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Abstract: Functional foods significantly affect social stability, human health, and food security.
Plants and microorganisms are high-quality chassis for the bioactive ingredients in functional foods.
Characterised by precise nutrition and the provision of both nutritive and medicinal value, functional
foods serve a as key extension of functional agriculture and offer assurance of food availability for
future space exploration efforts. This review summarises the main bioactive ingredients in functional
foods and their functions, describes the strategies used for the nutritional fortification and industrial
production of functional foods, and provides insights into the challenges and future developments
in the applications of plants and microorganisms in functional foods. Our review aims to provide a
theoretical basis for the development of functional foods, ensure the successful production of new
products, and support the U.N. Sustainable Development Goals, including no poverty, zero hunger,
and good health and well-being.

Keywords: functional agriculture; functional food; nutrient fortification; bioactive ingredients;
industrial production

1. Introduction

Earth faces numerous threats, including increased human activity and global climate
change. The escalation of climate change and global warming, sharp decline in biodiversity,
severe scarcity of water resources, environmental pollution and ecotoxicity, depletion of
resources, impending threat of nuclear war, and tensions arising from the arms race are
among these challenges. The consequences of failing to address these challenges are severe
and affect human health, food security, and the stability of the natural environment.

Advancements in traditional breeding techniques, modern biotechnology, and in-
novations in agronomic practices have contributed significantly to the establishment of
sustainable food systems [1,2]. There are many ways to build a sustainable food system,
one of which is by-product recycling, such as extracting active substances from the pro-
cessing by-products of vegetables and fruits and employing these useful compounds from
such waste in value-added products. Replacing animal-based products with non-animal
products, such as the now popular microalgae single-cell protein, is also a way to reduce
CO2 emissions and protect ecology. In addition, the application of plant factories signifi-
cantly alleviates stress on arable land and water resources; cell factories replace chemical
processing by using clean biological processing methods that are environmentally friendly,
efficient, and sustainable [3,4].

However, despite these advances, one-third of the global population remains malnour-
ished, and more than two billion people suffer from micronutrient deficiencies [5]. This has
sparked a strong interest in healthy eating and led to a gradual shift in dietary concepts
from mere satisfaction to the desire for high-quality, healthy diets (i.e., simultaneously
eating well and healthily) [6]. Advances in biotechnology have significantly contributed to
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this process by integrating the health and agricultural sectors. Scientific and technological
advancements have enabled the constant revelation of the complex relationships between
food composition, dietary structure, nutritional conditions, and human health, thus creating
the possibility of enhancing physical fitness and immunity through diet [5,7,8]. With the
application of modern biotechnology, cultivation of plants and microorganisms enriched
with specific nutrients or bioactive ingredients has become a reality [9,10]. Therefore, the
bioeconomy offers technical solutions and promotes strategies to mitigate some of the
biggest global challenges, which are crucially important for the safeguarding of human life
and health.

Functional foods are defined as foods that contain biologically active compounds
which, in defined, effective, and non-toxic amounts, provide a clinically proven and docu-
mented health benefit by utilising specific biomarkers for the prevention, management, or
treatment of chronic diseases or their symptoms. Characterised by precise nutrition and
the provision of both nutritive and medicinal value, functional foods serve as key extension
of functional agriculture. Functional agriculture refers to the production of functional prod-
ucts through biofortification or other biotechnological strategies, thereby providing raw
materials with adequate nutrients for functional foods. Functional foods provide an optimal
solution to the global issues of malnutrition and hidden hunger [11]. However, functional
foods should not be mistaken for medicines, as a regulatory framework controls the autho-
risation of health claims. According to the current European regulation (EC 1924/2006),
any health claim should be supported by evidence from human interventions, such as
clinical trials. Health claims approved by governmental health agencies (e.g., the European
Food Safety Authority, EFSA) are perceived as trustworthy by consumers [12].

Functional foods comprise various categories, including traditional foods, fortified
foods, and dietary supplements. Their functional properties can be further categorised into
energy supplementation, performance enhancement, skin nourishment, cardiovascular
disease prevention, cognitive health promotion, immune system enhancement, weight
management, and oral health maintenance (Figure 1). Recently, there has been a substantial
increase in research on the applications of functional foods. Over the past five years, the
term “functional food” has been included in 32,143 publications according to statistics from
the Web of Science database [13]. According to data published by Grand View Research,
the market for functional foods has increased continuously and is expected to increase to
USD 586.069 billion by 2030 [14].

Reviews of the relevant literature have primarily focused on the historical develop-
ment of the definition of functional foods, functional food processing techniques [15],
approaches to functional food product development [11], and the significance of functional
foods for human health [16]. Here, we systematically summarise the bioactive ingredi-
ents of functional foods and their specific functions, analyse strategies for nutritional
fortification and industrial production of functional foods, and provide insights into the
challenges and prospects for the application of plants and microorganisms in functional
foods. Consistent with the 17 Sustainable Development Goals, which provide a shared
blueprint for peace and prosperity for people and the planet, this review aims to provide
valuable insights and practical guidance for the development of functional foods and
ensure the successful production of new products, thereby contributing to the sustainable
development of the functional food industry to achieve no poverty, zero hunger, and good
health and well-being.



Foods 2024, 13, 3546 3 of 19
Foods 2024, 13, x FOR PEER REVIEW 3 of 19 
 

 

 

Figure 1. Types of functional foods, bioactive ingredients, and common products. This schematic of 

concentric circles shows the title in the innermost circle followed by a circle containing the current 

concepts, reflecting 10 condition-specific broad categories of functional foods. The penultimate cir-

cle illustrates the primary active components used to create the aforementioned ten types of func-

tional foods. Typical examples of well-linked functional foods in each category are shown in the 

outermost circle. PUFA: polyunsaturated fatty acids. 

2. Bioactive Ingredients in Functional Foods and Their Effective Functions 

The physiological benefits of functional foods stem from the bioactive ingredients 

and functional factors contained in their raw materials, which primarily include amino 

acids, peptides, proteins, functional polysaccharides, polyunsaturated fatty acids, vita-

mins and their analogues, mineral elements, trace compounds, and dietary fibre. These 

functional components are essential for maintaining and improving human health, and 

the specific effects of each key component are discussed in detail in the following sections. 

2.1. Amino Acids, Peptides, and Proteins 

Proteins account for 45% of the total dry matter in the body and 70% of the total 

muscle mass. They are closely related to metabolism, anti-disease and antibacterial im-

munity, fluid balance, and the transmission of genetic information in the body [17]. Pro-

teins can be grouped according to their amino acids (essential, semi-essential, or non-es-

sential). Based on their source, proteins can also be categorised as animal, plant, or micro-

bial proteins. Plant and microbial proteins have gradually gained popularity because of 

various factors, such as sustainability, dietary diversity, animal welfare, and health 

Figure 1. Types of functional foods, bioactive ingredients, and common products. This schematic of
concentric circles shows the title in the innermost circle followed by a circle containing the current
concepts, reflecting 10 condition-specific broad categories of functional foods. The penultimate circle
illustrates the primary active components used to create the aforementioned ten types of functional
foods. Typical examples of well-linked functional foods in each category are shown in the outermost
circle. PUFA: polyunsaturated fatty acids.

2. Bioactive Ingredients in Functional Foods and Their Effective Functions

The physiological benefits of functional foods stem from the bioactive ingredients and
functional factors contained in their raw materials, which primarily include amino acids,
peptides, proteins, functional polysaccharides, polyunsaturated fatty acids, vitamins and
their analogues, mineral elements, trace compounds, and dietary fibre. These functional
components are essential for maintaining and improving human health, and the specific
effects of each key component are discussed in detail in the following sections.

2.1. Amino Acids, Peptides, and Proteins

Proteins account for 45% of the total dry matter in the body and 70% of the total muscle
mass. They are closely related to metabolism, anti-disease and antibacterial immunity,
fluid balance, and the transmission of genetic information in the body [17]. Proteins can be
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grouped according to their amino acids (essential, semi-essential, or non-essential). Based
on their source, proteins can also be categorised as animal, plant, or microbial proteins.
Plant and microbial proteins have gradually gained popularity because of various factors,
such as sustainability, dietary diversity, animal welfare, and health benefits associated with
non-animal proteins. These proteins have the potential to replace conventional animal
proteins, such as eggs, lean meat, and fish [18].

The primary sources of plant proteins in the human diet are legumes (e.g., soya beans,
peas, lentils, mung beans, black beans, and chickpeas), cereals (e.g., wheat, maize, and rice),
oilseeds (e.g., rapeseed and sunflower), nuts, and seeds [19]. With advances in biotechnol-
ogy, microbial protein production has gained increasing attention in both academia and
industry. First, microorganisms exhibit high protein content. For instance, Spirulina has
a crude protein content of approximately 70%, whereas Chlorella has a protein content of
up to 60% and contains all the essential amino acids [20]. Second, microorganisms can
synthesise proteins that are absent in higher animals and plants, such as phycobiliproteins
(e.g., phycocyanin, phycoerythrin, phycoerythrocyanin, and allophycocyanin), which can
reduce oxidative stress by neutralising reactive oxygen species, thereby exhibiting strong an-
tioxidant properties, antibacterial, anticancer, and ultraviolet protection bioactivities [9,21].
Microalgae also synthesise selenoproteins (e.g., thioredoxin reductases; methionine sul-
foxide reductases; and selenoproteins W, U, and T) contained in the human body with
the significant effect of cancer prevention [22]. Furthermore, microbial proteins can be
efficiently produced in closed, intensive bioreactor systems that require little arable land
and freshwater and do not require pesticides or antibiotics. Therefore, such proteins can
be produced through urban farming on marginal land and in industrialised metropolitan
areas [20]. Microorganisms can be used as chassis cells to produce edible vaccines, an-
tibodies, human milk proteins, ovalbumin, casein, lactoferrin, therapeutic proteins, and
bioactive peptides [23–25]. It is estimated that 800 million vegetarians worldwide will soon
gain access to high-quality proteins derived from microbes.

2.2. Functional Polysaccharides and Oligosaccharides

Sugars are the most important source of energy for humans, and functional polysaccha-
rides and oligosaccharides are the two types of functional sugars. Functional polysaccha-
rides are non-starch polysaccharides that regulate the physiological functions of the human
body. They are categorised into two groups: dietary fibres and active polysaccharides.
Plant cell walls contain non-starch polysaccharides such as cellulose, hemicellulose, lignin,
and pectin, which are commonly present in celery and citrus fruits [26]. Additionally,
high-quality dietary fibres include resistant starch found in microalgal pyrenoids, as well
as gum, pectin, and mucilage. Active polysaccharides include animal polysaccharides (chi-
tosan), plant polysaccharides (e.g., tea polysaccharides, Ginseng polysaccharides, Astragalus
polysaccharides, and Lycium barbarum polysaccharides), and microbial polysaccharides
(e.g., fungal polysaccharides; cellular polysaccharides; and Euglena gracilis polysaccharides,
also known as β-1,3-glucan or paramylon). Functional polysaccharides can serve as prebi-
otics in humans. They participate in multiple beneficial biochemical processes, including
the synthesis of vital vitamins, activation of the immune system, and fermentation of
carbohydrates into short-chain fatty acids, by regulating the activity of microorganisms
in the gastrointestinal tract. These polysaccharides demonstrate great efficacy in lower-
ing cholesterol and blood sugar levels, have antioxidant properties, boost immunity, and
enhance intestinal function [27–29].

Several functional oligosaccharides can be synthesised using microorganisms. For
instance, allulose, a new low-calorie sweetener, potentially exerts anti-diabetic and anti-
obesity effects and is thus an ideal substitute for sucrose [30]. Other oligosaccharides,
including lacto-N-neotetraose [31], 2′-fucosyllactose, and 3-fucosyllactose, play crucial
roles in regulating immunity, assisting brain development, and regulating intestinal flora.
They are commonly found in baby formulas and are advantageous for the growth and
development of infants and young children [32].
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2.3. Polyunsaturated Fatty Acids

Polyunsaturated fatty acids (PUFA) are essential in humans. They are typically cate-
gorised into two categories: omega-6 fatty acids (linoleic acid [LA], arachidonic acid [AA])
and omega-3 fatty acids (α-linolenic acid [ALA], γ-linolenic acid [GLA], stearidonic acid
[SDA], docosapentaenoic acid [DPA], docosahexaenoic acid [DHA], and eicosapentaenoic
acid [EPA]). Omega-6 fatty acids found in soybean, safflower, sunflower, walnut, and
corn oils reduce serum low-density lipoprotein cholesterol and triglyceride levels and in-
crease low-density lipoprotein cholesterol (HDL-C) levels, resulting in a significant overall
decrease in the total cholesterol/HDL-C ratio. Among the various omega-3 fatty acids,
EPA and DHA have garnered considerable attention and are in high demand because of
their prominent functional activities [33]. Both EPA and DHA exert key influences on the
development and function of the brain and nervous system and are capable of lowering
cholesterol levels, reducing platelet aggregation, and decreasing the risk of heart disease
and stroke [34]. Fish, such as tuna, are the main sources of EPA and DHA in the human diet.
However, fish oils are unsuitable for vegetarians because of their fishy odour and gradually
declining fish populations [35]. Therefore, the search for new sustainable sources of fatty
acids has become extremely important. Microalgae are considered an ideal alternative
source [36]. In particular, Schizochytrium sp., Ulkenia amoeboidea, and Crypthecodinium cohnii
have been approved as sources of DHA supplements in infant formulas [34].

2.4. Vitamins and Their Analogues

Vitamins are essential nutrients that the body either cannot produce on its own or
produces in insufficient amounts. Therefore, they must be obtained daily through food.
They have numerous benefits, such as alleviating fatigue, reducing depression, protecting
the skin and cardiovascular system, and preventing the development of heart disease,
diabetes, Alzheimer’s disease, and cancer [37,38]. However, many vitamins are heat-
sensitive, denatured, and inactivated during high-temperature treatment, resulting in
insufficient intake, especially vitamin C, vitamin E, vitamin B1, and vitamin B2. Therefore,
vitamin deficiencies are common, which is a major cause of hidden hunger in humans.
Fruits and vegetables are the primary dietary sources of vitamins in humans. However,
microalgae are also rich in vitamins required by the human body, such as vitamins B1
(thiamine), B2 (riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B7 (biotin),
B9 (folate), B12 (cobalamin), C, D2, E, and K. Additionally, the content of many of these
vitamins is much higher in microalgae than in conventional foods, making microalgae a
natural source of high-quality vitamins [39–42]. For instance, β-carotene (converted to
vitamin A in humans) synthesised by Dunaliella salina under suitable conditions can reach
levels more than 10% of the dry weight. Astaxanthin (a carotenoid with antioxidant activity
200 times higher than that of tea polyphenols and 60 times higher than that of coenzyme
Q10) produced by Haematococcus pluvialis may reach up to 7% of its dry weight [41,43].

2.5. Minerals and Trace Elements

Minerals are essential components and functionally active factors in the human body.
They participate in various metabolic processes as activators, cofactors, and structural
components of various enzymes, and play an indispensable role in maintaining acid-base
balance and osmotic pressure stability. Mineral deficiency can lead to hidden nutritional
problems. Twenty essential mineral elements support vital human activities, and 16 basic
elements are required for plant growth. Na, I, Se, and Co are the four mineral elements that
differ between humans and plants. Supplementation with Na, Co, and I can be achieved
through inorganic routes; however, the effective and safe supplementation of Se remains
a major challenge. This is mainly attributed to the fact that inorganic Se is highly toxic in
nature and has a narrow range for safe consumption. Furthermore, Se is not an essential
trace element for the growth and development of higher plants. Therefore, it is difficult to
achieve accurate and efficient Se supplementation by relying solely on traditional intake of
grains, vegetables, and fruits. Microalgae are rich in mineral elements, such as Cu, Fe, Zn,
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Se, Mu, P, and As, and possess the ability to synthesise selenoproteins [44,45]. For instance,
genes encoding 59 selenoproteins have been identified in the selenoproteome of Aureococcus
anophagefferens [46]. Chlamydomonas reinhardtii possesses at least 10 selenoproteins [47],
and the Ostreococcus lucimarinus genome contains 20 selenocysteine-encoding genes [48].
Thus, the conversion of inorganic Se into selenoprotein-based organic Se through edible
microalgae is an effective approach for the utilisation of Se [49], which can potentially serve
as a functional food supplement to overcome the problem of inadequate daily Se intake.

2.6. Carotenoids

Carotenoids are fat-soluble pigments comprising eight isoprene (C5) units. The con-
jugated double-bond structure of these molecules confers antioxidant properties on nat-
ural pigments [50]. More than 500 different carotenoids have been identified, including
astaxanthin, fucoxanthin, β-carotene, lutein, lycopene, canthaxanthin, zeaxanthin, and
neoxanthin [51]. These carotenoids are found in high concentrations in plants such as
tomatoes, carrots, and corn. Yeasts are also high-quality model organisms for carotenoid
synthesis. For carotenoid biosynthesis, acetyl-coenzyme A (Ac-CoA) is condensed into
five carbon molecules, namely IPP (iso pentenyl diphosphate) and DMAPP (dimethylallyl
diphosphate). Through a downstream carotenoid biosynthetic pathway, IPP and DMAPP
are sequentially condensed to yield carotenoid molecules, such as lycopene, β-carotene, as-
taxanthin, and zeaxanthin, among others [52]. Notably, the antioxidant capacity of naturally
extracted carotenoids is superior to that of chemically synthesised products. In particular,
the antioxidant activity of astaxanthin is 500 times that of vitamin E and 6000 times that
of vitamin C. Given their powerful antioxidant properties, carotenoids have the potential
for a wide range of applications in medicine and healthcare, such as adjuvant therapy for
Parkinson’s disease, the treatment of metabolic syndrome, maintenance of oral health, sun
protection for the skin, and the alleviation of hyperglycaemia [51,53–55].

3. Strategies to Improve the Nutrient Density of Diets

Nutritional density refers to the concentration of nutrients in food; the greater the
nutrient density, the higher the nutrient richness of the food. The nutrient density of diet
is closely linked to health status. Hidden hunger is an insidious form of malnutrition
caused by the lack of essential vitamins and minerals required by the human body. To
address hidden hunger, several strategies have been adopted to optimise nutrient intake.
These include direct nutrient supplementation, food fortification, the promotion of diet
diversification, biofortification, and multidimensional methods, such as the use of toxicity
attenuation and synergy. The latter two approaches can cultivate food materials rich in
specific health-promoting ingredients, which are subsequently used as raw materials for
in-depth processing to develop functional foods with health benefits, thus improving the
nutrient density of diets [56,57].

3.1. Biofortification

Biofortification techniques can be implemented through an agronomic pathway,
whereby the concentration of mineral elements in exogenous nutrient solutions is ad-
justed to promote the accumulation of target minerals in the biological host. For instance,
while the use of sodium selenite tablets as a selenium supplement poses safety concerns, the
primary organic sources of selenium in the daily diet are fish, shellfish, and animals. How-
ever, these sources frequently include potentially hazardous inorganic forms of Se [58,59].
Recent studies have revealed that because of their unique metabolic mechanisms, mi-
croalgae can efficiently convert inorganic Se into organic Se, which has low toxicity and
high bioavailability, with a conversion efficiency of more than 80% [49,60]. This discovery
provides a novel natural biological solution for the safe and effective fortification of foods
with Se.

Genetic biofortification strategies rely on genetic breeding techniques aimed at cul-
tivating or optimising new crop varieties with enhanced mineral element accumulation
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capacities. Modern biotechnological techniques, such as genetic engineering, synthetic
biology, and gene editing, provide key support for food fortification. In addition to the
efficient biosynthesis of key nutrients, such as proteins [61], polysaccharides [32,62], and
PUFAs [39,63], these technologies greatly enhance the nutritional density and functional
qualities of foods and create new paths for nutritional improvement and health promotion.
Mapelli et al. adopted a metabolic engineering approach for the expression of heterologous
selenocysteine methyltransferase in Saccharomyces cerevisiae, resulting in an approximately
24-fold increase in selenocysteine content [64]. Li et al. used CRISPR-Cas9-mediated
genome editing to knock down five alleles in tomatoes, including lycopene ε-cyclase, ly-
copene β-cyclase1, and lycopene β-cyclase 2. This promoted the accumulation of lycopene,
while inhibiting the conversion of lycopene to β- and α-carotene, leading to an approx-
imately five-fold increase in lycopene content [65]. Similarly, Li et al. knocked down
the 7-dehydrocholesterol reductase allele using CRISPR-Cas9 genome editing to induce the
accumulation of 7-dehydrocholesterol without affecting the growth, development, or yield
of tomato plants [66]. More notably, Waltz reported the use of CRISPR-Cas9 gene editing
to produce tomatoes with a γ-aminobutyric acid-enriched content higher than mulberry
leaves and 4–5 times higher than that of conventional tomatoes. These tomatoes have been
approved for marketing [67].

3.2. Plant Biotechnological Detoxification and Synergism of Plants

Enhancing the nutritional level of crops through nutrient fortification and eliminating
potential antinutritional metabolites is essential for the production of functional food ingre-
dients. Phytotoxins are toxic secondary metabolites produced by plants as a defence against
herbivores and pathogens. These compounds include cyanogenic glycosides, glucosino-
lates, alkaloids, and terpenoids. For instance, rapeseed and cassava leaves (containing
cyanogenic glycosides), potato tubers and fruits (containing solanine), and seeds of legu-
minous crops (containing β-diaminopropionic acid [β-ODAP]) possess the potential for
crop/organ development but contain natural toxins. Biotechnological strategies for the
removal of antinutritional metabolites include (1) knocking out key catalytic enzymes
to inhibit the biosynthesis of antinutrients, (2) targeting upstream transcription factors,
(3) disrupting the transport or storage of antinutrients, and (4) converting antinutrients into
non-toxic substances [68]. For instance, Gomez et al. knocked out CYP79D1 and CYP79D2
in cassava using CRISPR-Cas9 genome editing, which significantly reduced the synthesis
of cyanogenic glycosides [69]. Kumar et al. utilised genetic engineering techniques to
introduce a fungal oxalate decarboxylase gene into grass pea for the degradation of oxalate,
thereby reducing the β-ODAP concentration in grass pea seeds by 73% [70]. The application
of these strategies will help improve the nutritional value of crops. Thus, these strategies
have immense potential for use in functional agriculture.

4. Industrial Production of Functional Foods

A significant trend in the agriculture and food industries is the technological advance-
ment of agriculture and the development of an industrial chain that shifts from functional
agriculture to functional plants, and eventually, to functional food. This process, which is
based on functional agriculture, involves the selective utilisation of plants or microorgan-
isms as biological platforms for nutrient fortification to cultivate functional products rich
in specific health-promoting ingredients. Subsequently, these ingredients are used as raw
materials for in-depth processing to develop functional foods with health benefits (Figure 2).
Therefore, the establishment of efficient plant and cell factory production systems is a key
strategy for achieving the efficient utilisation of resources and increasing the production
yield and efficiency of functional foods.
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Figure 2. An industrial chain that shifts from functional agriculture (A) to functional plants (B) and,
eventually, to functional food (C). This pathway, which is based on functional agriculture, involves the
selective utilisation of plants as biological platforms for nutrient fortification to cultivate functional
products rich in specific health-promoting ingredients. These ingredients are subsequently used as
raw materials for in-depth processing to develop functional foods with health benefits.

4.1. Plant Factories

Plant factories are efficient agri-food systems that enable year-round planned produc-
tion of crops in an indoor three-dimensional space through high-precision environmental
control. Computers are used to accurately control the temperature, humidity, light, carbon
dioxide concentration, nutrient solution, and other environmental conditions required for
plant growth and development to obtain high-quality and high-yield agricultural products.
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Compared to traditional agriculture, plant factories offer multiple advantages, including
reduced land requirements, a short production cycle, high production efficiency, lack of
geographical limitations, high product safety, standardised quality, and the capability for
nutritional customisation [71,72]. Plant factories have been established worldwide and
mainly produce functional products such as leafy greens, fruits, medicinal plants, spices,
and edible flowers. The market size was approximately USD 5.1 billion in 2023 and is
expected to increase to USD 15.3 billion by 2030, with a production output of more than
600,000 tonnes [73]. Hu et al. reported that the use of a plant factory to grow rice led to
the shortening of the growth cycle from 120 d in a conventional paddy field to 60 d [74,75].
Another study by Liao et al. indicated that the efficiency of food production in plant
factories was 400 times higher than that in traditional soil-based agriculture [75]. Miyagi
et al. showed that the biomass and amino acid levels of head lettuce can be significantly
increased by optimising the amount of red light, CO2, and nutrient formulation [76]. Simi-
larly, medicinal plants, such as basil, exhibited significantly higher antioxidant activity and
increased protein and soluble sugar content when subjected to UV light irradiation in a
plant factory [77]. Three types of cultivation modes are generally adopted in plant factories:
hydroponics, aeroponics, and aquaponics, all of which require less water and fertiliser and
generate lower levels of pesticide residues than traditional methods. Among these modes,
aquaponics exhibits the highest water utilisation efficiency, safety, and controllability. How-
ever, its investment cost is also the highest, which has led to the widespread adoption of the
other two modes. For example, Vertical Harvests uses hydroponics to supply the market
with approximately 100,000 pounds of microgreen, lettuce, and tomatoes annually, and
the adoption of aeroponics by AeroFarms has led to a 95% reduction in water usage and
pesticide residue levels [73]. With limited land and controlled environments to produce
safer and nutritious food, plant factories have become indispensable for eradicating hunger
and ensuring food security and human health.

However, high energy demand, capital costs, and limitations of crop variety are major
challenges in achieving the triple pillars (planet, people, and profit) of sustainability. Future
research should focus on the utilisation of renewable energy sources (e.g., geothermal en-
ergy, solar energy, wind energy, and hydropower) for heating, ventilation, air conditioning,
and dehumidification and achieve precise control with energy-efficient lighting technolo-
gies and digital twin platforms. This makes it possible to lower the energy and labour
expenses associated with environmental control. Research should also be conducted on
plant factory cultivation technologies for high-value-added plants, such as medicinal plants,
health-promoting plants, and rare vegetables, to increase the variety of crops cultivated in
plant factories [78].

4.2. Microbial Cell Factories

Microorganisms play a pivotal role in functional foods and are primarily used in three
ways: (1) microbial biomass applications, (2) microbial substance carriers, and (3) microbial
cell factories (Figure 3). The term ‘cell factory’ first appeared in the 1970s and refers to the
use of microorganisms as production hosts in biotechnology to produce microbial enzymes
and industrially important biochemicals by metabolism. However, because of the complex-
ity of microbial cell networks, only a few species (e.g., Escherichia coli, Bacillus subtilis, Lactic
acid bacteria, Saccharomyces cerevisiae, and microalgae) are capable of serving as high-quality
microbial hosts that utilise inexpensive carbon sources as substrates, maintain a stable state
during the fermentation process, possess a clear genetic background, are non-pathogenic,
and do not contain exotoxins or endotoxins. Cell factories have the advantages of fast
growth rate, strong metabolic capacity, relatively simple culture conditions, and capability
for large-scale production [79]. The optimisation of expression systems and culture condi-
tions using mature tools and strategies in metabolic engineering, genetic engineering, gene
editing, and high-cell-density culture will enable the efficient and economical production
of bioactive substances of plant and animal origins [80]. Microorganisms are widely used
in the food industry.
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Figure 3. Pathways for the industrialised production of functional foods. There are three main
pathways through which microorganisms are applied in food production. Application of microbial
biomass (A): Microbial biomass is obtained from microorganisms sourced from food, humans, and
the environment through screening, identification, and fermentation. Application of substance
carriers (B): Microorganisms can synthesise various high-value bioactive ingredients, which are then
extracted, separated, and purified to obtain pure substances. Application of cell factory (C): Cell
factory refers to the use of microorganisms as production hosts to achieve the industrialisation of
target products. Applications in food (D): The microbial biomass or extracted compounds obtained
from the three above-mentioned methods are used as food ingredients, starter cultures, or dietary
supplements for food production.

Kang et al. improved the efficiency of carotenoid synthesis in engineered E. coli
by 5.7-fold and increased the yield of lycopene synthesis in S. cerevisiae to 2300 mg/L
using a modular enzyme assembly [81]. The use of different wine yeasts and enzymatic
preparations was responsible for the extraction of resveratrol during fermentation [75,82].
Yang et al. constructed recombinant strains of E. subtilis using metabolic engineering,
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which enabled an increase in the vitamin K2 concentration to 281.4 ± 5.0 mg/L in a 5 L
fermenter [42]. Lactic acid bacteria have been used in the commercial production of a wide
range of food additives, including sweeteners (e.g., mannitol and xylitol), flavouring agents
(e.g., acetaldehyde and diacetyl), and vitamins. Pathways for the synthesis of polyphenols,
such as resveratrol (primarily derived from Reynoutria japonica), pterostilbene (primarily
derived from Pterocarpus santalinus), and anthocyanidins (primarily derived from black
wolfberry), have been successfully constructed using bacteria [83], providing a basis for
the mass production of high-value polyphenols. Microorganisms are ideal alternatives
for animal-based foods. Using single-cell proteins from the filamentous fungus Fusarium
venenatum, Quorn Foods successfully created meat replacements that are now consumed
in 17 countries [84,85]. Soy leghaemoglobin, synthesised in Pichia pastoris, can serve as a
sustainable source of flavour and aroma, with low allergenicity in plant-based meats [86].
Other studies have successfully expressed human milk oligosaccharides, human milk fats,
casein, and whey proteins in S. cerevisiae, E. coli, and B. subtilis [9,32,63,87,88], which can be
consumed by vegetarians.

It is particularly noteworthy that microalgae have survived five mass extinctions,
and thus offer unparalleled advantages over other microorganisms. In addition to being
highly diverse (200,000–800,000 species) and having an exceptionally high nutrient content,
microalgae possess the combined advantages of animals, plants, and microorganisms,
are wholly edible, and enable efficient energy utilisation. These features make them
attractive alternatives to the derivation of natural animal and plant products by extraction
from animals and plants or chemical synthesis. Currently, microalgae are produced and
processed in more than 30 countries. In particular, Spirulina is recognised by the World
Health Organisation as one of the major ‘superfoods’, and this has prompted a new wave
of applications of microalgae as functional food ingredients. Credence Research reported
that the global algae products market was valued at USD 4.5 billion in 2021 and is projected
to reach a value of more than USD 6.3 billion by 2028 [89].

Advances in science and technology have contributed to the growth of the microalgal
industry. For example, Rathod et al. heterologously expressed the CrtYB (phytoene-β-
carotene synthase) gene from Xanthophyllomyces dendrorhous in Chlamydomonas reinhardtii and
found that light induction resulted in 72% and 83% increases in β-carotene and lutein yields,
respectively [90]. Jeon et al. employed the CRISPR-Cas9 system to generate chlorophyll
synthase loss-of-function mutants that exhibited an increase in phycoerythrin content
to 37.07 mg/L [91]. Microalgae are widely used in food production (Table 1). Despite
these promising results, the commercialisation of microalgae faces technical bottlenecks
in scaling up standardised cultures, low-cost dehydration, and functional component
extraction. Once these technical bottlenecks are addressed, microalgal cell factories, which
serve as potential novel food production methods, will possess a higher market value and
contribute more to the sustainability of food production.

Table 1. Microalgae incorporation in food products.

Microalgae Ingredients Products/Applications Function/Benefits References

Chlorella vulgaris Biomass Wheat bread dough Changed the colour, texture, and antioxidant
capacity of food. [92]

Spirulina maxima Biomass Vegan biscuits
Dramatically increased the protein, iron and

PUFA content of biscuits without altering
sensory acceptance.

[93]

Dunaliella salina and
Chlorella vulgaris Biomass Fresh green smoothies

Increased the sensorial properties,
microbiological quality and phenolic

contents of food.
[94]

Spirulina platensis Biomass Chocolate shakes
Increased the content of protein and fibre,
extend the shelf life, and the product has

good sensory acceptance.
[95]

Spirulina platensis Biomass Cassava doughnuts
Not only improved the nutritional quality of

the doughnut, but also improves
the acceptance.

[96]
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Table 1. Cont.

Microalgae Ingredients Products/Applications Function/Benefits References

Haematococcus pluvialis Biomass Cookies Improved bioactive composition of cookies. [97]

Arthrospira sp. Biomass Extruded snacks Made food with high nutritional value and
sensory acceptance [98]

Spirulina platensis Biomass Cheese The antioxidant capacity of cheese has been
increased by nearly 10 times. [99]

Isochrysis galbana and
Diacronema vlkianum Biomass Pasta Addition of omega-3 polyunsaturated

fatty acids. [100]

Spirulina platensis B Complex vitamins Health supplement Added nutritional properties (Help the body
to convert food in energy). [39]

Nannochloropsis oceanica Vitamin D3 Health supplement
Added nutritional properties (Development
and maintaining of skeleton; regulation of
blood pression; cardiovascular protection).

[101]

Chlorella ellipsoidea Peptides Functional food
ingredients

Enhanced antioxidant and antihypertensive
properties of food. [102]

Spirulina platensis Protein
Animal product

alternatives/Meat
analogues

Simulated the structure and texture of
meat analogues. [84]

Spirulina platensis Phycocyanin yoghurt
Maintained the colour stability of ice cream

for 182 days and increased its
antioxidant activity.

[103]

Haematococcus pluvialis Astaxanthin Nutritional supplement Imparted colour to food as well as strong
antioxidant properties [104]

Thraustochytriidae sp. Exopolysaccha-rides Food additives Increased food consistency, anti-proliferative
and immunomodulatory effects. [105]

Euglena gracilis β-1,3-glucan Nutritional supplement An active immunostimulant and blood
lipids reductor. [45]

Dunaliella salina β-carotene Juice, can Imparted bright colours to food and
improved antioxidant properties. [106]

Porphyridium purpureum Phycoerythrin Bio-colorant Gave bright colour and functionality to food. [107]

Schizochytrium sp. EPA and DHA Spread, dressing
It is important for the maintenance of

membrane fluidity and the development of
the brain and retina.

[34]

Chlamydomonas reinhardtii Lutein, zeaxanthin Beverage, functional food
and supplement

Used as a pigment while imparting
antioxidant properties to food. [106]

Arthrospira platensis Gamma-linolenic acid Oil Mediated immune process; prevented several
chronic inflammatory diseases and cancers; [108]

Spirulina, Chlorella spp. Ascorbic acid Doughnuts, spaghetti,
Biscuits Prevention of oxidation of biomolecules [109]

Euglena gracilli, Dunaliella
salina Tocopherol Vitamin supplement Prevented the oxidation of saturated

fatty acids [110]

Scenedesmus sp.,
Phaeodactylum tricornutum Phenolic compounds Functional food

Antioxidant; antiviral; antiproliferative;
regulation of

macronutrient digestion
[111]

Desmodesmus intermedius,
Dictyosphaerium Calcium Food supplement Structural; enzyme cofactor; blood clotting;

muscle and nerve function [44]

Chlorococcum humicola,
Coccomyxa simplex Cooper Food supplement Essential in metabolic processes;

haemoglobin and enzyme formation [44]

Spirulina, Thalassiosira sp. Zinc Dietary supplement Managed stress; protein synthesis; immune
and enzyme systems [16]

Arthrospira platensis Selenium Dietary supplement Necessary for metabolic processes [45]
Aureococcus

anophagefferens Selenoproteins Dietary supplement Avoided Keshan disease, cardiovascular
disease and myocardial infarction [46]

5. Challenges Facing Functional Food Development
5.1. High Cost

Certain challenges must be overcome to fully utilise plants and microorganisms in
food production (Figure 4), one of which is high cost. First, large-scale culture of microor-
ganisms is extremely expensive [112]. This is partially due to the high construction and
operational costs of photobioreactors [113]. Harvesting costs, which make up 20–30% of the
total production cost, are caused by the small size of microbial cells and the incompatibility
of chemical harvesting techniques with food applications [114]. To maintain the activity
of functional substances, measures such as cold-chain transport, microencapsulation tech-
niques [115], and freeze-drying technology [116] are usually adopted, which increases the
costs of food technology and transport. The purity of the natural bioactive ingredients
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required for food products must also be higher than that required for feed applications,
which increases the cost of processing [117]. Finally, the commercial use of microbiological
foods remains heavily regulated, and the long and complex safety approval process poses
a major challenge [118].
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Figure 4. Challenges and future development of functional foods. Functional foods face numerous
challenges, including their high cost, the search for new strains, functional verification, and ensuring
food nutrition and safety. However, they also have significant potential for future development,
such as serving as food for space travel and interstellar exploration, preventing space sickness, and
potentially becoming staple foods for humans, among other applications.

5.2. Search for New Strains

The search for new strains through the screening and modification of functional
plants and microorganisms in food products is challenging. Screening and domestication
combined with random mutagenesis or genetic engineering is an effective strategy for
obtaining desired strains. However, an imbalance between yield and quality remains [16].
For instance, certain microorganisms possess high biomass and low lipid content, and vice
versa. Therefore, for specific biologics, the search for strains with both high growth rates
and high concentrations of bioactive ingredients is a difficult task in bioprospecting [119].
In addition, certain strains may produce toxins, which reduces their applicability and
increases the difficulty of screening [114].

5.3. Food Nutrition and Safety

Plants and microorganisms are rich in bioactive ingredients but may also contain toxic
or potentially toxic substances that are hazardous to human health (e.g., solanine in potato
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tubers and fruits, cyanogenic glycosides in cassava leaves, β-ODAP in seeds of leguminous
crops, and nucleic acids in microorganisms). These substances must be eliminated during
food processing [120]. Another significant obstacle faced by the functional food industry
is maintaining the integrity and activity of functional ingredients during processing and
storage [121]. Natural bioactive ingredients may interact or react with other ingredients,
resulting in insolubility, oxidation, precipitation, or degradation [122]. The combined use
of functional ingredients may aid in the maintenance of the stability of food products
but may also affect their digestion and metabolism and reduce their bioavailability after
consumption. For example, milk exerts a negative effect on the metabolic pathways of
flavonoids; therefore, it should not be used with combination [123]. Therefore, extensive
research is required to ensure food security, accomplish the goal of ending hunger, and
encourage the production of high-quality nutritious foods for many people [16].

5.4. Functional Verification

Although the functional food industry is growing, relevant laws and regulations,
including the verification of food product functionality, are lacking. This has led to the
unclear functionality of certain foods. Food digestion and absorption involve multistage
processing in the oral cavity, oesophagus, stomach, and intestine. Mechanical chewing in
the oral cavity, the highly acidic environment of the stomach, and decomposition of the
intestinal flora may lead to the inactivation of functional ingredients, resulting in their
inability to perform their functions [124]. Therefore, the lack of functional verification is an
important issue that must be urgently addressed.

6. Conclusions and Outlook

With rapid population growth and challenges related to land, water resources, and
the environment, malnutrition and hidden hunger are becoming increasingly prominent,
fulling a strong consumer interest in healthy eating habits. Functional foods have the
advantage of “replacing medicine with food” and have become the best choice.

The efficacy of functional foods comes from the bioactive substances contained in
the raw materials, through biotechnological, agronomic, and breeding techniques, the
quality and quantity of bioactive ingredients can be improved, and at the same time,
genetic engineering, gene editing and genetic engineering and other biotechnology can
reduce the content of harmful substances in raw materials, and further ensure the efficacy
of functional foods, which is also a manifestation of the vigorous development of the
bioeconomy. The application of plant factories and cell factories has laid the foundation
for the industrial production of functional foods to provide safe, green, and nutritious raw
materials through precise environmental control, and promote the vigorous development
of the functional food industry. However, this article still has the following gaps and
limitations: On the one hand, its content regarding the industrial production of functional
foods is not comprehensive; for example, non-thermal processing methods and active
substance extraction methods are not mentioned. On the other hand, the article contains a
wide range of content, and each part of the content lacks depth and focus, which should be
avoided in future writing.

In the future, although there are still some challenges to be overcome, functional foods
may play a key role in other areas, including, but not limited to, meat protein alternatives,
stable food for humans, and disease prevention, and build a solid foundation for achieving
the 17 Sustainable Development Goals. With greater exploration of the universe, it is
expected that functional foods may also serve as crucial support for space exploration by
providing astronauts with the necessary nutrition and energy resources.
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