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Abstract: Congenital heart defects (CHDs) rank among the most common birth defects, present-
ing diverse phenotypes. Genetic and environmental factors are critical in molding the process of
cardiogenesis. However, these factors’ interactions are not fully comprehended. Hence, this study
aimed to identify and characterize differentially expressed genes involved in CHD development
through bioinformatics pipelines. We analyzed experimental datasets available in genomic databases,
using transcriptome, gene enrichment, and systems biology strategies. Network analysis based on
genetic and phenotypic ontologies revealed that EP300, CALM3, and EGFR genes facilitate rapid
information flow, while NOTCH1, TNNI3, and SMAD4 genes are significant mediators within the
network. Differential gene expression (DGE) analysis identified 2513 genes across three study types,
(1) Tetralogy of Fallot (ToF); (2) Hypoplastic Left Heart Syndrome (HLHS); and (3) Trisomy 21/CHD,
with LYVE1, PLA2G2A, and SDR42E1 genes found in three of the six studies. Interaction networks
between genes from ontology searches and the DGE analysis were evaluated, revealing interactions
in ToF and HLHS groups, but none in Trisomy 21/CHD. Through enrichment analysis, we identified
immune response and energy generation as some of the relevant ontologies. This integrative approach
revealed genes not previously associated with CHD, along with their interactions and underlying
biological processes.

Keywords: tetralogy of Fallot; systems biology; transcriptome; RNA-seq; microarray; ontologies;
cardiogenesis

1. Introduction

Congenital heart defects (CHDs) are anatomical malformations of the heart and/or
major vessels that occur during the embryonic period [1]. Twenty-eight percent of all
severe congenital anomalies consist of heart defects, representing a significant global health
problem [2]. It occurs in 0.8–1 of every 100 live births, with 25% of diagnosed CHDs needing
surgery or intervention, leading to a risk of death within the first month of birth [3,4]. CHDs
can be classified into eight categories: conotruncal defects (Tetralogy of Fallot, double outlet
right ventricle, and D-transposition of the great arteries), atrioventricular septal defects, left
ventricular outflow tract obstructions (hypoplastic left heart syndrome, aortic stenosis, and
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coarctation of the aorta), septal defects (ventricular and atrial), right ventricular outflow
tract obstructions (tricuspid and pulmonary atresia), heterotaxic malformations, complete
defects (L-transposition of the great arteries and other defects), and anomalous pulmonary
venous return (total or partial) [5].

The etiology of these defects is multifactorial and includes environmental factors,
which may contribute to 10% of CHDs, as well as genetic causes, which may be associated
with syndromes or occur as isolated heart defects [6]. Maternal diabetes and obesity, alco-
hol exposure, congenital infections (rubella, hepatitis B), and certain medications (lithium,
isotretinoin) are considered environmental factors that increase the risk of congenital heart
defects [7–11]. Approximately 70% of CHDs occur in isolation, having a multifactorial
etiology; this includes the most severe cardiac defects. Still, they can also be associated
with other congenital defects or as part of known genetic syndromes, which usually have a
known etiology, such as chromosomal, monogenic, and/or teratogenic causes [12]. Genetic
contributions to the development of CHDs vary widely, i.e., CHDs are diagnosed in 35%
to 50% of newborns with Trisomy 21, in 60% to 80% with Trisomy 18 and 13, and in 33%
with Monosomy X [12,13]. Copy number variations (CNVs) also influence CHDs and can
either occur de novo or be inherited. Many CNVs are related to clinically recognized syn-
dromes, such as 22q11.2 deletion syndrome, 7q11.23 deletion (Williams–Beuren syndrome),
and 5p15.2 deletion (Cri-Du-Chat syndrome) [13–15]. De novo mutations (DNMs) are
found in genes highly expressed during heart development, with DNMs being linked to
approximately 10% of congenital heart defects [16,17].

The advances in sequencing technologies have helped increase the understanding
of the human genome and, consequently, contributed to the discovery of new candidate
genes associated with CHDs, facilitating the identification of their genetic variants [18]. It
is estimated that the use of molecular biology techniques, bioinformatics tools, and the
availability of population study databases have enabled the identification of pathogenic
variants in definitive and candidate genes for congenital heart defects in 45% of affected
patients [16,19]. The functional characterization of a gene includes identifying its interac-
tions, both at genomic and protein levels. Systems biology is an integrated approach that
provides a comprehensive view of genes, proteins, and their interactions through models
that assess disturbances, proper phenotype evaluation, and computational methods for
probabilistic and mathematical modeling. This approach can assist in understanding gene
interactions and the etiology of congenital heart defects [20,21]. Genetic and phenotypic
ontology databases have been widely used to explore these molecular mechanisms for
characterizing phenotypes and gene functions [22,23].

Based on this approach, the present study aimed to identify and characterize genes that
have potential roles in heart development and are consequently involved in the molecular
mechanisms related to congenital heart defects. Considering that these defects are prevalent
in newborns with diverse phenotypes, in silico analyses were conducted using systems
biology tools to investigate the relationship between genes involved in cardiac development
and CHDs through genetic and phenotypic ontologies.

2. Results

A scheme of the strategy developed in the present study is described in Figure 1.
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Figure 1. Schematic research strategy comprising systems biology analysis, differential gene 

expression analysis, and enrichment analyses.

2.1. Gene and Phenotype Ontology Analysis and Network Statistics

The GO selection yielded 651 genes corresponding to 430 previously selected 

ontologies (Table S1), while the 19 CHD phenotypes provided 1111 genes through the 

Human Phenotype Ontology (HPO) (Table S2). A Venn diagram revealed that 177 genes 

are shared between both repositories (Figure S1). Some of these genes are known to play 

critical roles at various stages of cardiac development, including NKX2-5, T-box family 

genes (TBX1, TBX2, and TBX5), GATA family genes (GATA4, GATA5, and GATA6), and 

MYH6. Among the genes identified in the HPO, 934 (84%) have not been previously 

associated with CHDs; however, they are involved in other biological processes such as 

peroxisome maintenance and organization, cilium assembly and organization, and 

microtubule-based transport and movement. These processes are critical for the formation 

of a healthy heart, and their disruption can directly or indirectly influence the 

development of CHDs. Using the STRING tool, we analyzed the GO and HPO networks 

individually and in combination, applying the resulting network to Cytoscape v.3.10.0 for 

topological analysis (Figure S1). To better illustrate gene interactions, a network featuring 

the genes shared between the HPO and GO is also shown (Figure 2).

Following the same approach, we combined the common HPO and GO genes into a 

network, identifying the main nodes involved in information flow. Sixty-one genes 

(nodes) exhibited at least one interaction (edge), with a clustering coefficient of 0.151 and 

an average number of neighbors of 3.115. This metric means that each node is connected, 

on average, with at least three other nodes. Based on this analysis, EP300, CALM3, and 

EGFR had the highest betweenness and closeness centrality levels, meaning that they have 

high and fast information flow. Additionally, the genes NOTCH1, TNNI3, and SMAD4 

emerged as significant mediators of information flow to other genes within the network 

and have been shown to have a known relationship with CHDs. However, to better 

understand the gene interactions involved in CHDs, we chose to search for additional 

genes that could contribute to the various CHD phenotypes.

Figure 1. Schematic research strategy comprising systems biology analysis, differential gene expres-
sion analysis, and enrichment analyses.

2.1. Gene and Phenotype Ontology Analysis and Network Statistics

The GO selection yielded 651 genes corresponding to 430 previously selected ontolo-
gies (Table S1), while the 19 CHD phenotypes provided 1111 genes through the Human
Phenotype Ontology (HPO) (Table S2). A Venn diagram revealed that 177 genes are shared
between both repositories (Figure S1). Some of these genes are known to play critical roles
at various stages of cardiac development, including NKX2-5, T-box family genes (TBX1,
TBX2, and TBX5), GATA family genes (GATA4, GATA5, and GATA6), and MYH6. Among
the genes identified in the HPO, 934 (84%) have not been previously associated with CHDs;
however, they are involved in other biological processes such as peroxisome maintenance
and organization, cilium assembly and organization, and microtubule-based transport
and movement. These processes are critical for the formation of a healthy heart, and their
disruption can directly or indirectly influence the development of CHDs. Using the STRING
tool, we analyzed the GO and HPO networks individually and in combination, applying
the resulting network to Cytoscape v.3.10.0 for topological analysis (Figure S1). To better
illustrate gene interactions, a network featuring the genes shared between the HPO and
GO is also shown (Figure 2).
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Figure 2. A network comprising experimental evidence of protein–protein interactions, considering 

genes in common between the GO and HPO repositories. The size of each node reflects the speed 

of information flow, with larger nodes indicating a faster flow. Pink and purple nodes represent 

genes with the highest levels of betweenness and closeness centrality, acting as critical control points 

for the flow and the speed at which information is relayed to other genes in the network. The green 

nodes—NOTCH1, TNNI3, and SMAD4—exhibit significant closeness centrality, playing key roles 

in mediating information flow within smaller groups of genes in the network.

2.2. Differential Gene Expression Analysis

A total of 122 gene expression studies were obtained through a search in the Gene 

Expression Omnibus (GEO) repository, selected by two authors based on the inclusion 

Figure 2. A network comprising experimental evidence of protein–protein interactions, considering
genes in common between the GO and HPO repositories. The size of each node reflects the speed of
information flow, with larger nodes indicating a faster flow. Pink and purple nodes represent genes
with the highest levels of betweenness and closeness centrality, acting as critical control points for
the flow and the speed at which information is relayed to other genes in the network. The green
nodes—NOTCH1, TNNI3, and SMAD4—exhibit significant closeness centrality, playing key roles in
mediating information flow within smaller groups of genes in the network.

Following the same approach, we combined the common HPO and GO genes into a
network, identifying the main nodes involved in information flow. Sixty-one genes (nodes)
exhibited at least one interaction (edge), with a clustering coefficient of 0.151 and an average
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number of neighbors of 3.115. This metric means that each node is connected, on average,
with at least three other nodes. Based on this analysis, EP300, CALM3, and EGFR had
the highest betweenness and closeness centrality levels, meaning that they have high and
fast information flow. Additionally, the genes NOTCH1, TNNI3, and SMAD4 emerged
as significant mediators of information flow to other genes within the network and have
been shown to have a known relationship with CHDs. However, to better understand the
gene interactions involved in CHDs, we chose to search for additional genes that could
contribute to the various CHD phenotypes.

2.2. Differential Gene Expression Analysis

A total of 122 gene expression studies were obtained through a search in the Gene
Expression Omnibus (GEO) repository, selected by two authors based on the inclusion
criteria. Among these, 35 studies (28.6%) were excluded for not comprising data on CHDs.
Out of the 87 studies (71.4%) related to CHDs, 31 studies (35.6%) did not use microarray
or bulk RNA-Seq gene expression methodologies, 17 studies (19.5%) had less than four
samples for cases and/or controls, 13 studies (15.0%) were knockout, 6 studies (6.9%)
lacked a control group, and another 6 studies (6.9%) did not include cardiac samples.
Thus, these studies were excluded from the analysis. Fourteen studies (16.1%) met the
selection criteria; however, only seven were included in the final analysis due to processing
limitations: GSE196443 (Trisomy 21/CHD), GSE217557 (Trisomy 21/CHD), GSE141955
(Tetralogy of Fallot (ToF)), GSE132401 (Tetralogy of Fallot (ToF) and Single Ventricle Disease
(SVD)), GSE36761 (Tetralogy of Fallot—ToF), GSE23959 (Hypoplastic Left Heart Syndrome
(HLHS)), and GSE209677 (cardiac cell differentiation). Details about these selected studies
are available in Table S3.

The selected studies were analyzed individually, resulting in 2513 differentially ex-
pressed genes across the six studies, as shown in Table S4. The dataset of SVD diagnosis
samples (GSE141955) did not present significantly differentially expressed genes and was
excluded from further analysis. The Lymphatic Vessel Endothelial Hyaluronan Receptor
1 (LYVE1), which encodes a membrane glycoprotein involved in hyaluronan transport
during various stages of cell growth, was found to be differentially expressed in three
studies: GSE23959 (HLHS), where it was upregulated, and in ToF, on GSE141955 and
GSE36761, where it was downregulated. Similarly, a member of the phospholipase A2
family, PLA2G2A, was also differentially expressed, with downregulation observed across
these studies. Additionally, a member of the short-chain dehydrogenase/reductase enzyme
family, SDR42E1, was found to be upregulated in three of the analyzed studies: GSE36761
(ToF), GSE132401 (ToF), and GSE217557 (Trisomy 21/CHD). Two studies highlighted genes
involved in cell recognition: the Mannose Receptor C-Type 1 (MRC1), which encodes
membrane receptors involved in the endocytosis process, was downregulated in both
GSE141955 (ToF) and GSE36761 (ToF); while the Potassium Two Pore Domain Channel
Subfamily K Member 3 (KCNK3), a member of the potassium channel protein superfamily,
was downregulated in GSE36761 (ToF) and GSE132401 (ToF). The ADAM Metallopeptidase
with Thrombospondin Type 1 Motif 9 (ADAMTS9) gene, which plays a role in proteogly-
can cleavage and organ morphology regulation during development, was significantly
downregulated in two studies: GSE23959 (HLHS) and GSE36761 (ToF).

To better comprehend the impact of the genes identified in the process of heart devel-
opment, differential gene expression was analyzed in a healthy cardiac cell differentiation
dataset (GSE209677) and compared with previously identified genes in ToF, HLHS, and
Trisomy 21 studies to determine if these genes’ expressions were altered through the differ-
entiation process. Using a Venn diagram, 578 common genes were identified, including
PLA2G2A and ADAMTS9, which were significant in studies involving ToF and HLHS, and
KCNK3, which was significant only in ToF studies.

Additionally, we compared the differentially expressed genes shared across all datasets
with those identified through ontology searches in the GO and HPO. We grouped the
studies into three categories based on CHD diagnosis: (1) studies on ToF; (2) the study
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on HLHS; and (3) studies on Trisomy 21 with CHDs (Table 1). Using the systems biology
approach, we observed that in the HLHS (GSE23959) and ToF (GSE36761) datasets, there
were interactions between the nodes representing the differentially expressed genes from
each study and the genes found in the GO and HPO. In contrast, for Trisomy 21 with the
CHD dataset, no interaction was detected between the networks (Figure 3). Through the
combined analyses, we identified genes that may contribute to the development of CHDs
and characterized the interactions and biological processes in which they are involved.

Int. J. Mol. Sci. 2024, 25, 12052 6 of 16

Figure 3. Cont.
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Figure 3. A network of interactions between differentially expressed genes from each study and 

genes associated with the Gene Ontology (GO) and Human Phenotype Ontology (HPO). (A) Purple 

nodes represent GO/HPO genes, pink nodes represent genes from Tetralogy of Fallot studies, and 

blue nodes represent common genes identified and already described for gene ontologies and 

phenotypes associated with CHD. (B) Purple nodes represent GO/HPO genes, orange nodes 

represent genes from the Hypoplastic Left Heart Syndrome study, and magenta nodes represent 

common genes identified and already described for gene ontologies and phenotypes associated 

with CHDs. (C) Purple nodes represent GO/HPO genes, and green nodes represent genes associated 

with Trisomy 21/CHD. In this case, there was no interaction between GO/HPO genes and 

differentially expressed genes, and no genes in common between the databases.

Table 1. The proportion of differentially expressed genes considering downregulated genes, 

upregulated genes, and shared genes in the GO and HPO repositories.

Study Study Type CHD Controls (N) Cases (N) DGE (N) 1 Upregulated Downregulated GO (N) 2 HPO (N) 3 GO + HPO

GSE196443 RNA-Seq Trisomy 21/CHD 5 5 23 23 0 2 0 0

GSE217557 RNA-Seq Trisomy 21/CHD 32 50 13 12 1 0 0 0

GSE36761 RNA-Seq ToF 4 7 22 2228 727 1501 65 59 13

GSE132401 RNA-Seq ToF 4 5 5 111 69 42 6 5 4

GSE141955 Microarray ToF 4 6 9 35 2 33 0 0 0

GSE23959 Microarray HLHS 5 6 10 184 130 54 9 9 2

1 Differentially expressed genes identified. 2 Gene Ontology. 3 Human Phenotype Ontology. 4

Tetralogy of Fallot. 5 Hypoplastic Left Heart Syndrome.

2.3. Ontology Enrichment Analysis

The genes identified in the DGE analyses that were not common to the GO and HPO 

searches were further analyzed to verify their associated ontologies and signaling 

pathways. As mentioned, the datasets were divided into three groups according to the 

type of CHD. The ontologies identified for the ToF studies (GSE141955, GSE132401, and 

GSE36761) were related to various immunologic processes, including leukocyte-mediated 

immunity, with 109 genes involved in this process, such as C1RL, IGLC7, and IGHV3-33; 

Figure 3. A network of interactions between differentially expressed genes from each study and
genes associated with the Gene Ontology (GO) and Human Phenotype Ontology (HPO). (A) Purple
nodes represent GO/HPO genes, pink nodes represent genes from Tetralogy of Fallot studies, and
blue nodes represent common genes identified and already described for gene ontologies and
phenotypes associated with CHD. (B) Purple nodes represent GO/HPO genes, orange nodes represent
genes from the Hypoplastic Left Heart Syndrome study, and magenta nodes represent common
genes identified and already described for gene ontologies and phenotypes associated with CHDs.
(C) Purple nodes represent GO/HPO genes, and green nodes represent genes associated with Trisomy
21/CHD. In this case, there was no interaction between GO/HPO genes and differentially expressed
genes, and no genes in common between the databases.

Table 1. The proportion of differentially expressed genes considering downregulated genes, upregu-
lated genes, and shared genes in the GO and HPO repositories.

Study Study Type CHD Controls (N) Cases (N) DGE (N) 1 Upregulated Downregulated GO (N) 2 HPO (N) 3 GO + HPO

GSE196443 RNA-Seq Trisomy
21/CHD 5 5 23 23 0 2 0 0

GSE217557 RNA-Seq Trisomy
21/CHD 32 50 13 12 1 0 0 0

GSE36761 RNA-Seq ToF 4 7 22 2228 727 1501 65 59 13
GSE132401 RNA-Seq ToF 4 5 5 111 69 42 6 5 4
GSE141955 Microarray ToF 4 6 9 35 2 33 0 0 0
GSE23959 Microarray HLHS 5 6 10 184 130 54 9 9 2

1 Differentially expressed genes identified. 2 Gene Ontology. 3 Human Phenotype Ontology. 4 Tetralogy of Fallot.
5 Hypoplastic Left Heart Syndrome.

2.3. Ontology Enrichment Analysis

The genes identified in the DGE analyses that were not common to the GO and HPO
searches were further analyzed to verify their associated ontologies and signaling pathways.
As mentioned, the datasets were divided into three groups according to the type of CHD.
The ontologies identified for the ToF studies (GSE141955, GSE132401, and GSE36761) were
related to various immunologic processes, including leukocyte-mediated immunity, with
109 genes involved in this process, such as C1RL, IGLC7, and IGHV3-33; and the adaptive
immune response based on somatic recombination of immune receptors derived from
immunoglobulin superfamily domains, with 98 associated genes, including CCL19, C3, and
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IGHG2. The regulation of cell–cell adhesion was also enriched, with 76 genes involved,
such as LILRB2, ITGB2, and IL1RN (Figure S2a).

For the HLHS study (GSE23959), the ontologies were related to biological processes,
such as the generation of precursor metabolites and energy, with 20 associated genes
including ATP5MG, NDUFB9, and NDUFA8; energy derivation by oxidation of organic
compounds, with 16 genes involved such as COQ10A, UQCRB, and NDUFAF1; and aerobic
respiration, with ten genes involved, including PANK2, NDUFA9, and SUCLA2 (Figure S2b).
Ontologies such as response and defense against viruses, antimicrobial humoral immune
responses mediated by antimicrobial peptides, and the regulation of myoblast fusion were
associated with 20 genes in the Trisomy 21 with CHDs datasets (GSE196443 and GSE217557),
including GNLY, IFI44L, and CXCL9 (Figure S2c). The genes associated with the observed
ontologies were also compared with the dataset related to the differentiation of healthy
cardiac cells (GSE209677). Out of the 587 related genes, IL1RN (ToF) and IFI44L (Trisomy
21/CH) were linked to cardiac cell differentiation. Therefore, it is possible to observe that
the ontologies related to differentially expressed genes not yet described in the GO and
HPO, are responsible for biological processes that directly influence cardiac development,
and when affected, may contribute to alterations in this stage of heart formation.

3. Discussion

Heart development is mediated by several biological mechanisms, involving many
genes and environmental factors. Through the search for genetic (651 genes) and phe-
notypic (1111 genes) ontologies, we identified 177 common genes already described as
contributing to CHDs, including EP300, CALM3, EGFR, NOTCH1, TNNI3, and SMAD4.
However, CHDs present high clinical variability even in recognized syndromes, as they can
be associated with congenital or isolated defects. Their complex etiology directly influences
the phenotype presented. Hence, we expanded the search for genes that may alter the dis-
ease phenotype using DGE analysis. This strategy resulted in 2513 differentially expressed
genes obtained from six datasets, divided into three categories based on CHD diagnosis:
ToF, HLHS as an isolated CHD, and a dataset of Trisomy 21 associated with CHDs. The
genes LYVE1, PLA2G2A, and SDR42E1 were deregulated in three of the six analyzed studies,
followed by MRC1, KCNK3, and ADAMTS9, which were differentially expressed in two of
the six analyzed studies. All differentially expressed genes, categorized by CHD diagnosis,
were compared with a dataset of healthy cardiac cells, where we identified 578 common
genes between the two datasets, including the aforementioned PLA2G2A, ADAMTS9, and
KCNK3 genes. The genes identified in the present study are listed in Table 2. Additionally,
with a systems biology approach, the genetic and phenotypic ontologies identified were
compared with the genes differentially expressed. Datasets on isolated CHDs (ToF and
HLHS) showed greater interaction with the GO and HPO data, whereas CHDs associated
with Trisomy 21 showed no interaction between genes from the repositories. Having identi-
fied that genes common to the GO and HPO databases are involved in the development of
CHDs, we sought to determine how the genes not found in these GO and HPO repositories
contribute to CHDs. Therefore, using gene ontology overrepresentation analysis, we found
that most of these genes are involved in immunological processes, energy generation,
secondary metabolite production, and cellular communication, which are fundamental for
broad cellular maintenance. The identification of these genes that do not directly act on
cardiac development might be a consequence of the bioinformatics approach used, which
identifies a wide range of genes, including those with many cellular functions. Therefore,
to verify the specific contribution of these genes to the development of CHDs, experimental
validation is necessary, which constitutes a limitation of the study.
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Table 2. Genes that may contribute to the development of CHD and its functions.

Gene Analysis Source Gene Function

EP300 Systems Biology Networks Chromatin binding and transcription coactivator activity.

CALM3 Systems Biology Network Calcium ion binding and protein domain specific binding.

EGFR Systems Biology Network Identical protein binding and protein kinase activity.

NOTCH1 Systems Biology Network DNA-binding transcription factor activity and sequence-specific DNA binding.

TNNI3 Systems Biology Network Protein kinase binding and protein domain specific binding.

SMAD4 Systems Biology Network DNA-binding transcription factor activity and sequence-specific DNA binding.

LYVE1 DGE Signaling receptor activity and hyaluronic acid binding.

PLA2G2A DGE Calcium ion binding and phospholipase A2 activity.

SDR42E1 DGE Oxidoreductase activity, acting on the CH-OH group of donors, NAD or
NADP as acceptor and 3-beta-hydroxy-delta5-steroid dehydrogenase activity.

MRC1 DGE Signaling receptor activity and mannose binding.

KCNK3 DGE Protein homodimerization activity and obsolete protein C-terminus binding.

ADAMTS9 DGE Metalloendopeptidase activity and endopeptidase activity.

To propel the understanding of congenital heart disease (CHD), it is essential to
explore both embryology and associated genetic factors. Such exploratory approaches can
be performed, using available resources such as the GO and HPO. In this study, we used
these resources to identify previously described gene and phenotypic ontologies for CHD.
The NKX2-5 gene stands out as it is involved in multiple stages of heart formation, acting as
a key marker in the differentiation of cardiac precursor cells, including the development of
the conduction system, valves, and cardiac septal [24]. This gene works with other highly
conserved transcription factors (such as TBX20, GATA4, and MYH6) and has a central role
in organizing the process of cardiogenesis [25]. Variations in genes known to regulate
cardiac development have been extensively studied in both isolated and syndromic CHD,
and have been linked to numerous phenotypes, including ToF, atrial septal defect, and
ventricular septal defect [26].

Using systems biology, we integrated the genes identified in the GO and HPO to
provide new insights into CHD, revealing genes that might play key roles in the flow of
biological information. The EP300, critical for cell regulation and differentiation through
chromatin remodeling, already has pathogenic variants associated with ToF [26]. EGFR en-
codes tyrosine kinase receptors and is essential for cardiac cell development, specialization,
and differentiation, particularly in regulating human aortic valve embryogenesis [27,28].
CALM3 encodes a highly conserved protein expressed in the heart, regulating various ion
channels in cardiac cells, and is involved in several biological processes, such as muscle
contraction, inflammation, metabolism, and immune responses [29]. While EP300, EGFR,
and CALM3, along with other identified genes, have been associated with CHD, it is crucial
to continue identifying genetic variants. Pathogenic variants in specific genes may interfere
with embryonic viability and development, potentially leading to embryonic lethality, as
seen with variants in the EGFR gene [28]. We also identified and characterized genes
involved in three different CHD phenotypes through DGE analysis of six datasets available
in the GEO repository. This analysis revealed 2513 differentially expressed genes, including
LYVE1 and PLA2G2A, which were found in two of the ToF studies and in the HLHS study.
Notably, these genes were not previously mentioned in the literature in relation to CHD.
LYVE1 was described as a marker in abnormal lymphatic system development studies,
particularly in congenital diaphragmatic hernia [30], and increased nuchal translucency,
as seen in Noonan syndrome cases [31]. PLA2G2A has been identified in studies focused
on tumors [32] and diabetes [33]. The SDR42E1 gene expressed in two ToF studies and
in one Trisomy 21/CHD study plays a crucial role in vitamin D biosynthesis [34], with
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variations in this gene linked to fragile cornea syndrome [35]. The MRC1 gene, involved in
biological processes such as chemotaxis and leukocyte migration, is associated with cleft
palate, another congenital defect [36], and was expressed in two ToF studies. The KCNK3
and ADAMTS9 genes have been implicated in cardiac function, with KCNK3 identified
as a predisposing factor for pulmonary arterial hypertension (PAH) [37], primarily affect-
ing atrial function and playing roles in rhythm regulation and cardiac conduction [38].
ADAMTS9 is essential for proper cardiovascular development and adult homeostasis, with
expression in derivatives of the secondary heart field, vascular smooth muscle cells in the
arterial wall, mesenchymal cells of the valves, and non-myocardial cells of the ventricles.
It has a described association with CHDs such as bicuspid aortic valve disease [39,40],
although it was not found to be related to HLHS and ToF.

With all these genes identified and based on the indication that they play a role in
the development of CHD, we aimed to compare these results with datasets of healthy
cardiac cells. This comparison revealed 578 genes shared among all analyzed datasets and
corroborated the roles of KCNK3 and ADAMTS9 in biological processes relevant to cardiac
embryogenesis [37,39,40]. Additionally, we found that while genes such as PLA2G2A are
related to heart formation, their specific roles in the development of CHD remain unclear.
Considering the broad range of genes not yet directly linked to CHD, we integrated the
datasets from the three CHD groups with the data identified in the GO and HPO. Through
a protein interaction network analysis, we observed that in the ToF and HLHS groups,
there were interactions between nodes related to the disease and those in the GO and HPO;
however, this pattern was not evident in the Trisomy 21/CHD group.

ToF, the most common cyanotic CHD, is characterized by a ventricular septal defect,
right ventricular outflow tract obstruction, an overlapping of the ventricular septum by
the aortic root, and right ventricular hypertrophy [41]. Multiple transcription factors and
signaling molecules are related to the disease as reported in the literature, including GATA4,
NKX2-5, JAG1, FOXC2, TBX5, and TBX1, which is consistent with the interactions observed
with the genes listed in the repositories [42]. Ventricular function is affected in ToF, which
may influence gene expression during development. We observed this difference in our
results, particularly in the analysis of GSE132401, which studied induced pluripotent stem
cells and presented a small number of differentially expressed genes compared to GSE36761,
which analyzed ventricular samples. HLHS, on the other hand, is a severe cyanotic CHD
resulting from the underdevelopment of the left ventricle, mitral valve, aortic valve, and
ascending aorta. Numerous genetic variants and molecular pathways in HLHS have been
discovered in recent decades, which was reflected in the interactions identified in the
network [43].

The same interaction pattern was not observed in the studies of Trisomy 21 and CHD.
Despite CHD being one of the main causes of morbidity and mortality, and the presence of
Trisomy 21 being associated with a 50-fold greater likelihood of developing CHD compared
to the general population [44], we failed to identify interactions in the repositories used for
this study. This indicates a need for new approaches to elucidate the various phenotypes of
CHD, especially considering the different etiologies.

Therefore, analyzing the differentially expressed genes from datasets that did not
overlap with the GO and HPO was essential for understanding their involvement in
congenital heart disease (CHD) through gene ontologies. We observed various genes
associated with the immune response across all analyzed datasets. This may be related to
multiple biological processes occurring during the embryonic period, such as placental
formation, which develops alongside the heart and acts as a barrier that regulates nutrient
and oxygen transfer while preventing the passage of pathogens and cells that could impair
development [45]. Placental dysfunction has been linked to poor cardiac development,
as previously described in the literature [46,47]. Also, we identified genes enriched in
ontologies related to the generation of precursor metabolites and energy, which have been
associated with the development and postnatal functions of the right ventricle in newborns



Int. J. Mol. Sci. 2024, 25, 12052 11 of 16

with CHD. Changes in the ventricular phenotype, such as volume overload in HLHS, could
lead to serious consequences that are not yet fully understood [48].

4. Materials and Methods
4.1. Selection of Ontologies for CHD

The complete list of gene ontologies (GOs) and phenotype ontologies was obtained
from the AmiGO and Human Phenotype Ontology (HPO) databases, respectively. The
GO search was performed using keywords (“cardiac”, “heart”, “cardio”, “myocardial”,
“myocardium”, “atrium”, “atrial”, “ventricular”, “ventricle”, “septum”, “septal”, “valve”)
with the GO.db package (R v.4.3.1), which identified 727 ontologies, of which 430 were
selected for the next step. This selection was conducted by two independent authors who
reviewed the ontologies and retained those considered relevant.

With respect to the HPO, the selection was based on the CHDs diagnosed at the
Hospital de Clínicas de Porto Alegre, according to a project on active vigilance of congenital
anomalies, based on Cardoso et al., 2021 [49]. A total of 2448 genes were found for
19 phenotypes. After removing duplicate genes, 1111 genes were selected for further
analysis. To better visualize the selected genes from both ontologies, Venn diagrams were
generated throughout the study (https://bioinformatics.psb.ugent.be/webtools/Venn/,
accessed on 15 September 2024) [50].

4.2. Systems Biology Analysis

The genes selected from the ontology analyses were input into the STRING v.12
tool [51], where networks of protein–protein interactions (PPIs) for Homo sapiens were gen-
erated based on experimental evidence of interactions and co-expression, with a minimum
interaction score set >0.400 (medium). The assembled networks were then imported into
the Cytoscape v.3.10.0 software to calculate network statistics [52]. Two critical parameters
were considered: (1) betweenness centrality, which reflects the frequency with which a node
lies on the communication paths between other nodes, indicating that nodes with high
betweenness centrality may be crucial for regulating information flow; and (2) closeness
centrality, which measures how efficiently information spreads from a central node to
others [53]. A comparison between the GO and HPO networks was performed using the
DyNet application of Cytoscape v.3.10.0.

4.3. Selection and Analysis of Gene Expression Data

Gene expression datasets were obtained from the Gene Expression Omnibus (GEO)
repository [54] using the following search strategy: ((cardiac OR heart OR cardio) AND
(anomaly OR defect OR malformation)), filtered for Homo sapiens. The data from each
study were collected using the GEO Scraper script and selected by two authors. The
inclusion criteria were as follows: studies of gene expression in human cells, tissues, or
samples from patients diagnosed with CHD, conducted using microarray or RNA-seq
technologies. Studies without raw data available in the GEO, knockout studies, studies
with only four samples (n = 4) in the case and/or control groups, and studies without a
CHD diagnosis were excluded from the analysis.

For microarray studies, the datasets were downloaded manually and analyzed in
the R language using Robust Multi-array Average (RMA) with the affy package [55].
Differentially expressed genes were calculated using the limma package [56]. RNA-seq data
followed the pipelines described by Conesa et al., 2016 [57]. Sequence read archives (SRAs)
were uploaded into the Galaxy platform [58] using the fastq-dump tool [59]. The quality
of the sequences was assessed using FastQC (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/; accessed on 7 September 2024) [60], followed by sequence alignment
to the reference genome GRCh38 (hg38 canonical) using Bowtie2 [61], and transcript
counting with featureCounts [62]. In R, normalization was performed using Trimmed
Mean Normalization (TMM), and differentially expressed genes were analyzed using the

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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edgeR package [63]. Genes with a logFC > |1| and an adjusted p-value < 0.05 were
considered significantly differentially expressed.

Using the STRING tool, we analyzed the combined GO and HPO networks together
with the differentially expressed genes, as previously defined. Each category was individu-
ally integrated with the GO/HPO network, and the resulting networks were applied to
Cytoscape v.3.10.0. We evaluated the interaction between the genes found in GO/HPO
and the differentially expressed genes, and identified if any gene presented gene ontology
and/or phenotypic characteristics associated with CHD.

4.4. Enrichment Analyses

The differentially expressed genes identified through DGE that were not common
with the gene lists obtained from the GO and HPO were evaluated concerning ontologies
and signaling pathways. The GO repositories and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways were accessed using the clusterProfiler package [64], using
over-representation analysis. For this analysis, the studies were divided into four groups
based on CHDs: (1) isolated CHD studies (Tetralogy of Fallot); (2) one isolated CHD study
(Hypoplastic Left Heart Syndrome); and (3) CHD studies associated with Down syndrome.
The genes identified in the HPO that were not common with those found in the GO were
also subjected to the same analysis. Biological processes, molecular functions, and cellular
components were the types of ontologies accessed in this analysis. A summary of all
databases used in this study can be seen in Table 3.

Table 3. Description of databases used in this study.

Database Description Main Features Purpose of the Study Reference

Gene Ontology (GO)

It provides structured
information about
genetic functions,

serving as the basis for
computational analysis
of large-scale molecular

biology and genetic
experiments.

Data availability in
three categories:

biological process,
molecular function,

and cellular
component.

Identify the available
ontologies for the

development of CHD.

The Gene Ontology
Consortium, 2023 [65]

Human Phenotype
Ontology (HPO)

It provides an ontology
of clinically relevant
phenotypes, disease

phenotype annotations,
and the algorithms that
operate on them. The
HPO can be used to
support differential

diagnoses, translational
research, and a range of

applications in
computational biology,
providing the means to

compute clinical
phenotypes.

Describes phenotypic
abnormalities in
human diseases.

Identify phenotypes
associated with CHD. Gargano et al., 2024 [66]

Gene Expression
Omnibus (GEO)

A public repository for
high-throughput gene
expression data, where
you can access datasets

from multiple
organisms and

biological conditions.

It includes publicly
accessible gene

expression, microarray,
and RNA-Seq data.

Investigate gene
expression profiles

related to CHD.
Barrett et al., 2013 [67]
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Table 3. Cont.

Database Description Main Features Purpose of the Study Reference

STRING

It systematically
integrates

protein–protein
interactions from
diverse sources,

including the scientific
literature, experimental

databases, and
computational

predictions.

Data are curated from
diverse sources:

scientific literature,
computational

interaction predictions,
coexpression,

conserved genomic
context, databases of

interaction
experiments, and

known
complexes/pathways
from curated sources.

Identify relevant
interaction networks

for CHD-related genes
using experimental

data and coexpression.

Szklarczyk et al., 2023
[68]

Kyoto Encyclopedia of
Genes and Genomes

(KEGG)

A database for
representing and

analyzing biological
systems, with maps of

metabolic and
signaling pathways,
cellular interactions,

and disease pathways.

Includes information
on genes and proteins,

disease pathways, drug
information, and

integration with other
databases.

Identify biological
pathways involved in

CHD and their
associated genes.

Kanehisa et al., 2024
[69]

5. Conclusions

The approach used in this study allowed us to integrate several genes previously de-
scribed for congenital heart disease (CHD), motivating us to explore new interactions based
on the phenotypes analyzed from public datasets. The availability of these data allowed us
to identify and characterize 2513 genes in six studies analyzed while seeking to understand
the biological processes involved and the interactions between these genes. We identified
genes that still need to be directly described in the literature on CHD. Knowing that the
heart is the first functional organ to develop, in parallel with other biological processes
that occur during embryogenesis, it is necessary to understand cellular differentiation in
cardiogenesis, especially when we seek to understand the varied phenotypes of CHD and
the repercussions of the disease. Therefore, the data presented will contribute to a better
understanding of CHD and provide valuable insights for future research.
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