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Abstract: Background: Substance use disorder in the United States represents a complex and growing
public health crisis, marked by increasing rates of overdose deaths and the misuse of prescription
medications. There is a critical need for furthering the understanding of the molecular and genetic
mechanisms that can lead to substance use disorder. Identifying significant variants in the kynurenine
pathway could help identify therapeutic targets for intervention. Methods: The All of Us cohort
builder evaluated the frequency of variants of four genes, TDO2, IDO1, IDO2, and KMO, encoding
enzymes in the kynurenine pathway. The samples were broken into six cohorts: alcohol, cannabis,
cocaine, opioid, other use disorder, and control. Using Chi-square analysis, the frequency of at least
one copy of a variant allele was calculated. Results: Chi-square analysis showed a significant variation
in genetic frequency (p-value < 0.005) in 14 of 18 polymorphisms analyzed. The cocaine cohort had
the most significant variants (13), cannabis had 11, opioids had 3, other use disorders had 2, and
alcohol had 1 significant variant. Conclusions: This study found associations of polymorphisms in
the TDO2, IDO1, IDO2, and KMO genes of individuals with a substance use disorder. These results
provide evidence of potential predictors of increased susceptibility to substance use disorder.

Keywords: kynurenine pathway; substance use disorder; tryptophan; genetic frequency

1. Introduction

Substance use disorder (SUD) currently presents as a significant public healthcare
challenge impacting the United States population [1]. According to the National Survey
on Drug Use and Health (NSDUH) conducted by the Substance Abuse and Mental Health
Services Administration (SAMHSA) in 2019, approximately 20.4 million adults had a
problem with addictive substances, which is continually growing in number [2]. SUD is a
complex, multifaceted condition with genetic and environmental components [3]. Given
the complexity of the disorder, current therapeutics are suboptimal, and more research is
needed to advance precision medicine as it relates to the treatment of SUD.

Traditionally, the dopamine reward system has been a focus of research in SUD
because of the known correlation between the release of dopamine and the intake of
addictive drugs [2]. The addictive substance promotes the release of dopamine, causing
the progression from drug use to drug-seeking behavior [4]. The dopamine reward system
is closely linked to tryptophan (TRP) metabolism, as the metabolites of the breakdown of
TRP can activate dopamine neurons. The two sister pathways that break down TRP are
the serotonin pathway (SP) and the kynurenine pathway (KP) [5]. Both pathways have
been identified as having a role in SUD. This research focuses on KP for three reasons: first,
its role in neuroinflammation and neurotoxicity; second, the known correlation between
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KP and mood disorders, which are typical a comorbidity of SUD; and lastly, research is
currently limited since it breaks down the majority of TRP, for which a better understanding
of the pathway is needed [5–7]. Genetic variants can have multiple roles. They can influence
metabolic pathways during substance use and also affect the neurobiology of substance
dependence, which is mediated by complex neuronal circuits. These circuits, including
dopamine, regulate reward, motivation, and reinforcement processes, and are critical in
driving craving, desire, and impulsivity associated with substance use disorders [8].

The metabolism of TRP through the KP, where 95% of TRP is metabolized, is shown in
Figure 1 [6]. The KP’s initial step involves converting TRP to N-formyl-L-kynurenine by the
enzymes tryptophan 2,3-dioxygenase (TDO2) or indoleamine 2,3-dioxygenase (IDO1/2).
This is a rate-limiting step of the process, controlling TRP and KP metabolite concentra-
tions [9]. Subsequently, arylformamidase (AFMID) mediates the N-formyl-L-kynurenine
conversion to kynurenine (KYN), which three different pathways can metabolize. The
neuroprotective pathway uses kynurenine aminotransferases (KATs) to convert KYN to
kynurenic acid (KYNA), or kynureninase (KYNU) converts KYN to anthranilic acid (AA), or
kynurenine 3-monooxygenase converts KYN to 3-hydroxykynurenine (3-HK). KYNU me-
tabolizes 3-HK to 3-hydroxy anthranilic acid (3-HAA) or by KATs to xanthurenic acid (XA).
Next, 3-HAA can be converted into quinolinic acid (QA), a neurotoxic metabolite, in two
steps, initially by 2-amino-3-carboxymuconate-semialdehyde by 3-hydroxy anthranilate
3,4-dioxygenase (HAAO) and subsequently by a non-enzymatic reaction. Lastly, QA can be
further metabolized to synthesize nicotinamide-adenine-dinucleotide (NAD+), a molecule
involved in energy storage and transfer within the cell. Each step plays a critical role in the
process, and imbalances of these metabolites are a root cause for associated disease states.
For example, having a balanced ratio of KYN and QA can impact depression, and recently,
restoring the balance has been studied in preventing substance abuse relapse [10]. Identi-
fying variants in the genes encoding the enzymes responsible for metabolite conversion
can help identify genetic components to imbalances in the metabolites of the KP, leading to
more precise therapeutic options.

Genetic variants of the KP have been studied in multiple disease states, including
Crohn’s disease, Tourette syndrome, autism, Parkinson’s disease, depressive symptoms,
substance use, and others [11]. Previously, Pisanu et al. identified a higher rate of variants
in the TDO, IDO1/2, KMO, and KAT genes of patients diagnosed with bipolar disorder
compared to a control group [12]. Multiple other studies found similar findings with a
higher percent of variants in bipolar disorder, schizophrenia, and depressive disorder
compared to control groups [13–15]. A comorbidity of SUD is mood disorders, suggesting
the potential of a higher frequency of genetic variants in the KP in SUD as well [7]. Minimal
research has been completed to identify alterations of the KP and its connection with SUD,
but the limited data had conflicting results. Comings et al. found an association between
SUD and polymorphisms in the gene that codes for the enzyme TDO2 [8]. Alternatively,
Soichot et al. found no significant difference in variants in the promoter region of the
TDO2 gene in the alcohol use cohort compared to a healthy control cohort [9]. This finding
highlights the need for further research to identify if there is an association between genetic
variants of the enzymes of the KP.

In this study, we hypothesized that the frequency of genetic polymorphisms of three
primary genes in the KP is higher in individuals diagnosed with SUD than in the general
population. The primary aim of this work was to use the AoU data to determine the
frequency of genetic polymorphisms in the enzymes of the KP, specifically TDO2, IDO1/2,
and KMO genes. This study aims to confirm the existence of a correlation between KP gene
variants and substance use disorder. A comprehensive understanding of the molecular
genetics of substance use is essential for a greater understanding of the mechanisms that
could provide further knowledge on therapeutics.



Genes 2024, 15, 1388 3 of 11

Genes 2024, 15, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Tryptophan metabolism through the kynurenine pathway. Abbreviations: IDO1: in-
doleamine 2,3-dioxygenase-1, IDO2: indoleamine 2,3-dioxygenase-2, TDO: tryptophan 2,3-dioxy-
genase, NAD+: nicotinamide adenine dinucleotide. 

2. Methods 
2.1. All of Us Database 

The All of Us Research Program (AoU) is a source of genetic data that aims to gather 
health data on over a million people. The data include electronic health records (EHRs), 
laboratory results, physical measurements, survey responses, and genomic data. The data 
are a prospective cohort study initiated in 2018, aiming to enhance population-based re-
search and deepen comprehension of human diseases, ideally improving therapeutic and 
treatment options to support precision medicine. As of March 2024, AoU has released 
whole-genome sequencing data for 245,400 participants. Informed consent was obtained 
from each participant enrolled in the AoU program. This dataset provides valuable infor-
mation that can help identify correlations between genetic variants and disease states. The 
AoU data offer a database to research genetic variants in multiple disease states, including 
historically underrepresented populations and large sample sizes. 

  

Figure 1. Tryptophan metabolism through the kynurenine pathway. Abbreviations: IDO1: indoleamine
2,3-dioxygenase-1, IDO2: indoleamine 2,3-dioxygenase-2, TDO: tryptophan 2,3-dioxygenase, NAD+:
nicotinamide adenine dinucleotide.

2. Methods
2.1. All of Us Database

The All of Us Research Program (AoU) is a source of genetic data that aims to gather
health data on over a million people. The data include electronic health records (EHRs),
laboratory results, physical measurements, survey responses, and genomic data. The
data are a prospective cohort study initiated in 2018, aiming to enhance population-based
research and deepen comprehension of human diseases, ideally improving therapeutic
and treatment options to support precision medicine. As of March 2024, AoU has released
whole-genome sequencing data for 245,400 participants. Informed consent was obtained
from each participant enrolled in the AoU program. This dataset provides valuable infor-
mation that can help identify correlations between genetic variants and disease states. The
AoU data offer a database to research genetic variants in multiple disease states, including
historically underrepresented populations and large sample sizes.
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2.2. AoU Participant Selection

This study was performed on cohorts and genomic data from AoU participant data
collected as previously described [16]. The AoU Controlled Tier Researcher Workbench
was utilized to create cohorts for analysis. The AoU Researcher Workbench is a cloud-
based platform where authorized researchers can access data from the AoU program.
The Researcher Workbench allows for data analysis in Jupyter Notebooks using Python
and R programming languages for statistical analysis. All data extracted in this process
are stored within the workbench and are only accessible to researchers with approved
researcher status. Institutional Review Board (IRB) was obtained at Clemson University
(IRB 2024-0472).

The initial criteria to filter the entire AoU cohort were adults (>18 years of age at the
moment of data collection) and participants with short-read whole-genome sequencing
(srWGS) (n = 245,388). Next, this group of participants was broken into subgroups based
on the International Classification of Disease (ICD) 10th revision codes. The ICD10 codes
and their description are listed in Table 1. Cohorts were split into four groups: alcohol
use disorder (F10) (n = 4832), cannabis use disorder (F12), cocaine use disorder (F14),
opioid use disorder (F11) and other (F13, F15, F14, F18, and F19). The control cohort
excluded participants from the previous cohorts with a diagnosis code associated with
SUD. Inclusion and exclusion criteria are shown in Figure 2. This criterion was used to
build cohorts. Dataset Builder was utilized to create participant datasets categorized by
ICD-10 codes to extract each cohort’s demographic information and genomic frequency.
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Figure 2. Study workflow and cohort definition for evaluating the frequency of genetic variants of
the TDO2, IDO1/2 and KMO in substance use disorder.
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Table 1. List of ICD-10 codes used in the cohort build.

ICD-10 Description

F10 Alcohol-Related disorders
F11 Opioid-Related Disorders
F12 Cannabis-related disorders
F13 Sedative, hypnotic, or anxiolytic-related disorders
F14 Cocaine related disorders
F15 Other stimulant-related disorders
F16 Hallucinogen related disorders
F17 Nicotine dependence
F18 Inhalant related disorders
F19 Other psychoactive substance-related disorders

Demographic information was exported to a Python 3.0 notebook within the AoU
workbench environment. During the export process, the AoU Workbench creates Python
code and imports it directly into the notebook. Python was also used to summarize
demographic information.

2.3. SNP Selection and Genotyping

When participants consented to participate in the AoU research program, a whole
blood sample was provided as a source of DNA for srWGS. AoU performed the srWGS
analysis of the DNA sample. A description of the collection, sequencing process, and
genetic data analysis were previously presented [16]. The genes analyzed in this study
were based on previous findings in understanding critical steps in the KP [8,9,11,13–15].
Eighteen SNPs were selected based on their known association with human diseases
to assess the four genes and determine if a higher variant frequency was seen in SUD
(Table 2) [11]. Boros et al. presented a review of the SNPs of the kynurenine pathway that
had previously been identified with multiple disease states [11]. The AoU database was
searched, and 18 SNPs that were already characterized in the database were selected. The
polymorphisms of the TDO2, IDO1/2, and KMO genes were evaluated to determine if there
was a higher frequency of variants in patients diagnosed with SUD compared to a control
cohort. The frequency of participants with at least one copy of a variant in the 18 regions
listed in Table 3 was calculated using the cohort builder, genomics, and SNP/Indel filters.

Table 2. Description of polymorphisms analyzed.

Polymorphism Gene Consequence Variant Type

rs3755908 TD02 upstream gene variant SNV
rs3775085 TD02 upstream gene variant SNV

rs17033763 TD02 upstream gene variant SNV
rs3836580 TD02 upstream gene variant insertion

rs10857287 TD02 upstream gene variant SNV
rs11935082 TD02 upstream gene variant SNV
rs3775086 TD02 upstream gene variant SNV
rs3755909 TD02 upstream gene variant SNV
rs3755910 TD02 upstream gene variant SNV

rs35059413 IDO1 missense variant SNV
rs9657182 IDO1 intron variant SNV

rs35099072 IDO1 missense variant SNV
rs7820268 IDO1 missense variant SNV
rs2929115 IDO2 Unknown SNV
rs1053230 KMO missense variant SNV
rs2275163 KMO intron variant SNV
rs1053221 KMO 3’ UTR variant SNV
rs1053183 KMO 3’ UTR variant SNV
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Table 3. Association of polymorphisms in the enzymes IDO1/2, TDO, and KMO with substance use
disorder in the All of Us cohort.

Polymorphism Gene

Alcohol Cohort
(n = 4832)

Cannabis Cohort
(n = 1094)

Cocaine Cohort
(n = 641)

Opioid Cohort
(n = 2759)

“Other” Cohort
(n = 2405)

Freq p-
Value Freq p-

Value Freq p-
Value Freq p-

Value Freq p-
Value

rs3755908 TD02 1462
(30.25%)

416
(38.03%)

<0.0001
*

93
(14.51%)

<0.0001
*

904
(32.77%)

0.0082
*

770
(32.02%)

rs3775085 TD02 1461
(30.23%)

416
(38.03%)

<0.0001
*

293
(45.71%)

<0.0001
*

904
(32.77%)

771
(32.06%)

rs17033763 TD02 1155
(23.9%)

292
(26.69%)

147
(22.93%)

677
(24.54%)

591
(24.57%)

rs3836580 TD02 1461
(30.23%)

416
(38.03%)

<0.0001
*

293
(45.71%)

<0.0001
*

903
(32.73%)

0.0092
*

770
(32.02%)

rs10857287 TD02 4393
(90.91%)

927
(84.74%)

<0.0001
*

474
(73.95%)

<0.0001
*

2462
(89.24%)

2190
(91.06%)

rs11935082 TD02 4829
(99.93%)

1094
(100%)

641
(100%)

2758
(99.96%)

2402
(99.88%)

rs3775086 TD02 702
(14.52%)

165
(15.08%)

89
(13.88%)

419
(15.19%)

393
(16.34%)

0.0386
*

rs3755909 TD02 568
(11.75%)

121
(11.06%)

38
(5.93%)

<0.0001
*

337
(12.22%)

331
(13.76%)

0.0249
*

rs3755910 TD02 298
(6.17%)

46
(4.21%)

0.0200
*

11
(1.72%)

<0.0001
*

145
(5.26%)

130
(5.41%)

rs35059413 IDO1 82
(1.7%)

34
(3.11%)

0.0014
*

41
(6.4%)

<0.0001
*

64
(2.32%)

40
(1.66%)

rs9657182 IDO1 3987
(82.51%)

940
(85.92%)

0.0039
*

586
(91.42%)

<0.0001
*

2307
(83.63%)

2022
(84.08%)

rs35099072 IDO1 26
(0.54%)

10
(0.91%)

0.0430
*

11
(1.72%)

<0.0001
*

21
(0.76%)

15
(0.62%)

rs7820268 IDO1 2323
(48.08%)

529
(48.35%)

290
(45.24%)

1331
(48.24%)

1190
(49.48%)

rs2929115 IDO2 4729
(97.87%)

0.0014
*

1085
(99.18%)

638
(99.532%)

0.0261
*

2720
(98.59%)

2365
(98.34%)

rs1053230 KMO 1418
(29.35%)

246
(22.49%)

<0.0001
*

87
(13.57%)

<0.0001
*

770
(27.91%)

662
(27.53%)

rs2275163 KMO 2362
(48.88%)

439
(40.13%)

<0.0001
*

249
(38.85%)

<0.0001
*

1261
(45.71%)

0.0236
*

1169
(48.61%)

rs1053221 KMO 1158
(23.97%)

201
(18.37%)

<0.0001
*

81
(12.64%)

<0.0001
*

629
(22.8%)

560
(23.28%)

rs1053183 KMO 2350
(48.63%)

563
(51.46%)

346
(53.98%)

1351
(48.97%)

1177
(48.94%)

* Statistical Significance.

2.4. Statistical Analysis

To summarize the demographic information, total or mean ± standard deviation (SD)
was used to present the descriptive information of the population (Table 4). For association
analysis, the Chi-square (χ2) test was used to compare the frequency of variants of each
polymorphism in cases and controls. The correlation was evaluated between each cohort.
An uncorrected p-value cutoff of 0.05 was considered significant for the association test.
Statistical analysis was completed using GraphPad Prism (Ver. 10.3.0).
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Table 4. Demographics of study cohort.

Variables

Cohort Breakdown

Alcohol
Use

Disorder

Cannabis
Use

Disorder

Cocaine
Use

Disorder

Opioid
Use

Disorder

“Other”
Use

Disorder

Control
Cohort

n = 4832 n = 1094 n = 641 n = 2759 n = 2405 n = 221,389

Age (years) 56 ± 14 47 ± 16 59 ± 10 60 ± 13 53 ± 14 56 ± 17

Sex at Birth

Male 2954 455 362 1163 1114 82,047
Female 1787 607 248 1528 1238 134,863

Unknown 91 32 31 68 53 4479

Self-Reported Race

Asian 45 5 2 14 16 7467
Black or AA 1014 438 432 733 472 44,096

Middle Eastern or
North African 16 6 - 6 8 1321

Native Hawaiian or
Other Pacific

Islander
- - - 11 238

White 2792 367 92 1504 1218 117,861
Unknown 965 278 115 502 680 50,406

3. Results

Demographic data of the cohorts are listed in Table 4 by age, self-reported race, and
sex at birth. There was a total of n = 11,731 in the use cohorts; alcohol use disorder had
the largest population (n = 4832), then opioid use disorder (n = 2759), followed by other
use disorder (n = 2405), and cannabis use disorder (n = 1094), with the smallest being
cocaine use disorder (n = 641). The control cohort (n = 221,389) comprised all AoU cohort
participants who had srWGS and were not diagnosed with SUD.

The analysis of the association among TDO2, IDO1/2, and KMO genes with SUD is
shown in Table 3. Fourteen of the SNPs evaluated are significantly associated with at least
one of the SUD cohorts in the study. Cannabis and cocaine use disorders had the highest
number of variants in the polymorphisms evaluated. Alcohol use disorder only had one
polymorphism that was significant compared with the control cohort.

Nine polymorphisms of the TDO2 gene were evaluated for significance in the dataset.
Each of the assessed variants for TDO2 is located in the gene’s promoter region. For two
SNPs (rs10857287 and rs1935082), the published minor alleles were more frequent in both
the SUD cohorts and the control cohort than the major allele, as seen in previous research [9].
Five of the regions had a significantly different frequency in the cannabis cohort compared
to the control. The polymorphisms (rs3755908, rs3775085, and rs3836580) were significantly
increased (p < 0.0001 for all) in the cannabis cohort, while the rs10857287 and rs3755910
polymorphisms were significantly decreased in the cannabis cohort compared to the control
(p < 0.0001 and p = 0.02, respectively). Frequencies of six of the variants evaluated differed
significantly in the cocaine cohort compared to the control; rs3775085 and rs3836580 showed
an increase in frequency, while rs3755908, rs10857287, and rs3755910 showed a decrease in
frequency compared to the control (p < 0.0001 for all five SNPs). Two polymorphisms were
significantly higher in the opioid cohort compared to controls (rs3755908 and rs3836580;
p = 0.008 and 0.0092, respectively). Lastly, the “other” SUD cohort has two polymorphisms
significantly higher (rs3775086 and rs3755909; p = 0.0386 and 0.0249, respectively), one
of which (rs3775086) was not significant in any other cohort was observed. Two of the
polymorphisms evaluated demonstrated no significance between the SUD cohorts and the
control group in this study (rs17033763 and rs11935082). There was no significant variation
between the alcohol cohort and the control for this set of polymorphisms.
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Four polymorphisms of the IDO1 gene and one of the IDO2 gene were evaluated for
significance in the cohorts. The cannabis and cocaine cohorts had the same trend, with
rs3509413 and rs9657182 being significantly lower and rs35099072 significantly higher com-
pared to the control cohort. The Chi-square p-value for the cannabis cohort for rs35059413,
rs9657182, and rs35099072 were 0.0014, 0.0039, and 0.0430, respectively, and for cocaine,
all three were <0.0001. The alcohol cohort had a significantly decreased frequency for
rs29290115 (p = 0.014) compared to the control. One of the SNPs studied demonstrated no
significant difference between the cohorts (rs7820268). The opioid and other cohorts had
no variants significantly different from the control cohort for the IDO1 or IDO2 genes.

Four polymorphisms were evaluated in the KMO gene. Again, the cannabis and co-
caine cohorts had the same pattern of significantly decreased variant frequencies (rs1053230,
rs2275163, and rs1053221) in these cohorts compared to the control (p < 0.0001 for all). The
opioid cohort also had a significantly decreased frequency for rs2275163 (p = 0.0236). The
rs1053183 polymorphism was not significantly different in any SUD cohort compared to
the control cohort. The alcohol and other cohorts had no variants that varied significantly
from the control cohort.

4. Discussion

The effects of substance use are increasing from both an economic and medical per-
spective in the United States. Research on SUD is continually evolving, driven by the
shift towards precision medicine. The National Institute of Health (NIH) has started the
Helping to End Addiction Long-term Initiative (HEAL), which is funding over 1000 projects
nationwide focused on novel therapeutics [17]. To develop novel theories, research has
transitioned to understanding the biological and genetic factors contributing to SUD [18].
Limited information on the frequency of KP IDO1/2, TDO2, and KMO genetic variants
in SUD cohorts is available. Therefore, this present study is carried out to investigate
the association of genetic polymorphisms of IDO1/2, TDO2, and KMO as biomarkers for
increased risk of substance abuse in the AoU database. Our results indicated that fourteen
of these polymorphisms had a significantly different frequency in at least one of the SUD
cohorts than in the control cohort.

The metabolites of the KP play pivotal roles in several processes involved in neurode-
velopment and mood regulation roles in biochemical processes. For example, KYNA can
help regulate dopamine release and is currently being researched as a potential target for
therapeutic intervention in SUD [5,19]. The involvement of TRP metabolism through the KP
as it relates to the function of the dopamine reward system supports the search for possible
associations between specific genetic variants of enzymes that regulate TRP metabolism
as a genetic risk factor of SUD. Multiple enzymes catalyze the KP, and identifying genetic
alterations in these enzymes can help to understand further imbalances in the metabolites
of the KP and how that can impact recovery from SUD.

TDO2 is the enzyme catalyzing the initial rate-limiting step in TRP metabolism
(Figure 1). Variants in the corresponding gene can impact the activity of the encoded
protein and subsequently alter the KP metabolites [20]. TDO2 variants have previously
been associated with various disorders, such as Tourette's syndrome, autism, and hyper-
tryptophanemia [11]. In this study, findings for the alcohol cohort were consistent with
previous findings from Soichoit et al., which showed that no significant variation in TDO2
variant frequencies was observed in the alcohol cohort [9]. Alternatively, a significant differ-
ence was seen in each of the other SUD cohorts. These SNPs could result in either increased
or decreased enzyme activity, leading to altered concentrations of the KP metabolites com-
pared to healthy controls. As an example, it was previously reported by Comings et al.
that variants in the TDO2 promoter region resulted in an increase in KYN in patients with
Tourette syndrome, which could also lead to an increase in QA [8]. These variants might
also be expected to be increased in SUD cohorts, as SUD has been reported to have higher
QA concentrations than individuals without SUD [21]. QA, a neurotoxic metabolite of KP,
can induce an increase in the release of dopamine, which can increase the risk of SUD based
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on the enhanced release of dopamine. The alternate is true with KA, the neuroprotective
metabolite, which can decrease dopamine release, helping with SUD recovery [5].

The IDO1 and IDO2 enzymes also catalyze the initial step, converting TRP to KYN
in the KP. IDO1/2 variants have previously been associated with depression, depression
treatment outcomes, Crohn’s disease, and systemic sclerosis [11]. Specifically, the rs9657182
SNP has been shown to increase the chances of depression during treatment for infectious
disease [22]. Highlighting the role IDO1/2 variants play in depression and the potential role
they could have in SUD. Lee et al. investigated the relationship between Crohn’s disease
and IDO1/2 and found that with the rs35059413 SNP, serum samples had a decrease in
KYN concentration and decreased KYN/TRP ratio [21]. Both the cannabis and cocaine
cohorts had significantly increased percentages of participants with this polymorphism.
This study further identified that variants within the genes encoding the enzymes of the
KP can cause imbalances in the metabolites, potentially increasing the individual’s chance
of multiple diseases, one of which being SUD. Two of the polymorphisms of the IDO1
gene are missense mutations. These have been identified as having diminished enzyme
activity [11]. Neither the opioid nor the other cohorts had significant frequency differences
in the polymorphisms of these genes.

KMO catalyzes the reaction of kynurenine through the neurotoxic pathway, resulting
in QA and NAD+. A polymorphism in the KMO gene, rs1053230, has previously been
identified to be associated with bipolar disorder [15]. Lavebratt et al. found that the
variant C allele of the rs1053230 polymorphism is associated with lower KMO expression,
increasing KA concentration. In this study, the cannabis and cocaine cohorts demonstrated a
significantly decreased frequency of the variant, likely resulting in less of the KA metabolite
being created and more of the neurotoxic metabolite, QA, forming in these individuals.
This finding may further explain the habitual use of addictive substances because of
the increase in dopamine release when QA is increased and KA is decreased. Neither
the alcohol nor the “other” SUD cohort had a significant difference in the KMO gene.
Studies have previously found imbalances in KP metabolites, and an increase in QA, a
neurotoxic compound, has been seen in serum samples of individuals with SUD [5,21]. One
explanation for the elevated QA is the significant difference in gene variance found in SUD
cohorts. This increased knowledge about the genetic variants in the KP more frequently
associated with SUD and their resulting impact on the metabolites of the KP pathway
can aid in identifying therapeutic interventions designed to reestablish balance in the KP
metabolites. Research in SUD has recently been focused on evaluation if targeting the KP for
therapeutic intervention in SUD is an option [21]. Determining genetic variants of enzymes
in the KP in SUD could lead to personalized pharmacotherapy, where genetic testing
could be performed, and treatments are tailored to an individual’s metabolic. Targeted
therapies could include modulators of specific enzymes to restore balance in the pathway
and reduce neuroinflammation, potentially decreasing relapse and withdrawal symptoms.
Additionally, neuroprotective agents or anti-inflammatory treatments could be developed
to protect against the neurotoxic effects of metabolites such as quinolinic acid, improving
cognitive function and overall treatment outcomes. One example is Ro 61-8048, a KMO
inhibitor, which has shown promising results as a therapeutic option to help prevent relapse
in cannabis and cocaine use disorder [18,19].

This study used a retrospective cohort from the AoU database, providing a large
sample cohort with extensive clinical and genomic data. The strengths include the low cost
of the study since the information is readily available, and the genomic frequencies were
evaluated using data cohorts, which is lower in cost compared to extracting the data using
Python or R. A study weakness is that haplotypes were not assessed within the cohorts and
should be considered in follow-up research to understand penetrance better. Additionally,
future research could determine if further correlations exist with the age of onset, the
pattern of use habit, polysubstance abuse, and the timeframe of use to see if these cohort
subsets strongly correlate to the genetic variants. Additionally, environmental factors that
impact SUD, such as stress, trauma, peer influence, family environment, and socioeconomic
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status, were not evaluated in this study and could be a confounding factor. Future research
could benefit from a prospective study where screening for potential confounding factors
and personal surveys designed specifically for identifying potential environmental factors
would eliminate the chance of these variables impacting the results. Further research could
also exclude participants who have bipolar disorder, schizophrenia, depression, or other
diagnoses that could confound the results of the study. These variables could be a reason
why the cohorts had different polymorphisms that were seen at significantly different rates
and should be controlled for in future studies. This correlation has been seen in different
variants that are prevalent in SUD [19]. This research would further the understanding of
this molecular mechanism on SUD.

Another limitation of the study was that KP metabolite concentrations for the par-
ticipants were unavailable for the dataset. Limited research has been completed to deter-
mine the relationship of the genetic variants to the concentration of these metabolites in
serum [11,12,14,15,20,21]. Based on these studies, expected changes in these metabolites
could be hypothesized based on the presence of different variants but could not be con-
firmed. Additionally, while there is limited research on the alterations of the kynurenine
pathway in these SUD cohorts, further studies can explore how alcohol, cannabis, cocaine,
opioids, and other addictive substances influence the kynurenine pathway to gain a more
comprehensive understanding of their relationships. Studies combining genetic variation
data with observed KP metabolite concentrations could provide a further understanding
of the association of these genetic variants. Understanding if these variants significantly
differ in the SUD cohorts, alter or disrupt the enzyme regulation and activity, or cause
protein instability, will help further understand these variants’ impact. This provides
further knowledge on the potential for therapeutic targets and drugs that can alter the
pathway to regulate the metabolites.

5. Conclusions

In conclusion, this study highlights the association of genetic variants in the KP
within SUD cohorts, suggesting a potential molecular mechanism contributing to SUD.
Identifying specific polymorphisms associated with altered enzyme function or metabolite
levels provide a foundation for understanding how disruptions in this pathway may
influence neurobiological processes involved in SUD. These findings suggest potential
biomarkers for developing and monitoring future therapeutic interventions. Identifying
the genetic alterations underlying certain diseases can enhance diagnosis and treatment
in precision medicine. This knowledge can aid in drug discovery and the development of
treatment regimens that either replace missing components or restore balance to altered KP
metabolites. The findings from this study can potentially drive significant advancements in
treating patients with SUD.
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