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Abstract: This study explores the extraction and characterization of proteolytic enzymes from
brewer’s spent grain (BSG) and their potential as sustainable coagulants in the dairy industry. BSG
samples from various beer types (Blonde Ale, IPA, Kölsch, Honey, and Porter) were obtained from
two artisanal breweries in Mar del Plata, Argentina. Optimization of caseinolytic activity (CA) and
protein extraction was conducted using a Plackett–Burman design, followed by a Box–Behnken
design. Optimal protein concentration was achieved at intermediate pH and high temperature, while
CA peaked at pH 8.0. The specific caseinolytic activity (SCA) varied among the extracts, with BSG3
showing the highest activity (99.6 U mg−1) and BSG1 the lowest (60.4 U mg−1). Protease inhibitor
assays suggested the presence of aspartic, serine, metallo, and cysteine proteases. BSG3 and BSG4
showed the highest hydrolysis rates for α-casein (70% and 78%). For κ-casein, BSG1, BSG2, and
BSG3 demonstrated moderate activity (56.5%, 49%, and 55.8), while BSG4 and BSG5 exhibited the
lowest activity. Additionally, the milk-clotting activity (MCA) of BSG extracts was comparable to
plant-based coagulants like Cynara cardunculus and Ficus carica. These findings highlight the potential
of BSG-derived proteases as alternative coagulants for cheese production, offering a sustainable link
between the brewing and dairy industries.

Keywords: circular economy; barley bioproducts; vegetable rennet; biomass sustainability; food
innovation; enzymes

1. Introduction

Brewer’s spent grain (BSG) is the principal solid by-product of the brewing process,
accounting for approximately 85% of the total waste produced in beer manufacturing [1].
This biomass, produced in vast quantities by breweries worldwide, has historically posed a
waste management challenge [2]. However, recent research has highlighted the potential
of BSG as a valuable raw material, given its nutrient-rich profile, which includes proteins,
fibers, and phenolic compounds that make it suitable for numerous high-value applica-
tions [3]. The shift toward a circular economy, aiming to reuse and repurpose by-products,
has brought BSG into the spotlight, underscoring its relevance in food, bioenergy, and
biotechnology sectors [4]. This approach aligns with sustainable development goals by
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enabling industries to reduce waste and extend the lifecycle of natural resources, transform-
ing BSG into a renewable input for various industries. Reusing waste like BSG multiple
times exemplifies a compelling strategy to advance the circular economy, transforming
industrial by-products into assets that reduce the environmental impact of the brewing
industry [5].

During the brewing process, barley undergoes a series of enzymatic and thermal
treatments during malting and mashing, stages that promote protein degradation. Enzymes,
particularly proteases, break down storage proteins into smaller peptides and amino acids
that facilitate yeast metabolism [6,7]. These BSG proteins, though partially denatured,
retain significant functional properties even after the brewing process. Studies indicate that
thermostable proteases in BSG maintain their proteolytic activity under various conditions,
presenting an underexplored yet promising opportunity for biotechnological applications
beyond brewing [8,9]. Such enzymes have attracted interest in food processing, especially
for their robust activity under diverse pH and temperature conditions, making them
suitable candidates for applications where resilience to processing conditions is critical [10].

One of the most promising applications for BSG-derived proteases lies in the dairy
industry. The proteolytic activity of these enzymes can be harnessed as an alternative to
traditional animal-derived coagulants used in cheese-making [11–13]. Traditional cheese
coagulants, such as animal rennet, are derived from calves and are increasingly limited
by ethical and supply challenges, prompting the search for plant-based or microbial al-
ternatives [14,15]. Proteolytic enzymes, including aspartic and serine proteases, which
demonstrate resilience to various thermal and chemical conditions, have the capacity to
hydrolyze casein, a key protein in milk that undergoes structural changes to form cheese
curds. Proteases that can selectively degrade casein subunits (especially κ-casein) are par-
ticularly valuable, as their action initiates curd formation by disrupting micelle structures
in milk [16]

Despite substantial research into BSG’s nutritional and functional composition, the
potential to harness BSG-derived proteases for high-value industrial applications, particu-
larly in cheese production, remains underexplored [17,18]. This study addresses this gap
by optimizing and characterizing the caseinolytic and milk-clotting activities (MCAs) of
proteases extracted from BSG. The research focuses on assessing the enzymatic activity
of BSG proteases on milk proteins, proposing these enzymes as plant-based coagulants
capable of supporting sustainable dairy applications. Specifically, this study investigates
their action on key milk caseins, aiming to identify optimal extraction conditions and
understand the enzymes’ capabilities for use in dairy processing.

By advancing the understanding of BSG proteases, this research contributes to the
growing body of knowledge on sustainable food innovation, aligning with the principles
of a circular bioeconomy [19,20]. The outcomes could support the development of BSG-
derived coagulants, offering a viable, natural alternative to animal rennet, thereby reducing
reliance on animal-based coagulants and providing an eco-friendly solution for the dairy in-
dustry. Ultimately, this study represents a significant step in linking the brewing and dairy
industries, demonstrating the feasibility of transforming a brewing by-product into a func-
tional ingredient for artisanal cheese production. These findings not only reduce waste but
also open pathways for developing functional food ingredients, enhancing the commercial
value of BSG and promoting more sustainable, innovative food production practices.

2. Materials and Methods
2.1. BSGs Source

The BSGs were provided by the artisanal breweries “Antares” and “Cheverry” in the
city of Mar del Plata, Argentina.

We designated the BSG used in this work as BSG1, derived from an Blonde Ale beer
type, composed of Pilsner malt (87.5%) and Carapils malt (12.5%), sourced from Cheverry
Brewery; BSG2, derived from an IPA beer type, which consisted of Pale malt (95.2%)
and Crystal malt (4.8%); BSG3 from a Kölsch beer type, containing Pilsner malt (87.5%)
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and Carapils malt (12.5%); BSG4 from a Honey beer type, composed solely of Pale malt;
and BSG5 from a Porter beer type, consisting of Pale Ale malt (75%), Crystal malt (11%),
Chocolate malt (7%), black malt (2.5%), wheat malt (4.5%), and oat flakes (4.5%). BSG2,
BSG3, BSG4, and BSG5 were provided by Antares Brewery.

2.2. Experimental Design

The Plackett–Burman design was used to determine the significant variables affecting
enzyme extraction conditions from BSG. Six independent variables at two levels were
evaluated: pH, temperature, homogenization time, dithiothreitol (DTT), Triton X-100,
and CaCl2 concentrations. The variables and their levels are shown in Table 1. Two
response variables were analyzed: protein concentration and caseinolytic activity. They
were measured according to Sections 2.5 and 2.8.

Table 1. Plackett–Burman-evaluated variables and their levels.

Variable
Levels

−1 +1

pH 5 9
Temperature (◦C) 30 60

Homogenization time (min) 1 3
DTT (mM) 0 10

Triton X-100 (%v/v) 0 5
CaCl2 (mM) 0 10

The significant variables were optimized using a Box–Behnken design (BBD). A BBD
is an independent, rotatable quadratic design that does not include embedded factorial
or fractional factorial points. The variable combinations are located at the midpoints of
the edges of the experimental variable space and at the center point [21]. The variables
studied and their levels are shown in Table 2. The design included three replicates at the
center point.

Table 2. BBD-evaluated variables and their levels.

Variable
Levels

−1 +1

pH 5 10
Temperature (◦C) 20 60

CaCl2 (mM) 0 20

2.3. Statistical Analysis

The results obtained from the Plackett–Burman and the Box–Behnken designs were
analyzed and plotted using Minitab Software version 20.4 (Minitab LLC, 2021, State College,
PA, USA) and the R software version 3.6.3 [22]. Analyses of variance were used to determine
the factors that were significant at the 5% level for both designs, and Pareto charts were
plotted. The responses obtained from the BBD experiments were analyzed using a response
surface methodology (RSM) [23]. Second-order polynomial equations including interaction
terms were used to build the models and obtain the coefficients. An analysis of variance
was used to determine the significance of each coefficient.

2.4. BSG Protein Extracts

The different BSG protein extracts were obtained according to the experimental design
used (Section 2.2). Different buffers (100 mM Acetate buffer pH 5, 100 mM Phosphate buffer
pH 7 and 100 mM Tris-HCl buffer pH 9) were placed in a mixer cup in a 1:5 ratio (BSG:buffer)
and supplemented with different concentrations of DTT (Sigma-Aldrich, Burlington, MA,
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USA), Triton X-100 (Fisher Scientific, Waltham, MA, USA), and CaCl2 (Sigma-Aldrich,
Burlington, MA, USA). The mixture was homogenized through 2, 4, or 6 pulses of 30 s each,
using an immersion blender (SL-SM6038WPN 600 W, Smartlife, Buenos Aires, Argentina).
A water bath was used to fix the temperature to the corresponding value (30, 45, or 60 ◦C).
Then, to obtain the protein extracts, the homogenates were centrifuged at 10,000× g for
20 min at 4 ◦C (Thermo Scientific Sorvall ST16R, Fisher Scientific, Waltham, MA, USA).
Once the BSG extracts were prepared, they were sterilized by exposure to shortwave UV
light in the UVC band (200–280 nanometers). The supernatant was then collected and
stored at −20 ◦C until use.

2.5. Protein Determination

The sample protein content was determined using a bicinchoninic acid (BCA) method [24].
Bovine serum albumin (BSA) was used as the standard for calibration. The protein con-
centrations of the extracts were measured using an ELx800 ELISA plate reader (Biotek,
Winooski, VT, USA), with absorbance at 540 nm. Since DTT could interfere with the BCA
method [25], the extracts were previously dialyzed. Dialysis of the extract was carried out
for 24 h in different buffers, which were replaced after 12 h. The dialyzed extracts were
stored at −20 ◦C.

2.6. SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis)

For protein profile analysis, SDS-PAGEs were performed using 12% (w/v) polyacry-
lamide gels under reducing conditions, according to the procedure of Laemmli [26]. Sam-
ples were dissolved (1:5) in a sample buffer containing 60 mM Tris-HCl buffer pH 6.8, 10%
v/v glycerol, 2% SDS, 5% v/v 2-mercaptoethanol, and 0.05% v/v bromophenol blue, heated
at 95 ◦C for 5 min and kept on ice to ensure denaturation. The loading volumes were 5 µL
for molecular weight markers (MWM) and 20 µL for the samples. Electrophoresis was
carried out at a constant voltage of 100 V during stacking and 120 V until the run was
complete. After electrophoresis, the gels were stained with a staining solution containing
Coomassie Brilliant Blue R-250 at room temperature for 12 h and subsequently destained
with a destaining solution until protein bands were visible against a clear background. The
molecular weight of the proteins was estimated by comparing the migration pattern of the
bands to the MWM composed of a mixture of BSA (66 kDa), chicken ovalbumin (45 kDa),
glyceraldehyde-3-phosphate dehydrogenase (36 kDa), carbonic anhydrase (29 kDa), bovine
pancreas trypsinogen (24 kDa), and soybean trypsin inhibitor (20.1 kDa) (Sigma-Aldrich,
Burlington, MA, USA). The gels were scanned and analyzed using the ImageJ software
version 1.54h [27].

2.7. Milk-Clotting Activity of BSG1 Extract

The milk-clotting activity (MCA) of the BSG1 extract was evaluated as described
by Lizardi-Jiménez, with slights modifications [28]. In total, 12 g of skim milk powder
(San Regim, Sunchales, Argentina) was reconstituted in 100 mM of phosphate buffer with
pH 6.5 containing 40 µL of 10 mM CaCl2 to a final volume of 2 mL. The capacity of the
BSG extract to clot bovine milk was determined by observing the volume and texture of
the clots formed after 24 h of incubation at 37 ◦C. A total of 1 mg mL−1 of commercial
chymosin (Chy-Max, CHR-Hansen, Hoersholm, Denmark) served as the positive control,
while 100 mM of phosphate buffer with a pH of 6.5 was used as the negative control. Two
different milk/BSG1 ratios were analyzed: 1:1 and 1:2.

2.8. Caseinolytic Activity of BSGs Extracts

The caseinolytic activity (CA) of the BSG extracts was measured using total casein as
a substrate, according to Anusha with some modifications [29]. In total, 450 µL of each
BSG extract was incubated with 150 µL of 2% w/v casein (Sigma-Aldrich, Burlington, MA,
USA) in 100 mM of the phosphate buffer with a pH of 6.5 at 37 ◦C for 5 h. The hydrolysis
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of casein was evaluated by SDS-PAGE, as described previously. One caseinolytic activity
unit (U) was defined according to Equation (1):

U =
Icasein+BSG

Icasein
× 45 (1)

where I_(casein+BSG) is the intensity of the band corresponding to casein incubated with
the BSG extract, and I_casein is the intensity of the band corresponding to casein alone,
both calculated from the densitometry of the SDS-PAGE gels.

2.9. Influence of pH and Temperature on CA

The influence of pH on CA of BSG1 extract was determined according to de Farias [30]
across a pH range of 3 to 9, using the following buffers: 100 mM acetic acid/acetate buffer
(pH 3–5), 100 mM phosphate buffer (pH 6–7), and 100 mM carbonate/bicarbonate buffer
(pH 8–9). The activity was determined as described in Section 2.8 and was expressed as a
percentage relative to the sample exhibiting the highest enzymatic activity (relative activity).

The enzymatic behavior at different temperatures was assessed by measuring CA
across a temperature range of 30 ◦C to 70 ◦C in 10 ◦C intervals [30]. The activity was
expressed as a percentage relative to the sample exhibiting the highest enzymatic activity
(relative activity).

2.10. Endopeptidases Inhibition Profile

Endopeptidases are classified into four main groups based on their active sites, accord-
ing to the MEROPS database [31]: aspartic peptidases, serine peptidases, metallopeptidases,
and cysteine peptidases. To determine the main peptidase types that contribute to the
proteolytic activity of BSG extract, an inhibition profile was performed. The effect of specific
inhibitors on the CA of the BSG1 extract was assessed by pre-incubating the samples with
40 mM pepstatin A (aspartic peptidase inhibitor), 1.5 mM phenylmethylsulfonyl fluoride
(PMSF) (serine peptidase inhibitor), 5 mM ethylenediaminetetraacetic acid (EDTA) (met-
allopeptidase inhibitor), or 4 mM iodoacetamide (cysteine peptidase inhibitor) for 1 h at
37 ◦C. Then, the CA of the BSG1 extract was measured as described in Section 2.8.

Inhibitor solutions were prepared as follows: Pepstatin A (Sigma-Aldrich, Burlington,
MA, USA) was prepared as a 1 mM stock solution by dissolving it in dimethyl sulfoxide
(DMSO) and was used at a final concentration of 40 mM in the reaction mixture; PMSF
(Sigma-Aldrich, Burlington, MA, USA) was prepared as a 100 mM stock solution in iso-
propanol, as it is unstable in aqueous solutions, and was added just before the assay to
maintain activity; EDTA (Fisher Scientific, Waltham, MA, USA) was prepared as a 0.5 M
stock solution by dissolving it in water and adjusting the pH to 8.0 with NaOH to ensure
solubility; and finally, iodoacetamide (Sigma-Aldrich, Burlington, MA, USA) was dissolved
in water to create a 100 mM stock solution and was added immediately before use due to
its light sensitivity. All stock solutions were stored at −20 ◦C, except PMSF, which was
ideally prepared fresh, to prevent degradation.

2.11. Hydrolysis of the Bovine Casein Subunits

BSG’s endopeptidases activity on bovine α-, β-, and k-casein subunits was determined
according to the method described by Pontual [32]. Commercial bovine αs-, β-, and κ-
casein subunits (Sigma-Aldrich, Burlington, MA, USA) with molecular weights of 22–25,
24, and 19 kDa, respectively, were dissolved in 100 mM of the phosphate buffer with a pH
of 6.5 to a final concentration of 0.8 mg mL−1 for αs- and β-casein and 0.65 mg mL−1 for
κ-casein. Each subunit was independently incubated with the different BSG extracts in
100 mM of the phosphate buffer with a pH of 6.5 at 37 ◦C for 6 h. The reaction was stopped
by adding a sample buffer. Digestion products were analyzed with SDS-PAGE as described
previously. Hydrolysis percentage was calculated from the SDS-PAGE densitometric
analysis, considering 100% hydrolysis as the complete disappearance of the casein bands.
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A total of 1 mg mL−1 of commercial chymosin (Chy-Max, CHR-Hansen, Hoersholm,
Denmark) was used as control.

3. Results and Discussion

The brewing process significantly alters the protein content of barley grains [8,33].
Mashing, the first key step in brewing, continues the enzymatic degradation initiated
during malting, with around 90% of endoproteases surviving the kilning process and
remaining active during mashing, facilitating further protein breakdown into peptides and
amino acids [8,33]. The hydrolytic enzymes involved in this degradation, mainly endo-
proteases and carboxypeptidases, are produced during malting and act to cleave proteins
into smaller peptides and free amino acids. Jones et al. and Osman et al. demonstrated
that endoproteases remain highly active, into the wort, at approximately 38 ◦C during the
protein rest phase of mashing, but their activity declines rapidly when the temperature
increases to 70 ◦C, where starch hydrolysis occurs and proteases are inactivated [8,34].
On the other hand, Rizvi et al. isolated and characterized proteases thermostables, from
Canadian two-row spring malting barley lines, after kilning process (air drying at 40–60 ◦C,
followed by a gradual temperature increase to 85–95 ◦C) [9].

Despite substantial research on protease activity during malting and mashing, there is
a critical gap in the literature regarding the residual activity of endoproteases in BSGs after
mashing, representing a promising area for further investigation.

3.1. Finding Significant Variables That Affect Extraction of Endopeptidases with Caseinolytic
Activity from BSG

To identify the significant variables influencing the extraction of active endopeptidases
from BSG, the Plackett–Burman experimental design [35] was used. This approach allowed
us to systematically evaluate multiple factors simultaneously, providing insight into which
variables have the most substantial impact on enzyme activity. The results obtained from
this design are critical for optimizing the extraction process, ensuring maximum yield
and efficiency in subsequent studies [36–38]. While the Plackett–Burman design does not
differentiate between main effects and interaction effects, it effectively identifies factors
with significant impacts by comparing the response differences between the two levels of
each factor [39].

Table 3 outlines the screening design used and the associated response values. The re-
sponse variables assessed were caseinolytic activity and protein concentration in the extracts.

Table 3. Plackett–Burman design for six factors and their responses.

Run pH T (◦C) Homogenization
Time (min)

Triton
(%v/v) DTT (mM) CaCl2

(mM)
CA

(U mL−1)
Protein Concentration

(mg mL−1)

1 9 30 3 0.0 0 0 61 0.80
2 9 60 1 5.0 0 0 42 1.60
3 5 60 3 0.0 10 0 31 1.00
4 9 30 3 5.0 0 10 83 0.90
5 9 60 1 5.0 10 0 43 1.30
6 9 60 3 0.0 10 10 65 1.20
7 5 60 3 5.0 0 10 45 1.50
8 5 30 3 5.0 10 0 33 0.60
9 5 30 1 5.0 10 10 51 0.55

10 9 30 1 0.0 10 10 82 0.75
11 5 60 1 0.0 0 10 50 0.85
12 5 30 1 0.0 0 0 55 0.35
13 7 45 2 2.5 5 5 55 0.95
14 7 45 2 2.5 5 5 51 1.10
15 7 45 2 2.5 5 5 60 0.90
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The analysis of the Plackett–Burman design revealed that pH, temperature, Triton
X-100, and CaCl2 concentration had a significant impact on CA (Figure 1A). Higher CA was
associated with elevated pH and CaCl2 concentration and lower temperature and Triton X-
100 concentration (Figure 1B). For the protein concentration, the significant variables were
temperature, pH, and Triton X-100 concentration, all of which were positively correlated
with the response (Figure 1C,D).
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Figure 1. Pareto (A,C) and main effect plots (B,D) from the Plackett–Burman design analysis. The six
independent variables examined were pH, temperature, homogenization time, and the concentrations
of Triton X-100, DTT, and CaCl2. The blue plots represent CA, while the green plots correspond to
protein concentration. Variables with values exceeding the threshold indicated by the dashed red line
are considered significant.

To further optimize the significant variables that maximize both CA and protein
concentration, the BBD was analyzed using the RSM [40]. Table 4 presents the selected
variables, their levels, and the corresponding responses obtained. The upper and lower
limits for each variable were determined based on the results of the Plackett–Burman
design analysis. A full quadratic model, including interaction terms, was employed to
analyze the data. The two responses evaluated were CA and protein concentration.

Table 4. BBD and their responses. The significant variables that positively affected CA and protein
concentrations were selected.

Run pH T (◦C) CaCl2 (mM) CA (U mL−1) Protein Concentration (mg mL−1)

1 5 20 10 50 0.82
2 10 20 10 70 0.12
3 5 60 10 45 1.38
4 10 60 10 51 0.99
5 5 40 0 49 1.03
6 10 40 0 55 0.48
7 5 40 20 45 0.87
8 10 40 20 60 0.39
9 7.5 20 0 75 0.66
10 7.5 60 0 60 1.87
11 7.5 20 20 65 1.08
12 7.5 60 20 53 1.95
13 7.5 40 10 85 1.08
14 7.5 40 10 90 1.38
15 7.5 40 10 80 1.22
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Figure 2 presents the RSM analysis of the BBD. The variables that positively influenced
CA and protein concentration (pH, temperature, and CaCl2 concentration) were selected
for this design.
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Figure 2. RSM analysis of the BBD. Two response variables were evaluated: CA and protein concen-
tration. The independent variables identified as significant in the screening design (pH, temperature,
and CaCl2 concentration) were selected for the BBD. Subpanels (A,E) display the significant terms for
each model, with values exceeding the threshold indicated by the dashed red line considered signifi-
cant. (B–D) depict the 3D CA response surfaces, showing the interactions between two independent
variables while holding the third at its optimal level. (F–H) depict the 3D protein concentration
response surfaces, showing the interactions between two independent variables while holding the
third at its optimal level.
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Figure 2A highlights the significant terms in the CA analysis. All three quadratic
terms were significant, and the linear terms for pH and temperature were also significant
(p < 0.05). The resulting model is represented in Equation (2). The lack of fit is non-
significant (p = 0.67), and the adjusted R2 value of 0.91 indicates that the model explains
91% of the variance.

CA = −171.4 + 64.65pH + 2.169T + 1.325CaCl2 − 3.360pH2 − 0.025T2−
0.1175CaCl22 − 0.07pH · T + 0.09pH · CaCl2 + 0.0038T · CaCl2

(2)

Figure 2E presents the significant terms in the analysis for protein concentration (PC).
The linear terms for pH and temperature were significant (p < 0.05), and the quadratic term
for pH was also significant. The resulting model is represented in Equation (3). The lack
of fit was non-significant (p = 0.37), and the adjusted R2 of the model was 0.87, indicating
that the model explains 87% of the variance. In both models (Figure 2A,E), none of the
interaction terms were significant.

PC = −2.86 + 1.138pH − 0.0152T + 0.0126CaCl2 − 0.0875pH2 + 0.000374T2+

0.000155CaCl22 + 0.00155pH · T + 0.00064pH · CaCl2 − 0.000434T · CaCl2
(3)

The optimal values found for the variables evaluated for both responses are shown in
Table 5. Optimal protein concentration conditions were different from those corresponding
to CA. The response surface plots for protein concentration (Figure 2F–H) reveal that pH
was the only significant quadratic term, while all quadratic terms were significant for CAs
(Figure 2B–D). The differences in the response surfaces indicate that the maximum protein
concentration was obtained at an intermediate pH and maximum temperature, with no
significant effect from CaCl2 concentration. In contrast, for CA, the highest values were
observed at intermediate levels of all independent variables.

Table 5. Optimal conditions for CA and protein concentration determined by RSM.

CA Protein Concentration

pH 7.9 7.0
T (◦C) 33 60

CaCl2 (mM) 9 Non significant

The maximum protein extraction occurred at pH 7.0 and 60 ◦C. Similar conditions
have been reported for other BSG extracts obtained involving physical methods such as
sonication [39,41], suggesting that neutral pH and elevated temperature optimize protein
extraction from BSG [10]. However, the model for CA shows that to achieve significant
CA in BSG extracts, the pH should be around 8. Figure 2B,C illustrate that caseinolytic
activity decreases as the pH deviates from this value. Although the temperature and CaCl2
concentration were also significant, their effects were smaller and less critical compared
to pH (Equation (2)). Based on these results (Table 5), the conditions of pH 8, room
temperature, and 10 mM CaCl2 were selected for obtaining the BSG extracts used in
this study.

The use of the BBD for optimizing the extraction process was effective in maximizing
enzyme activity from the BSG. Similar methodologies have been employed in other studies
to optimize enzyme extraction from plant sources [36,42,43]. This statistical approach
not only improved enzyme yield but also ensured that BSG extracts could be utilized in
industrial-scale applications.

3.2. Characterization of CA of BSG1 Extract

The CA of the BSG extract from Blonde Ale-type beer (Cheverry Brewery), named
BSG1 and obtained under the optimum conditions described above, was assessed. Results
obtained are shown in Figure 3.
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Figure 3. Biochemical characterization of CA of BSG1. (A) pH dependence: Relative activity of the
BSG extract was measured across different pH values using citrate buffer (pH 3, 4, 5), phosphate
buffer (pH 6, 7, 8), and Tris-HCl buffer (pH 9). (B) Temperature dependence: The relative activity
of the extract was assessed at various temperatures using 100 mM phosphate buffer at pH 6.5.
(C) Endopeptidases inhibition profile: Inhibitory effects on CA of BSG protein extracts of 40 mM
Pepstatin A (aspartic peptidase inhibitor), 1.5 mM PMSF (serine peptidase inhibitor), 5 mM EDTA
(metallopeptidase inhibitor), and 4 mM Iodoacetamide (cysteine peptidase inhibitor) were analyzed.
CA values for each condition were calculated relative to BSG without inhibitors (control), as described
in Section 2 Materials and Methods. (D) Specific caseinolytic activity (SCA): The SCA of BSG
endopeptidases on bovine α-, β- and κ-casein subunits was determined as indicated in the Section 2
Materials and Method. Hydrolysis percentages were calculated using the SDS-PAGE densitometric
analysis, considering 100% hydrolysis as the complete disappearance of the casein bands. Bars
represent the standard deviation of three independent assays. Different letters indicate statistically
significant differences (p < 0.05).

The effect of pH on relative activity of BSG1 extract shows a clear trend, with the
enzyme displaying its highest activity at a neutral pH of 7 (Figure 3A). As the pH moves
away from neutrality, both in more acidic and basic conditions, the enzyme’s activity
declines. In acidic conditions (pH 3 to 5), the relative activity decreases progressively, with
the lowest activity observed at pH 5. In basic conditions (pH 8 to 9), there is a similar drop
in activity, with the lowest activity at pH 9. During mashing, protease softens the outer layer
of the kernel by breaking down the cell wall proteins, which exposes the starch to mashing
enzymes, thereby improving both the mashing process and wort fermentability [44]. While
proteases from malted barley typically function best in acidic conditions, it has been found
to remain active even at higher pH levels, potentially up to pH 10 [44,45].
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The temperature-dependent activity of the BSG1 extract (Figure 3B), as indicated
by its proteolytic activity profile, aligns with findings from studies on proteases derived
from plant-based or industrial byproducts [15,16,46]. The optimal BSG1 CA around 40 ◦C,
followed by a sharp decline beyond this temperature, is a typical pattern observed in
enzymes sensitive to thermal denaturation. Similar observations were made in studies
of plant-derived proteases, where moderate proteolytic activity was recorded at lower
temperatures, peaking between 35 ◦C and 45 ◦C, followed by a decrease due to protein
unfolding or denaturation [47]. This thermal behavior is crucial for applications in brew-
ing and food processing, where temperature control ensures maximal enzyme efficiency
without compromising stability.

To identify the types of proteolytic enzymes present in the BSG1 extract, the effect of
protease inhibitors on the CA was analyzed. Results showed that the caseinolytic activity
of the BSG extract was partially inhibited by pepstatin A (50%), PMSF (56%), EDTA (61%),
and Iodoacetamide (78%) (Figure 3C). BSG1 extract shows that multiple classes of proteases
contribute to its enzymatic profile, suggesting the presence of aspartic, serine, metallo,
and cysteine proteases in varying degrees. Additionally, the type of proteolytic enzymes
determined in the BSG1 extract reveals both similarities and key differences, with proteins
previously described in barley malted grains and wort [48–52], particularly regarding
the roles of aspartic, serine, metalloproteases, and cysteine proteases. These proteases
are crucial in the breakdown of storage proteins during mashing, with implications for
the solubilization of protein and the production of free amino nitrogen, both of which
influence wort composition and beer quality. In comparison, Jones and Budde examined
the roles of proteases in barley malt during mashing and found that metalloproteases
had the most significant effect on protein solubilization, particularly at pH 6.0 [53]. Their
experiments showed that metalloproteases, inhibited by o-phenanthroline, played a larger
role in solubilizing proteins than cysteine proteases, which were expected to be more active
at acidic pH. This observation is consistent with the BSG data, where metalloproteases also
played a prominent role, as indicated by EDTA inhibition. However, Jones and Budde noted
that EDTA often increased protease activity in their barley malt system, which contrasts
with the inhibitory effect observed in BSG extract [53]. This discrepancy could be explained
due to the different extraction conditions or substrates used, with EDTA potentially having
variable impacts depending on the proteolytic environment and the metal ions involved.
On the other hand, the partial inhibition by pepstatin A of BSG1 extract confirmed the
presence of aspartic proteases, consistent with their secondary but important role observed
in barley mashes at acidic pH levels (pH 3.8). This supports earlier research by Brijs et al.,
which highlighted the key role of aspartic proteases in hydrolyzing storage proteins during
seed germination [54]. These proteases may also contribute to protein degradation in barley
during both malting and mashing. Serine proteases also exhibit similar behavior to aspartic
and metalloproteases in the BSG1 extract. Similar results were previously reported for
Jones and Budde et al., where serine proteases were active at higher pH (pH 8.0). The
role of serine proteases in BSG is comparable to that in barley malt mashes, where they
contribute to protein solubilization during mashing. These enzymes likely play a crucial
role in processing proteins at more alkaline pH levels, helping to degrade proteins that
resist the action of other proteases under standard mashing conditions. A key distinction
between the studies is the relatively minor role of cysteine proteases in the BSG1 extract, as
evidenced by the weaker inhibition with iodoacetamide. This is consistent with previous
findings, where cysteine proteases had a limited effect on protein solubilization, even at
acidic pH levels [53]. The results suggest that in both BSG and malt mashes, cysteine
proteases may not be as significant as previously assumed, particularly when compared to
the more dominant roles of metalloproteases and aspartic proteases.

The analysis of the CA on bovine casein subunits of BSG1 (Figure 3D) showed selective
proteolysis of α-, β-, and κ-casein subunits under conditions resembling industrial coagula-
tion (pH 6.5, 37 ◦C). κ-casein underwent the most extensive hydrolysis (56%), followed by
α-casein (25%) and β-casein (13%). The varying degrees of hydrolysis observed in α-casein,
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β-casein, and κ-casein are in line with the distinct roles these subunits play in casein micelle
structure. β-casein is known for its high hydrophobicity, which makes it more resistant to
enzymatic hydrolysis, explaining the lower hydrolysis percentage observed in the BSG1
extract [55]. In contrast, α- and κ-casein subunits are more accessible to proteolytic enzymes
due to their structural positions and solubility characteristics, resulting in higher degra-
dation rates. This pattern has been observed in other studies investigating plant-based
coagulants, where proteases from cardoon and papaya showed preferential hydrolysis of
κ-casein and α-casein, facilitating micelle destabilization and curd formation [16]. Our
analysis of the protease types within BSG extracts revealed the presence of serine proteases,
which play a crucial role in milk clotting and casein hydrolysis. Notably, these serine
proteases exhibit properties similar to those of chymotrypsin and elastase-2, both known
for their precise substrate specificity and controlled hydrolysis capabilities. This similarity
suggests that BSG-derived serine proteases can effectively target specific casein subunits,
particularly κ-casein, in a manner that facilitates milk coagulation without excessive prote-
olysis. The ability to achieve controlled hydrolysis enhances the functional value of BSG
proteases as coagulants. This property not only preserves the texture and flavor of the final
product but also aligns with commercial requirements for cheese production by allowing
precise regulation of curd formation [56].

In order to evaluate the capacity of BSG1 extract to coagulate bovine milk for cheese-
making, an MCA test was performed as detailed in the Section 2 Materials and Methods.
This assay allows for the evaluation of the first stage of cheese-making, called enzymatic
coagulation, which directly affects the quality of the final product [57]. Results shown in
Figure 4 demonstrate that BSG1 extract exhibits MCA in a dose-dependent manner. After
24 h of incubation, no significant differences were observed in the volume or texture of the
clots formed using chymosin or BSG1 extract at a 1:1 (milk/BSG) ratio.
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Figure 4. Milk-clotting activity of BSG proteases. Commercial skim milk was dissolved in a phosphate
buffer (pH 6.5) containing 40 µL of 10 mM CaCl2, in a final volume of 2 mL, and incubated at 37 ◦C for
24 h. The following conditions were tested: (A) chymosin served as a positive control, (B) phosphate
buffer with a pH of 6.5 was used as a negative control, (C) commercial skim milk in phosphate buffer
with a pH of 6.5 with 10 mM CaCl2 and BSG extract at a 1:2 ratio, and (D) 1:1 ratio.

The biochemical characterization of the CA and MCA of the BSG1 extract highlights
its potential as an alternative coagulant in artisanal cheese production, and provides a
sustainable option that utilizes the functional properties of brewing-industry byproducts.
These findings align with the growing interest in plant-based and waste-derived enzymes,
which offer both environmental benefits and novel functionalities for industrial applica-
tions [58–60]. However, further studies will be necessary to investigate the organoleptic
characteristics of the resulting curds in greater detail, in order to fully assess this potential.
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3.3. Comparative Analysis of BSGs Derived from Different Beer Styles: Impact on CA and MCA

To investigate whether the CA and MCA of BSG extracts are influenced by the type of
malt used, both activities were measured using BSG derived from various beer styles, each
with different malt composition and malting processes. The different types of BSG used
and their composition were previously described in the Section 2 Materials and Methods
and were abbreviated as BSG1, BSG2, BSG3, BSG4, and BSG5.

To determine the specific caseinolytic activity (SCA) of the different BSGs, the protein
concentration and the CA of each BSG extract was measured using casein as the substrate.
The protein concentration of the BSG extracts was determined, and results are shown in
Figure 5A. The BSG1 extract showed the highest protein concentration (1.4 mg mL−1),
while BSG2, BSG3, and BSG4 extracts presented moderate protein concentration values
with 1.01, 0.89, and 0.76 mg mL−1, respectively. The value of BSG1 extract was significantly
higher than the one obtained for BSG5 extract, which presented a protein concentration of
0.64 mg mL−1 extract.
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Figure 5. Comparative analysis of BSG extracts: protein concentration, specific caseinolytic activity,
and activity on different casein subunits. (A) Protein concentration (mg mL−1) of different BSG
extracts evaluated. (B) Specific caseinolytic activity of BSG extracts from different styles of beer.
(C) Proteolytic activity on different casein subunits of BSG extracts from different styles of beer. Bars
represent the standard deviation of three independent assays. Different letters indicate statistically
significant differences (p < 0.05).

Figure 5B shows the SCA of the BSG extracts tested. BSG2 exhibited moderate activity
with an average SCA of 67.2 U mg−1, while BSG3 showed the highest activity with a value
of 99.6 U mg−1, indicating that this extract contains the most active proteases. BSG4 also
displayed a significant specific activity of 84.5 U mg−1. In contrast, BSG5 had a moderate
specific activity of 71.8 U mg−1. Although the BSG1 extract displayed the highest protein
content, its SCA value was the lowest (60.4 U mg−1), indicating that only a part of these
proteins corresponds to active proteases. These results highlight significant differences
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in the enzymatic profiles of the extracts, suggesting their dependence with the BSG malt
composition and malting processes.

The specificity of BSG extracts on bovine casein subunits (α-, β-, and κ-casein) was
analyzed for the BSG extracts and for chymosin (Figure 5C). For α-casein, the BSG3 and
BSG4 extracts exhibited the highest hydrolysis rates, at 70% and 78%, respectively. These
values are notably higher than those for BSG1 (25%), BSG2 (25%), and BSG5 (20%), which
showed activities similar to chymosin (20%). In the case of β-casein, the hydrolysis per-
centages were generally lower across all samples compared to α-casein. The BSG3 extract
demonstrated the highest activity (30%), followed by BSG2 (27%), BSG4 (15%), and BSG1
(13%). Chymosin and BSG5 had the lowest activities, at 8% and 2%, respectively, indicating
that β-casein is less susceptible to hydrolysis by these extracts. For κ-casein, the chymosin
extract exhibited the highest mean hydrolysis rate at 95%, indicating strong proteolytic
activity against this subunit. The BSG extracts displayed varying activities, with BSG1
(56.5%), BSG2 (49%), and BSG3 (55.8%) showing moderate hydrolysis, while BSG4 (37%)
and BSG5 (35.8%) had the lowest activities.

In summary, the data indicate that BSG extracts exhibit different levels of proteolytic
activity depending on the casein subunit. The BSG3 and BSG4 extracts were most effective
against α-casein, while β-casein was less susceptible to hydrolysis by both chymosin and
the BSG extracts, with the BSG3 extract being the most effective among the BSG samples.
These variations may result from the different brewing processes used by artisanal beer
producers, leading to different enzymatic profiles in the BSG extracts. Such differences
should be considered when using BSG for artisanal cheese production.

To evaluate the MCA of the different BSG extracts, clots were formed for each extract
as outlined in the Section 2 Materials and Methods section (Figure 6).
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Figure 6. MCA of BSG extracts from different types of beer: 1 mL of extract was added to 1 mL of 12 %
w/v commercial skim milk dissolved in 100 mM of the phosphate buffer with a pH of 6.5 containing
40 µL of 10 mM CaCl2, in a final volume of 2 mL, and incubated at 37 ◦C for 24 h. Chymosin was
used as the positive control, and 100 mM of the phosphate buffer with a pH of 6.5 was used as the
negative control.

All tested BSG extracts successfully induced clot formation (Figure 6), demonstrating
the milk-clotting capability of the proteases present. However, noticeable differences in clot
texture were observed among some of the BSG extracts compared to that obtained with
chymosin. The nature of the coagulant plays a significant role in defining clot characteristics,
as it can influence micellar aggregation and affect both the rate of gel hardening and its
final firmness, which in turn impacts the curd’s drainage properties, moisture content,
texture, and cheese flavor [61,62]. The difference in the general characteristics of the clots
produced compared to chymosin could be primarily due to the specific activities of each
peptidase on the different casein subunits [63].

The MCA of the BSG extracts described was comparable to that of plant-derived
enzymes, such as those from Cynara cardunculus and Ficus carica, as demonstrated in studies
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by Shah et al. [11] and Nitu et al. [64]. In recent years, plant-based coagulants have garnered
interest as alternatives to calf rennet, particularly in regions like the Mediterranean. The
ability of BSG extracts to clot milk without inducing excessive proteolysis presents a notable
advantage over other plant coagulants, such as those from Ficus and Cynara, which are
often associated with bitter flavors and suboptimal cheese texture.

4. Conclusions

This study successfully highlights the potential of BSG as a source of proteolytic
enzymes with significant caseinolytic and milk-clotting activities, offering a sustainable al-
ternative to traditional dairy coagulants. By optimizing the extraction and characterization
of BSG-derived proteases, this research addresses an important gap in the valorization of
brewery by-products, demonstrating how BSG can be repurposed for high-value applica-
tions within the dairy industry. The findings underscore the feasibility of integrating BSG
proteases as plant-based coagulants, which could replace or supplement animal rennet in
artisanal cheese production. This innovation not only reduces industrial waste but also
advances circular-economy practices, linking the brewing and dairy sectors in a sustainable
and commercially valuable manner. This study’s insights contribute to sustainable food
processing and pave the way for future research on the scalability and sensory impacts of
BSG-derived coagulants in cheese-making.
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