 × 10−2) could be used
for identifying paralogs with more BLAST hits; however, based on the number of BLAST
matches observed in this study, using 1 × 10−50 as the threshold identified a decent number
of paralogs. The results showed that most of the mapped reads were aligned to the top
two or three significant BLAST matches, suggesting that identifying more paralogs with a
larger e-value might not be necessary. Additionally, M_8171, which matched 79 BLAST hits
(including one target, one homoeolog, and 77 paralogs), was included and used as a random
check marker in this study, and the results revealed that all the 356 reads were mapped
to the target sequence. This implied that using 1 × 10−50 as the threshold can identify
enough paralogous regions for peanut accessions, while ensuring high-quality significant
BLAST hits. In addition, the customized probes used in this study were demonstrated to
successfully distinguish and avoid paralogous regions that are highly similar to the target
sequences, indicating that this is a reliable genotyping platform.

It is to be noted that part of our BLAST steps should be modified for a better target
selection in the transcriptome dataset. There are two BLAST searches required in our
pipeline for target selection in the transcriptome dataset, and the purpose of the first BLAST
is to obtain information about the chromosome number and position on the Tifrunner
reference from the best hit for each locus. In this study, we used OLin cDNA sequences to
run the first BLAST against the Tifrunner reference, and 2578 sequences (83%) had only one
BLAST hit with a relatively lower score (higher e-value) due to gaps of the intron regions.
We removed these sequences after the first BLAST because, preferably, we want at least two
matches (with one on the A chromosome and another on the corresponding B chromosome)
to compare the homoeologous sequences for better filtration of true SNPs. However, this
step should be completed after the second BLAST, which uses the sequences extracted from
the Tifrunner genome against the reference itself to avoid removing targets due to gaps in
intron regions. With those gaps, even the best BLAST hits could have low scores; therefore,
we should extract the sequences using the information from the best BLAST hits and run
the second BLAST before removing sequences that had only one BLAST match.

While we have demonstrated that this platform is suitable for genotyping closely
related offspring lines in a population, it is also important to know whether these targets
detect enough polymorphisms between selected parents for a breeding program. In this
study, COC080 and COC082 were chosen to be included in group three because they had
similar admixture proportions, and there were eight SNPs identified (when using Filter
One and 28 when using Filter Two) between them. However, there were 99 SNPs identified
(when using Filter One; 122 when using Filter Two) between COC080 and COC760, and
82 SNPs identified (when using Filter One and 116 when using Filter Two) between COC080
and Schubert, indicating that more polymorphisms can be detected between two accessions
that have more variation. Furthermore, we identified 85 SNPs (when using Filter One
and 114 when using Filter Two) between two Spanish varieties, Schubert and OLin, while
there were only 20 SNPs identified (when using Filter One and 40 when using Filter Two)
between Schubert and its sister line in group 10. However, we noticed that around half
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of the loci were missing data between the above sets. Assuming that the genotype data
were complete with less missing data, we predicted that there would be around 200 SNPs
or more for each of the above sets, which could be more applicable for a QTL mapping.
This could suggest the need for a greater read depth. MiSeq was used in this study, and for
more accessions, using HiSeq, NextSeq, or NovaSeq may provide more read depth.

In this study, 8,825,651 reads were mapped to the 2770 target contigs, making the
average coverage 66.38 reads per accession per target contig. This seems convincing;
however, whether these reads provide enough SNPs depends on the population size and
the variation among individuals. Based on the datasets in this pilot study (with MiSeq
v2 PE 2 × 150 platform), reads that were 300 bases long might help increase the mapping
accuracy and target site coverage. We suggest obtaining more reads to ensure enough
coverage at target sites for SNP identification using a sequencing platform such as NextSeq
2000 SE 1 × 300 for a population of 192 samples. This provides around 100 million reads
with a read length of 300 bases and can bring the average coverage to approximately 72
to 100 reads per accession per target contig or more. Furthermore, it would cost around
USD 4562 in total for 192 samples, including the Tecan Allegro Targeted Resequencing
V2 kit (USD 2264) and sequencing cost (USD 2298), resulting in USD 23.76 per sample.
Using a larger population could be even more economical with a lower cost per sample.
Additionally, if only targets with known polymorphisms between specific parents are
used, the cost could be further lowered. This suggests that there were around 1500 targets
with SNPs detected to replace those that were not polymorphic, and this might reduce
the sequencing cost to around USD 18 per sample if calculating for 384 samples using a
NextSeq 200 million reads platform.

This pilot study provides an overview of the availability to use this platform for
peanut breeding programs with high genotyping accuracy and a decent recovery rate of
selected targets. For closely related accessions, the SNPs identified can be used as variety-
specific check markers for examining the purity of the seeds collected for an accession
and distinguishing possible contamination to help maintain the homogeneity of variety
seeds. Additionally, the custom probes provide flexibility to add or drop any marker,
which means the same or different sets of markers can be assigned for each sequencing
run. Comparing the SNP chip array, which only detects a fixed set of markers, and the
RAD-Seq approach, which identifies different markers each run, this targeted resequencing
seems to be a suitable system for genotyping to become a routine tool for peanut breeding
programs on the basis of a cost-effective and high-throughput approach (Table 6). With
the sequences captured by probes designed to recognize useful target SNPs, it reduces the
need to pay for sequences that are flanking regions of no interest, which further reduces
the cost compared to using a higher number of reads or loci that are already known to be
not useful. The major drawback of this approach is that it requires pre-existing SNP data
for target selection and the design of custom probes. To expand this study further, we plan
to run 144 samples using the rest of the kit for a population, and we also plan to select
more targets to be included in future designs. One important comparison that should be
included in the future is to run the exact same DNA in two or three duplicates to look for
the number of SNPs detected, and then it should be used as a baseline threshold number of
possible background noise. This would give a good estimate of which targets could detect
polymorphisms for the population and thus be beneficial for future larger populations and
more breeding programs with a lower cost.
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Table 6. A comparison of major differences between GBS, SNP chip, and Tecan Allegro Targeted
Resequencing.

Genotyping by
Sequencing

Affymetrix Array
SNP Chip

Tecan Allegro Targeted
Resequencing

Consistency—Use the same markers across runs? No Yes Yes
Flexibility—Does it allow to add or drop markers? No No Yes

In-house library prep? Yes No Yes
Estimated cost per plant? USD 30–53 USD 25–28 USD 18–23

Number of SNPs generated? 5K–50K or more 5K–50K or more 2K–10K depending on design

5. Conclusions

The development of a set of useful molecular markers for targeted traits can reduce
expenses and save effort compared with larger data sets. There are many SNPs that
distinguish peanut tetraploid accessions and diploid wild species. Some species in the
section Arachis are more tolerant to water deficit stress, such as A. duranensis and A. ipaënsis,
and it would be useful to include some diploid genotypes for target selection in the
future [6,50,51]. These SNPs can be further designed into KASP markers for MAS in peanut
breeding programs such as for water deficit stress tolerance breeding. This trial experiment
only used 48 genotypes out of the 192 reactions; the remaining 144 reactions will be tested
afterward, and more SNPs will be identified. The utility of the SNPs can be further tested
by constructing linkage maps and QTL maps for breeding populations. The cost-effective
genotyping platform in this research could make genotyping a more affordable choice for
peanut breeding research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15111364/s1. Table S1. Information of 5154 probes designed to
cover 2770 targets. Table S2. Results of genotypes for each target of each accession. Table S3. Sorted
matrix of the number of mapped reads. Figure S1. Heatmap showing the number of reads mapped to
contigs for each accession, with bar plots showing the distribution of average number of mapped
reads sorted from high to low.

Author Contributions: Conceptualization, M.D.B.; methodology, C.-J.S., M.D.B. and A.H.; software,
C.-J.S. and M.D.B.; formal analysis, C.-J.S.; resources, R.K., M.D.B., C.-J.S., C.E.S. and J.C.; data
curation, C.-J.S. and M.D.B.; writing—original draft preparation, C.-J.S.; writing—review and editing,
C.-J.S., R.K., C.E.S. and M.D.B.; visualization, C.-J.S.; supervision, M.D.B.; project administration,
M.D.B.; funding acquisition, M.D.B. and C.E.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was made possible by grants to M.D.B. by the Peanut Research Foundation,
grant numbers #04-808-21 and #04-843-22, and by USDA-NIFA Hatch Project TX088350.

Institutional Review Board Statement: The study was conducted in accordance with the Texas A&M
Institutional Review Board Project number IBC2020-147 for studies not involving humans or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: Assemblies and variant information described in this manuscript
have been deposited at Figshare at the following URL: https://dx.doi.org/10.6084/m9.figshare.
26801122, accessed on 1 April 2022 (and will be released upon acceptance of the manuscript for
publication). SAM files of raw read data for each of the accessions will be deposited in the NCBI
SRA database under bioproject PRJNA605472. Command lines in bash scripts and notes used for the
48 samples analysis are included on GitHub (https://github.com/JoyCJS/ReseqPipeline, accessed
on 1 April 2022).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/genes15111364/s1
https://www.mdpi.com/article/10.3390/genes15111364/s1
https://dx.doi.org/10.6084/m9.figshare.26801122
https://dx.doi.org/10.6084/m9.figshare.26801122
https://github.com/JoyCJS/ReseqPipeline


Genes 2024, 15, 1364 19 of 20

References
1. Thomson, M.J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breed. Biotechnol 2014, 2, 195–212.

[CrossRef]
2. Werner, C.R.; Voss-Fels, K.P.; Miller, C.N.; Qian, W.; Hua, W.; Guan, C.-Y.; Snowdon, R.J.; Qian, L. Effective genomic selection in

a narrow-genepool crop with low-density markers: Asian rapeseed as an example. Plant Genome 2018, 11, 170084. [CrossRef]
[PubMed]

3. Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inform. 2012, 10, 117–122.
[CrossRef] [PubMed]

4. Bertioli, D.J.; Jenkins, J.; Clevenger, J.; Dudchenko, O.; Gao, D.; Seijo, G.; Leal-Bertioli, S.C.M.; Ren, L.; Farmer, A.D.; Pandey,
M.K.; et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat. Genet. 2019, 51, 877–884. [CrossRef]
[PubMed]

5. Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.-C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The
genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet.
2019, 51, 865–876. [CrossRef]

6. Kulkarni, R.; Chopra, R.; Chagoya, J.; Simpson, C.E.; Baring, M.R.; Hillhouse, A.; Puppala, N.; Chamberlin, K.; Burow, M.D. Use
of targeted amplicon sequencing in peanut to generate allele information on allotetraploid sub-genomes. Genes 2020, 11, 1220.
[CrossRef]

7. Clevenger, J.P.; Chu, Y.; Chavarro, C.; Agarwal, G.; Bertioli, D.J.; Leal-Bertioli, S.C.M.; Pandey, M.K.; Vaughn, J.; Abernathy, B.;
Barkley, N.A.; et al. Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Mol.
Plant 2017, 10, 309–322. [CrossRef]

8. Clevenger, J.P.; Korani, W.; Ozias-Akins, P.; Jackson, S.A. Haplotype-based genotyping in polyploids. Front. Plant Sci. 2018, 9, 564.
[CrossRef]

9. Pandey, M.K.; Agarwal, G.; Kale, S.M.; Clevenger, J.; Nayak, S.N.; Sriswathi, M.; Chitikineni, A.; Chavarro, C.; Chen, X.;
Upadhyaya, H.D.; et al. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for
accelerating genetics and breeding in groundnut. Sci. Rep. 2017, 7, 40577. [CrossRef]

10. Chen, X.; Lu, Q.; Liu, H.; Zhang, J.; Hong, Y.; Lan, H.; Li, H.; Wang, J.; Liu, H.; Li, S.; et al. Sequencing of cultivated peanut,
Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol. Plant. 2019, 12, 920–934. [CrossRef]

11. Peng, Z.; Chen, H.; Tan, L.; Shu, H.; Varshney, R.K.; Zhou, Z.; Zhao, Z.; Luo, Z.; Chitikineni, A.; Wang, L.; et al. Natural
polymorphisms in a pair of NSP2 homoeologs can cause loss of nodulation in peanut. J. Exp. Bot. 2021, 72, 1104–1118. [CrossRef]

12. Andrews, K.R.; Hunter, S.S.; Torrevillas, B.K.; Céspedes, N.; Garrison, S.M.; Strickland, J.; Wagers, D.; Hansten, G.; New, D.D.;
Fagnan, M.W.; et al. A new mouse SNP genotyping assay for speed congenics: Combining flexibility, affordability, and power.
BMC Genom. 2021, 22, 378. [CrossRef]

13. Deakin, S.; Coltman, D.W. Development of a high-density sub-species-specific targeted SNP assay for Rocky Mountain bighorn
sheep (Ovis canadensis canadensis). PeerJ 2024, 12, e16946. [CrossRef]

14. Gavriliuc, S.; Reza, S.; Jeong, C.; Getachew, F.; McLoughlin, P.D.; Poissant, J. Targeted genome-wide SNP genotyping in feral
horses using non-invasive fecal swabs. Conserv. Genet. Resour. 2022, 14, 203–213. [CrossRef]

15. Scaglione, D.; Pinosio, S.; Marroni, F.; Di Centa, E.; Fornasiero, A.; Magris, G.; Scalabrin, S.; Cattonaro, F.; Taylor, G.; Morgante, M.
Single primer enrichment technology as a tool for massive genotyping: A benchmark on black poplar and maize. Ann. Bot. 2019,
124, 543–552. [CrossRef]

16. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
[CrossRef]

17. Altschul, S.F.; Madden, T.; Schäffer, A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef]

18. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and
applications. BMC Bioinform. 2009, 10, 421. [CrossRef]

19. Hildebrand, C.E.; Torney, D.C.; Wagner, R.P. Informativeness of polymorphic DNA markers. Los Alamos Sci. 1992, 20, 100–102.
20. Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; Rabaiolli, S.M.D.S.; Stefanel, C.M. Determining the Polymorphism Information

Content of a molecular marker. Genes 2019, 726, 144175. [CrossRef]
21. Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment

length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331.
22. Chopra, R.; Burow, G.; Farmer, A.; Mudge, J.; Simpson, C.E.; Wilkins, T.A.; Baring, M.R.; Puppala, N.; Chamberlin, K.D.; Burow,

M.D. Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea
L. Mol. Genet. Genom. 2015, 290, 1169–1180. [CrossRef]

23. Leal-Bertioli, S.C.; Moretzsohn, M.C.; Roberts, P.A.; Ballén-Taborda, C.; Borba, T.C.; Valdisser, P.A.; Vianello, R.P.; Araújo, A.C.;
Guimarães, P.M.; Bertioli, D.J. Genetic Mapping of Resistance to Meloidogyne arenaria in Arachis stenosperma: A New Source of
Nematode Resistance for Peanut. G3 2015, 6, 377–390. [CrossRef]

24. Zhao, S.; Li, A.; Li, C.; Xia, H.; Zhao, C.; Zhang, Y.; Hou, L.; Wang, X. Development and application of KASP marker for high
throughput detection of AhFAD2 mutation in peanut. Electron J. Biotechnol. 2017, 25, 9–12. [CrossRef]

https://doi.org/10.9787/PBB.2014.2.3.195
https://doi.org/10.3835/plantgenome2017.09.0084
https://www.ncbi.nlm.nih.gov/pubmed/30025015
https://doi.org/10.5808/GI.2012.10.2.117
https://www.ncbi.nlm.nih.gov/pubmed/23105939
https://doi.org/10.1038/s41588-019-0405-z
https://www.ncbi.nlm.nih.gov/pubmed/31043755
https://doi.org/10.1038/s41588-019-0402-2
https://doi.org/10.3390/genes11101220
https://doi.org/10.1016/j.molp.2016.11.015
https://doi.org/10.3389/fpls.2018.00564
https://doi.org/10.1038/srep40577
https://doi.org/10.1016/j.molp.2019.03.005
https://doi.org/10.1093/jxb/eraa505
https://doi.org/10.1186/s12864-021-07698-9
https://doi.org/10.7717/peerj.16946
https://doi.org/10.1007/s12686-022-01259-2
https://doi.org/10.1093/aob/mcz054
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1016/j.gene.2019.144175
https://doi.org/10.1007/s00438-014-0976-4
https://doi.org/10.1534/g3.115.023044
https://doi.org/10.1016/j.ejbt.2016.10.010


Genes 2024, 15, 1364 20 of 20

25. Otyama, P.I.; Kulkarni, R.; Chamberlin, K.; Ozias-Akins, P.; Chu, Y.; Lincoln, L.M.; MacDonald, G.E.; Anglin, N.L.; Dash, S.;
Bertioli, D.J.; et al. Genotypic Characterization of the U.S. Peanut Core Collection. G3 2020, 10, 4013–4026. [CrossRef]

26. Branch, W.D. Registration of ‘Georgia-09B’ Peanut. J. Plant Regist. 2010, 4, 175–178. [CrossRef]
27. Holbrook, C.C.; Dong, W. Development and evaluation of a minicore collection for the US peanut germplasm collection. Crop Sci.

2005, 45, 1540–1544. [CrossRef]
28. Belamkar, V.; Selvaraj, M.G.; Ayers, J.; Payton, P.; Puppala, N.; Burow, M. A First Insight into Population Structure and Linkage

Disequilibrium in the U.S. Peanut Minicore Collection. Genetica 2011, 139, 411–429. [CrossRef]
29. Bennett, R.S.; Chamberlin, K.D.; Damicone, J.P. Sclerotinia Blight Resistance in the US Peanut Mini-Core Collection. Crop Sci.

2018, 58, 1306–1317. [CrossRef]
30. Burow, M.D.; Baring, M.R.; Chagoya, J.; Trostle, C.; Puppala, N.; Simpson, C.E.; Ayers, J.L.; Cason, J.M.; Schubert, A.M.; Muitia,

A.; et al. Registration of ‘TAMVal OL14′ Peanut. J. Plant Regist. 2019, 13, 134. [CrossRef]
31. Burow, M.D.; Baring, M.R.; Chagoya, J.; Simpson, C.E.; Cason, J.M.; López, Y. Registration of ‘Tamrun OL18L’ and ‘Tamrun OL19’

peanut. J. Plant Regist. 2024, 18, 69–77. [CrossRef]
32. Burow, M.D.; Baring, M.R.; Puppala, N.; Simpson, C.E.; Ayers, J.L.; Cason, J.; Schubert, A.M.; Muitia, A.; López, Y. Registration of

‘Schubert’ Peanut. J. Plant Regist. 2014, 8, 122. [CrossRef]
33. Smith, O.D.; Simpson, C.E.; Grichar, W.J.; Melouk, H.A. Registration of ‘Tamspan 90’ Peanut. Crop Sci. 1991, 31, 1711. [CrossRef]
34. Nigam, S.N.; Dwivedi, S.L.; Rao, Y.L.; Gibbons, R.L. Registration of ‘ICGV 87141’ Peanut. Crop Sci. 1991, 31, 1096. [CrossRef]
35. Simpson, C.E.; Baring, M.R.; Schubert, A.M.; Melouk, H.A.; Lopez, Y.; Kirby, J.S. Registration of ‘OLin’ Peanut. Crop Sci. 2003, 43,

1880–1881. [CrossRef]
36. Baring, M.R.; Simpson, C.E.; Burow, M.D.; Black, M.C.; Cason, J.M.; Ayers, J.; Lopez, Y.; Melouk, H. Registration of ‘Tamrun

OL07′ Peanut. Crop Sci. 2006, 46, 2721. [CrossRef]
37. Isleib, T.; Pattee, H.; Tubbs, R.; Sanders, T.; Dean, L.; Hendrix, K. Intensities of Sensory Attributes in High- and Normal-Oleic

Cultivars in the Uniform Peanut Performance Test. Peanut Sci. 2015, 42, 83–91. [CrossRef]
38. Hsi, D.C. Registration of New Mexico Valencia C. Crop Sci. 1980, 20, 113–114. [CrossRef]
39. Simpson, C.E.; Nelson, S.C.; Starr, J.L.; Woodard, K.E.; Smith, O.D. Registration of TxAG-6 and TxAG-7 peanut germplasm lines.

Crop Sci. 1993, 33, 1418. [CrossRef]
40. Denwar, N.N.; Simpson, C.E.; Starr, J.L.; Wheeler, T.A.; Burow, M.D. Evaluation and Selection of Interspecific Lines of Groundnut

(Arachis hypogaea L.) for Resistance to Leaf Spot Disease and for Yield Improvement. Plants 2021, 10, 873. [CrossRef]
41. Holbrook, C.C.; Culbreath, A.K. Registration of ‘Tifrunner’ Peanut. J. Plant Regist. 2007, 1, 124. [CrossRef]
42. Burow, M.D.; Simpson, C.E.; Starr, J.L.; Paterson, A.H. Transmission genetics of chromatin from a synthetic amphidiploid to

cultivated peanut (Arachis hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics 2001, 159, 823–837.
[CrossRef] [PubMed]

43. Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760.
[CrossRef] [PubMed]

44. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data
Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]

45. McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.;
et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.
2010, 20, 1297–1303. [CrossRef]

46. Sung, C.-J. Genomic and Economic Study for Improvement of Peanut Water Deficit Stress Tolerance. Ph.D. Thesis, Texas
Technological University, Lubbock, TX, USA, December 2022.

47. Simpson, C.E.; Starr, J.L. Registration of ‘COAN’ peanut. Crop Sci. 2001, 41, 918. [CrossRef]
48. Simpson, C.E.; Starr, J.L.; Church, G.T.; Burow, M.D.; Paterson, A.H. Registration of ‘NemaTAM’ peanut. Crop Sci. 2003, 43, 1561.

[CrossRef]
49. Simpson, C.E.; Starr, J.L.; Baring, M.R.; Burow, M.D.; Cason, J.M.; Wilson, J.N. Registration of ‘Webb’ peanut. J. Plant Regist. 2013,

7, 265. [CrossRef]
50. Bertioli, D.J.; Ozias-Akins, P.; Chu, Y.; Dantas, K.M.; Santos, S.P.; Gouvea, E.; Guimarães, P.M.; Leal-Bertioli, S.C.M.; Knapp, S.J.;

Moretzsohn, M.C. The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 2014, 4, 89–96. [CrossRef]
51. Krapovickas, A.; Gregory, W.C. Taxonomy of the genus Arachis (Leguminosae). Williams, D.E.; Simpson, C.E., translators.

Bonplandia 2007, 16, 7–205.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1534/g3.120.401306
https://doi.org/10.3198/jpr2009.12.0693crc
https://doi.org/10.2135/cropsci2004.0368
https://doi.org/10.1007/s10709-011-9556-2
https://doi.org/10.2135/cropsci2017.09.0591
https://doi.org/10.3198/jpr2017.10.0073crc
https://doi.org/10.1002/plr2.20311
https://doi.org/10.3198/jpr2013.07.0042crc
https://doi.org/10.2135/cropsci1991.0011183X003100060088x
https://doi.org/10.2135/cropsci1991.0011183X003100040072x
https://doi.org/10.2135/cropsci2003.1880a
https://doi.org/10.2135/cropsci2006.06.0413
https://doi.org/10.3146/0095-3679-42.2.83
https://doi.org/10.2135/cropsci1980.0011183X002000010033x
https://doi.org/10.2135/cropsci1993.0011183X003300060079x
https://doi.org/10.3390/plants10050873
https://doi.org/10.3198/jpr2006.09.0575crc
https://doi.org/10.1093/genetics/159.2.823
https://www.ncbi.nlm.nih.gov/pubmed/11606556
https://doi.org/10.1093/bioinformatics/btp324
https://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.2135/cropsci2001.413918x
https://doi.org/10.2135/cropsci2003.1561
https://doi.org/10.3198/jpr2013.01.0005crc
https://doi.org/10.1534/g3.113.007617

	Introduction 
	Materials and Methods 
	Target Selection 
	SNP Chip Data 
	RNA-Seq Data 
	KASP Data and WGS Data 

	DNA Extraction 
	Library Prep and Sequencing 
	Enzymatic Fragmentation 
	Adapter Ligation 
	Probe Binding, Hybridization, and Extension 
	Library Amplification 
	Final Library Purification 

	Bioinformatics Data Analysis 

	Results 
	Custom Probe Design 
	Bioinformatics Data Analysis 
	SNPs Identified Among Closely Related Genotypes 

	Discussion 
	Conclusions 
	References

