Skip to main content
. 2024 Nov 18;13(22):3667. doi: 10.3390/foods13223667

Table 3.

Best results of predicting ADA levels in WF using MEWs based on the different numbers of WF samples in training set and validation set.

NIR Source
(NT/V Group)
Spectra Number
of MEWs
Modeling
Algorithm
Quantitative Regression Analysis Discriminant Analysis (Whether Excessive ADA)
LVs Training Set Validation Set LVs Training Set Validation Set
R2T RMSET R2V RMSEV RPD R2T RMSET AOC R2V RMSEV AOC
NIR
(NT/V = 168/42)
SG1D 24 PLS 4 0.9810 4.18 0.9819 4.08 7.4889 3 0.9091 0.30 98.21% 0.9119 0.30 97.62%
MLR - 0.9914 2.81 0.9898 3.06 9.9001 - 0.9410 0.24 99.40% 0.9369 0.25 100%
HSI-NIR
(NT/V = 147/63)
RAW 23 PLS 7 0.9892 3.15 0.9835 3.88 7.7972 8 0.9038 0.31 98.64% 0.8765 0.35 100%
MLR - 0.9919 2.72 0.9837 3.86 7.8388 - 0.9101 0.30 99.32% 0.8787 0.35 100%