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Abstract: Background: Fanconi syndrome is a disorder of renal proximal tubule transport charac-
terized by metabolic acidosis, amino aciduria, glucosuria, and phosphaturia. There are acquired
and hereditary forms of this disorder. A late-onset form of Fanconi syndrome in Basenjis was first
described in 1976 and is now recognized as an inherited disease in these dogs. In part because of the
late onset of disease signs, the disorder has not been eradicated from the breed by selective mating. A
study was therefore undertaken to identify the molecular genetic basis of the disease so that dogs
could be screened prior to breeding in order to avoid generating affected offspring. Methods: Linkage
analysis within a large family of Basenjis that included both affected and unaffected individuals was
performed to localize the causative variant within the genome. Significant linkage was identified
between chromosome 3 (CFA3) makers and the disease phenotype. Fine mapping restricted the
region to a 2.7 Mb section of CFA3. A whole genome sequence of a Basenji affected with Fanconi
syndrome was generated, and the sequence data were examined for the presence of potentially
deleterious homozygous variants within the mapped region. Results: A homozygous 317 bp deletion
was identified in the last exon of FAN1 of the proband. 78 Basenjis of known disease status were
genotyped for the deletion variant. Among these dogs, there was almost complete concordance
between genotype and phenotype. The only exception was one dog that was homozygous for the
deletion variant but did not exhibit signs of Fanconi syndrome. Conclusions: These data indicate
that the disorder is very likely the result of FAN1 deficiency. The mechanism by which this deficiency
causes the disease signs remains to be elucidated. FAN1 has endonuclease and exonuclease activity
that catalyzes incisions in regions of double-stranded DNA containing interstrand crosslinks. FAN1
inactivation may cause Fanconi syndrome in Basenjis by sensitization of kidney proximal tubule
cells to toxin-mediated DNA crosslinking, resulting in the accumulation of genomic and mitochon-
drial DNA damage in the kidney. Differential exposure to environmental toxins that promote DNA
crosslink formation may explain the wide age-at-onset variability for the disorder in Basenjis.

Keywords: kidney; hereditary disorder; DNA repair; whole genome sequencing; toxins

1. Introduction

Fanconi syndrome (FS) is characterized by excessive frequent urination (polyuria),
excessive thirst (polydipsia), bone pain, and muscle weakness [1–3]. The disorder was
first described by Dr. Guido Fanconi in 1936 [4]. FS results from impaired function of the
proximal renal tubular epithelial cells, leading to urinary leakage of phosphate, glucose,
uric acid, amino acids, low-molecular-weight polypeptides, and other small molecules, and
to proximal renal tubular acidosis [5]. While inherited forms of isolated human FS have
been described [6,7], hereditary human FS usually occurs as a component of multisystem
disorders such as mitochondrial cytopathies [8], Dent’s disease [9], Lowe’s syndrome [10]
and cystinosis [11]. FS can also result from the toxic effects of certain drugs or heavy
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metals on the proximal tubules of the kidneys in individuals with no known genetic risk
factors [12–16].

Canine FS was first reported in Basenjis by Easley and Breitschwerdt in 1976 [17].
Additional reports of FS in this dog breed have followed [18–25]. Based on these reports,
the disease in Basenjis appears to be inherited as an autosomal recessive trait. Typically, the
first signs of FS in Basenjis are polydipsia, polyuria, weight loss, and poor hair coat [25].
In most Basenjis, the age of onset is between 4 and 7 years of age, and the lifespan of
affected dogs is between 11 and 12 years of age if they have been maintained with dietary
management [25]. There have been reports of sporadic FS in other dog breeds, some of
which have been linked to dietary factors or heavy metals [25–37], although these cases do
not exhibit some of the laboratory findings characteristic of Basenji FS and may present
with additional signs not seen in the Basenji disease.

Among Basenjis, the prevalence of FS has been estimated to be about 10% [24]. Variants
in a number of genes have been associated with human FS-like disorders [38–53], but the
molecular genetic basis of the canine disorder has not been determined. Because of the late
and variable onset of disease signs, it has not been possible to eradicate the disorder from
the breed by identifying dogs that carry the genetic risk variant based on disease phenotype.
Identifying this variant would enable breeders to screen dogs prior to mating so that they
could avoid propagating the disease. Genetic linkage and whole genome sequence studies
were therefore undertaken to identify the cause of the Basenji disease.

2. Materials and Methods

In order to identify the potential DNA sequence variant responsible for FS in Basenjis,
the disease phenotypes of dogs within a large pedigree were ascertained. DNA samples
from these dogs were used to perform linkage mapping of the disease locus followed by
whole genome sequence analysis to identify potential risk variants within the mapped
region. All of the dogs within the pedigree were then genotyped for a candidate variant
to assess concordance between phenotype and genotype. This strategy is summarized in
Figure 1.
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Figure 1. Strategy for identifying the DNA sequence variant responsible for FS in Basenjis.

Genomic DNA was isolated from blood leukocytes as described previously [54]. Ge-
netic mapping of the FS locus was performed using a 325 microsatellite marker canine
linkage map to genotype a 59-member family of Basenjis, including 22 afflicted with
FS. Linkage analysis of the disease locus genotypes inferred from phenotypes under a
completely penetrant autosomal recessive model of inheritance and marker loci was per-
formed using Cri-map 2.507 software (http://www.animalgenome.org/bioinfo/resources/
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manuals/Embnetut/Crimap/ accessed 15 August 2019). In addition to the 11 canine chro-
mosome 3 (CFA3) markers included in the original linkage map panel, we used another
29 CFA3 microsatellite markers (Supplemental Table S1) for fine mapping by haplotype
homozygosity in FS-affected Basenjis but not in Basenjis with normal renal function.

For whole-genome sequencing, a 300 bp paired-end library was prepared with the
Illumina TruSeq sample preparation kit and DNA from a single FS-affected Basenji. The
library was sequenced in a 2 × 120 cycle run in 2 lanes of a flow cell from an Illumina
Genome Analyzer II and in a 2 × 100 cycle run in 1 lane from an Illumina HiSeq 2000
(Illumina Inc., San Diego, CA, USA). We used the same procedures to obtain whole genome
sequences from 3 dogs of other breeds in unrelated projects. These dogs were not affected
by FS, and consequently, the produced sequences served as controls for this project. The
control dogs suffered from neurological disorders and had not exhibited any signs of FS.
Reads from all sequences were aligned to the canine reference sequence build v2.1 using
NextGENe v2.15 software. To identify candidate pathogenic mutations, we performed an
exon-by-exon inspection of all genes within the fine-mapped disease-associated region for
potentially deleterious mutations. We also evaluated sequence gaps within the mapped
region for the likelihood that they represented disease-related genomic DNA deletions.
For this analysis, we generated NextGENe Expression reports with 100 bp windows to
identify coverage gaps that were unique to the FS-affected Basenji and that included ex-
onic DNA. We amplified across the single gap fulfilling these criteria with PCR primers
5′-ATATATAGTAGAGCAGTATCAGT-3′ and 5′-ATTTCCTAAAATGGCCAC-3′ and con-
firmed the identity of the resulting amplicons by automated Sanger sequencer (3730xl;
Applied Biosystems, Waltham, MA, USA). DNA samples from individual dogs were geno-
typed for the deletion allele with the same primers used to validate the deletion. These
primers produce amplicons of 480 bp for the wild-type allele and 163 bp for the mutant al-
lele. Amplicon sizes were determined with a microcapillary system (QIAxcel, Qiagen N.V.,
Venlo, The Netherlands). An RNeasy kit (Qiagen) was used to extract total RNA from the
kidney of two Dachshunds obtained after euthanasia for an unrelated health problem. Ad-
ditionally, total RNA was extracted from the white blood cells and serum of FS-affected and
FS-unaffected dogs with the PAXgene Blood RNA kit (Qiagen). RT-PCR amplifications were
performed with a GeneAmp®EZ rTth RNA PCT kit (Applied Biosystems) using the primer
pairs in Table 1. We also performed 3′-RACE amplifications with the Invitrogen 3′ RACE
System with two specific primers from exon 13: 5′-GCTGTGGACTTCCGACACT-3′ for the
first amplification and 5′-CTCCCAGAGTCATCGTGTT-3′ for the nested amplification. The
identities of the resulting amplicons were verified by automated Sanger sequencing.

Table 1. RT-PCR primer sequences for FAN1 mRNA.

Target Forward Primer Sequence/Reverse Primer Sequence Amplicon Size (bp)

exon 5 to 7 CCTAGGTACACCATCAATCGGAA/ACAGTCCGAGACAAAATCCTT 269
exon 12 to exon 14 CAGGCCCAGGAAGGCAGA/CACGTGGCAGACTTCTACTTCGG 300
exon 12 to intron 13 CAGGCCCAGGAAGGCAGA/AACACAATTATCAGAGAAAAAGCGT 245
exon 13 to 3′UTR CTGGCTGTGGACTTCCGACA/CTTAACTGGAAACATTGGGTGTG 244

3. Results

Linkage analysis was performed by genotyping DNA from a Basenji family consist-
ing of 22 FS cases and 37 FS-unaffected controls for 325 genome-wide microsatellite loci
(Figure 2). The strongest associations with inferred genotypes for the FS locus and marker
loci occurred on CFA3 (Figure 3). Fine mapping in 86 FS-affected Basenjis revealed that
these dogs were all homozygous for the same 6-marker haplotype flanked by recombinant
markers at 40,537,065 bp and 43,218,050 bp, and that none of 11 aged Basenjis with normal
renal function were homozygous for this haplotype. This analysis defined a 2.7 Mb target
region of CFA3 as harboring the FS locus, which contained 11 annotated genes.

http://www.animalgenome.org/bioinfo/resources/manuals/Embnetut/Crimap/
http://www.animalgenome.org/bioinfo/resources/manuals/Embnetut/Crimap/
http://www.animalgenome.org/bioinfo/resources/manuals/Embnetut/Crimap/
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Figure 2. Pedigree of the Basenji family used for linkage mapping of the FS locus. Filled black squares:
affected males; filled black circles: affected females; open black squares: unaffected males; open
black circles: unaffected females; gray open squares, males of unknown phenotype; gray open circles:
females of unknown phenotype.
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Figure 3. Plot of linkage results of the Fanconi syndrome Basenji pedigree (22 cases and 37 controls).

The whole-genome sequence reads from the Illumina Genome Analyzer II and Hiseq
2000 were combined and aligned to the canine genome reference to produce an aligned
sequence with 12.7-fold average coverage. Exon-by-exon inspection of the sequences for
the 143 annotated exons in the 11 genes within the FS region failed to reveal any sequence
variants likely to alter the function of the gene products. This inspection also revealed gaps
in the aligned sequence that overlapped part or all of the 11 exons from within the FS target
region. Comparisons of the depth of coverage in the WGS of the FS-affected Basenji with
those of the WGS from 3 unaffected dogs of other breeds showed similar patterns for all
but one of the sequence gaps. The exception was found only in the Basenji sequence in
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the vicinity of FAN1 exon 14 (Figure 4). PCR amplification with primers spanning the gap
confirmed that a deletion in the genomic DNA of the FS-affected Basenji was responsible for
the gap (Figure 5), and re-sequencing the amplicons produced with these primers revealed
that 317 bp of exon 14 were deleted starting at the second exon14 nucleotide and extending
into the 3′ untranslated region of FAN1 (Figure 6). In addition, the mutant allele has four
nucleotide substitutions within the 12 nucleotides immediately 3′ to the deletion.
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Figure 4. Comparison of percent coverage in a part of the CFA3 target region between an FS-affected
dog and three controls. The region represented in this graph starts at 40,860,000 to 40,870,300 bp of
CFA3 in intervals of 100 bp. The percent coverage is the average coverage of the interval normalized
for the average genome coverage for the individual dog. The arrow indicates the gap in coverage
that was unique to the affected Basenji.
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Figure 5. Microcapillary electrophoretograms of PCR amplicons produced with primers spanning the gap
in the FAN1. Lane 1 represents a negative control. PCR was performed with DNA from an FS-affected dog
(2) and two FS-unaffected dogs (lanes 3 and 4). The FS-affected dog produced a 167 bp amplicon, which is
smaller than the expected band. One of the FS-unaffected dogs (3) produced the expected band, and the
other dog (lane 4) produced the expected band and the deletion allele band.
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Figure 6. The deletion boundaries are represented by an illustration and genomic sequences of
the FAN1. (A) Illustration of the 3′ end of the FAN1 gene. The deletion starts after the first base of
exon 14 and goes into the 3′ UTR past the primary polyadenylation site. (B) Sequences for the end
of intron 13, exon 14, and the 3′UTR. Gray-shaded sequences correspond to exon 14, blue-shaded
represents the potential poly signal, and red-shaded is the polyadenylation site. The 317 deleted
bases are underlined.

RT-PCR was used to analyze the FAN1 transcripts present in the total RNA from
the kidneys of 2 unaffected dogs and from the blood of FS-affected and unaffected dogs.
All of the RNA preparations produced similar RT-PCR amplicons with primers designed
from exon 5 and 7 sequences. Microcapillary electrophoretograms of RT-PCR amplicons
demonstrated expression in all samples, indicating that the mutant transcript is transcribed
(Figure 7A). As expected, RT-PCR with primers designed from exon 12 and from the
deleted region of exon 14 produced amplicons with RNA from normal but not affected
dogs (Figure 7B). Primers designed from exon 12 and intron 13 produced amplicons
with RNA from affected but not normal dogs (Figure 7C), indicating that the deletion
causes intron retention in the transcript. RNA samples for both normal and affected dogs
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failed to produce RT-PCR amplicons with primers designed from exon 13 and sequences
immediately 3′ to the deletion, suggesting that the deletion includes the polyadenylation
site for normal dogs. This was confirmed with a 3′ RACE experiment, which located the
normal polyadenylation site 135 bp past the stop codon and 76 bp past a potential polyA
signal. A similar 3′ RACE experiment revealed that the mutant RNA produces a transcript
of 577 bp into intron 13, 520 bp past an in-frame termination codon.
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Figure 7. Microcapillary electrophoretograms of RT-PCR amplicons from FAN1 mRNA. RT-PCR was
performed with total RNA extracted from the kidneys of two FS-unaffected dogs (1 and 2), the blood
of two FS-unaffected dogs (3 and 4), and one FS-affected dog (5). Lane 6 represents a negative control.
(A) RT-PCR was performed with primers from exon 5 to exon 7 of the FAN1 gene. The expected
amplicon size was 269 bp. (B) RT-PCR was performed with primers from exon 12 to exon 14 of the
FAN1 gene. The expected amplicon size was 300 bp. (C) RT-PCR was performed with primers from
exon 12 to intron 13 of the FAN1 gene. The expected amplicon size was 245 bp.
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We genotyped a cohort of 78 Basenjis of known clinical status for the FAN1 deletion
and found all 32 of the FS-affected Basenjis to be homozygous for the deletion allele.
FS-unaffected dogs tested either homozygous wild-type or heterozygous, except for one
unaffected dog that tested homozygous for the deletion allele. The deletion allele was
highly significantly associated with the FS phenotype (p = 4.219 × 10−21, Fisher’s exact test
2 × 2). Table 2 summarizes the genotype distribution.

Table 2. Distribution of genotypes among healthy and FS-affected Basenjis.

Phenotype Del/Del Genotypes
Del/Wt Wt/Wt Total

FS-affected 32 0 0 32
FS-unaffected 1 33 12 46

Total 33 33 12 78

4. Discussion

The data from this study indicate that FS in Basenjis is the result of FAN1 deficiency.
The homozygous deletion genotype was strongly associated with the FS phenotype, with
only one dog that did not exhibit disease signs out of 33 that were homozygous for the
deletion variant. In addition, the FAN1 risk variant was not present in 120 unaffected dogs
from 81 different breeds. The whole genome sequence of the proband did not contain
homozygous variants in any other genes that have been associated with the type of disease
signs exhibited by the affected Basenjis. Although a functional assay of potential FAN1
enzymatic activity was not performed, the predicted translation of the variant transcript
suggests a grossly altered protein structure if the transcript is translated (Supplemental
Figure S1). FAN1 variants have been associated with FS-like disorders in human subjects
and mice [55–57], but this is the first report of FAN1-associated FS in dogs.

The mechanism by which deficiency in FAN1 leads to the kidney pathology associated
with FS remains to be fully elucidated. FAN1 was first named KIAA1018 by Nagase
et al. [58], who screened brain cDNA libraries for unidentified genes. They determined that
KIAA1018 was expressed at similar levels in multiple tissues. Alonso et al. [59] proposed
that FAN1 was part of the myotubularin gene family of tyrosine phosphatases. They
proposed a new genomic designation, MTMR15, and predicted that the encoded protein
was a catalytically inactive member of the inactive MTMR family of protein tyrosine
phosphatases. The inactive MTMRs have been reported to act as regulatory units for
active members of the group [60]. However, no studies have been reported that directly
support the hypothesis that FAN1 (MTMR15/KIAA1018) is involved in the regulation of
the enzymatically active MTMRs.

Unlike the MTMR proteins, FAN1 has a ubiquitin-binding domain at the N-terminus
and at its C-terminus a domain with homology to bacterial and phage endonucleases,
which suggests that this protein may contribute to the maintenance of genome stability [61].
FAN1 has been identified as one of the proteins involved in DNA inter-strand crosslink
repair [62–67]. The disease Fanconi anemia is a recessive disorder characterized by genome
instability, impaired repair of DNA crosslink damage, developmental abnormalities, early-
onset bone marrow failure, and a predisposition to cancer [68,69]. Variants in more than
20 genes, including FAN1, have been associated with Fanconi anemia [69–73]. The name
FAN1 (Fanconi anemia-associated nuclease 1) has been proposed because this protein inter-
acts with Fanconi anemia pathway proteins [62–65,72]. When DNA inter-strand crosslinks
occur, FAN1 is recruited to the lesion sites through an interaction between its ubiquitin-
binding domain and the ubiquitylated complex of the Fanconi anemia pathway [62–65,72].
However, it appears that FAN1 may also mediate DNA repair independent of other proteins
in this pathway [66,74]. The deleted region encodes a conserved segment of the nuclease
domain, which is likely to obliterate FAN1 nuclease activity (Supplemental Figure S2) and
thus its role in DNA repair. Based on the evidence that FAN1 is involved in repairing DNA
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inter-strand crosslinks, the proximal renal tubule pathology associated with FS may be the
result of the accumulation of these crosslinks in renal tubule epithelial cells.

Support for this hypothesis comes from the finding that FAN1 deficiency sensitizes
cultured cells to reagents that cause targeted DNA damage. This sensitivity can be res-
cued by transfection with wild-type FAN1 but not by variant constructs containing point
mutations in the ubiquitin-binding or endonuclease domains, which indicates that both
domains are involved in DNA repair [62–65]. The nuclease domain of FAN1 has both
5′exonuclease activity and endonuclease activities that are key characteristics of DNA
repair proteins [62–65].

The fact that the most apparent pathology associated with FS occurs in the proximal
tubules of the kidneys suggests that this tissue may be particularly susceptible to DNA
damage. Factors that promote DNA damage in this tissue may contribute to the devel-
opment of FS. Consistent with this hypothesis is the fact that acquired forms of FS have
been associated with heavy-metal exposure and toxicoses from drugs such as cisplatin
that promote DNA damage [7,14,28,29,75–79]. Heavy metals, such as cadmium, may be
present in plants and sea food because of contaminated soils and water [75]. Chronic
environmental exposure can result in cadmium accumulation to toxic levels that cause
kidney disease [75]. Cadmium toxicity can cause DNA damage, including double- and
single-stranded breaks [80]. The kidney is particularly susceptible to cadmium and other
heavy metal toxicities. Approximately 50% of the accumulated dose of cadmium is stored
in the kidney [75]. In mitochondria, cadmium inhibits the respiratory chain, resulting
in the generation of reactive oxygen species [81]. This leads to mitochondrial disruption
with the release of cytochrome c, resulting in caspase activation causing cell death by
apoptosis [82,83].

We propose that FAN1 inactivation causes FS in Basenjis by hyper-sensitization of the
proximal tubule cells to toxins that mediate DNA damage, including heavy metals such as
cadmium. Since FAN1 has been reported to be involved in DNA repair and the knockdown
of FAN1 sensitizes cells to DNA crosslinking agents [62–65], we predict that environmental
and dietary exposure to toxins that promote DNA damage leads to the accumulation of
both genomic and mitochondrial DNA damage in the kidney. Differential exposure to
environmental toxins may explain the wide age-at-onset variability for FS in Basenjis. It is
possible that the variability in age-at-onset and disease severity may also be due in part to
genetic factors that modify the disease risk associated with the FAN1 variant. It would be
difficult to identify any such potential genetic modifiers without controlling for potential
environmental risk factors.

The key finding of this study is that there is almost complete concordance between
FAN1 genotype and phenotype, indicating that by avoiding breeding dogs that carry the
deletion allele, it should be possible to eradicate FS from the breed. Although environ-
mental factors are likely to modify the disease risk among dogs that are homozygous
for the deletion allele, none of the dogs that were heterozygous or homozygous for the
reference FAN1 allele developed FS. This indicates that FAN1 is completely protective
against any environmental factors, such as heavy metal exposure, that can contribute to
FS development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15111469/s1, Figure S1: Wild-type and mutant cDNA
sequences and mRNA illustration of FAN1; Figure S2: Aligned amino acid sequences for the C-
terminal of the FAN1 protein; Table S1: Chromosome 3 microsatellite markers used for disease
locus mapping.

https://www.mdpi.com/article/10.3390/genes15111469/s1
https://www.mdpi.com/article/10.3390/genes15111469/s1
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