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Abstract: This study explores the potential of 1H-NMR spectroscopy-based metabolic profiling in var-
ious biofluids as a diagnostic and predictive modality to assess disease severity in individuals with 5q
spinal muscular atrophy. A total of 213 biosamples (urine, plasma, and CSF) from 153 treatment-naïve
patients with SMA across five German centers were analyzed using 1H-NMR spectroscopy. Prediction
models were developed using machine learning algorithms which enabled the patients with SMA
to be grouped according to disease severity. A quantitative enrichment analysis was employed to
identify metabolic pathways associated with disease progression. The results demonstrate high
sensitivity (84–91%) and specificity (91–94%) in distinguishing treatment-naïve patients with SMA
from controls across all biofluids. The urinary and plasma profiles differentiated between early-onset
(type I) and later-onset (type II/III) SMA with over 80% accuracy. Key metabolic differences involved
alterations in energy and amino acid metabolism. This study suggests that 1H-NMR spectroscopy
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based metabolic profiling may be a promising, non-invasive tool to identify patients with SMA and
for severity stratification, potentially complementing current diagnostic and prognostic strategies in
SMA management.

Keywords: spinal muscular atrophy; 1H-NMR spectroscopy; metabolic profiling; metabolomics

1. Introduction

5q spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease
caused by the bi-allelic loss of function of the survival of motor neuron 1 (SMN1) gene on
chromosome 5q13 with at least one functional copy of the paralogous survival of motor
neuron 2 (SMN2) gene. The clinical SMA spectrum is diverse, ranging from severely
affected patients showing pre- or early postnatal onset to more attenuated phenotypes with
variable disease [1]. Traditionally, childhood-onset SMA has been divided into SMA 1 (“non-
sitters”) with disease onset between 0 and 6 months, SMA 2 (“sitters but non-walkers”)
presenting between 7 and 18 months, and SMA 3 (“walkers”) becoming clinically apparent
before (3a) or after (3b) 3 years of age [2,3]. Recently, the development of novel disease-
modifying therapies has dramatically changed the disease trajectories of SMA. Currently,
three highly effective therapeutics are available, including the antisense oligonucleotide
Nusinersen, the small molecule compound Risdiplam, and the gene addition therapy (GAT)
Onasemnogene abeparvovec, all increasing functional SMN protein levels, preserving
motor function, and improving life expectancy and quality of life [4,5].

To shorten the administration time of disease-modifying treatments [6–9], recent
implementations of newborn screening programs for SMA have enabled clinicians to
identify affected individuals during an early or even presymptomatic disease stage and to
initiate timely treatment [10–12].

Despite these advances, stratifying individuals with a positive newborn screening
result remains a major challenge due to the lack of definitive biomarkers needed to predict
disease severity. This problem in patient stratification includes early-onset cases, which re-
quire immediate treatment or bridging strategies until definitive interventions are available,
and later-onset cases, which may benefit from clinical monitoring [13]. Consequently, a
number of promising approaches have been taken to predict individual courses of disease,
including SMN2 copy numbers, SMN-transcript and protein levels, plasma phosphorylated
neurofilament heavy chain, compound muscle action potential (CMAP) measurements,
and multi-omics approaches [14–23]. SMN2 copy numbers and CMAP measurements
are widely used in routine care; however, they have failed to show a sufficiently high
prognostic value [13,24]. SMN2 copy numbers, despite currently being the main determi-
nant for therapeutic decisions in SMA, hold limited prognostic value regarding disease
progression and treatment response, are often difficult to quantify, and have shown incon-
sistencies between predicted and observed phenotypic outcomes, especially for individuals
harboring three copies [25,26]. Conversely, standardized electrophysiological examinations
have demonstrated utility as indicators of symptom onset in SMA. However, they present
notable challenges in newborns, including high interrater variability, technical challenges
in obtaining reproducible results, and a lack of consensus guidelines regarding the optimal
timing of investigations and locations for stimulation [27,28].

The clinical phenotype of SMA is influenced by various intrinsic (genetic and meta-
genetic) and extrinsic (environmental) factors. Adopting a comprehensive approach that
incorporates a wider array of biological information might substantially enhance clini-
cal decision making. Among the various omics technologies, metabolomics harbor con-
siderable potential to capture the intricate complexities inherent in a living system. By
integrating intrinsic and extrinsic factors, metabolomics provides an accurate, dynamic,
and comprehensive picture of an individual’s state of health and progression of disease
and has demonstrated high correlations with clinical phenotypes in several neurologic
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diseases [29,30]. Thus, metabolic profiling bears the potential to shed light on the patho-
physiological processes occurring in SMA and might support clinicians in the decision
on how to proceed after a positive newborn screening result. One of the most widely
used techniques for metabolic profiling is nuclear magnetic resonance (NMR) spectroscopy.
While NMR has lower sensitivity and resolution compared to mass spectrometry, another
key method in metabolomics, it offers several advantages. NMR is non-selective and non-
destructive, requires minimal sample preparation, allows for the analysis of intact biofluids,
detects a wide range of metabolites simultaneously, and produces highly reproducible and
quantifiable results, making it an efficient high-throughput analytical tool [31].

We previously investigated the potential of 1H-NMR urinary metabolic profiling for
SMA diagnosis and severity prediction in a pilot study involving 24 patients [21]. In
this study, we further investigate the biochemical changes underlying SMA pathology
and determine SMA subtypes using 1H-NMR spectroscopy-based metabolic profiling in
different biofluids in a multicentric real-life cohort. Our results might serve as a potential
starting point to develop a modality for the confirmation of an SMA diagnosis and the
prediction of disease severity.

2. Results
2.1. Study Cohort

A total of 213 biosamples (Nurine = 116, Nplasma= 38, and NCSF = 59) from 153 symp-
tomatic treatment-naïve patients with SMA (NG12.0 = 56, vs. NG12.1 = 97) from the Metab-
NMD study were analyzed. The patient and biomaterial contributions from each center
are shown in Table S1. Complete baseline characteristics were available for 76% of patients
(Table 1). The median age at sample collection was 10.08 years (IQR 22.33, range: 0–67).
The median age in the severely affected G12.0 group was significantly lower than that
in the mildly to moderately affected G12.1 group (medianG12.0 1.04 (IQR 7.72) years vs.
medianG12.1 17.63 (IQR 22.04) years; Mann–Whitney U test, W = 851, p < 0.001; see in
Supplementary Figure S1). The age bias was reduced using age-matched controls whenever
possible. The male-to-female ratio was roughly 1:1 in all groups. As expected, and in line
with previous publications [12], most individuals (75%) in the G12.0 group harbored two
SMN2 copies, while in the G12.1 group, the majority of individuals had three (59.8%) or
four (32%) SMN2 copies. The relation of patients with SMA II to patients with SMA III
in the G12.1 group was roughly 1:1.5. The CHOP INTEND scores in both groups were
comparable, with the limitation that only the most severely affected individuals in the G12.1
group, e.g., due to advanced disease, underwent this test. The HFMSE scores were higher
in the patients in the G12.1 cohort compared to the G12.0 cohort (meanG12.0 8.5 ± 2.12 vs.
meanG12.1 25.83 ± 20.26); however, a statistical analysis was not performed due to small
sample sizes.

The results of the collection and analysis of samples from healthy controls for the urine
cohort have been published previously in parts [23]. Additional healthy urinary samples
were added in this study to increase the age range for the healthy controls. The controls
for CSF were established during diagnostic sample collections (e.g., children undergoing
a lumbar puncture for the evaluation of facial palsy, suspected meningitis, etc., without
pathological findings in the work-up). The plasma controls were collected from healthy
individuals as part of this study. The healthy control cohort resembled the SMA cohort
regarding age (medianSMA 10.08 years (IQR 22.33, range 0–67) vs. medianHealthy 5.00 years
(IQR 11.36, range 0–67). The age distribution among the different body fluids is shown in
Supplementary Figure S1.
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Table 1. Demographic characteristics of study participants.

Overall SMA
(n = 153)

G12.0
(n = 56)

G12.1
(n = 97)

Healthy Controls
(n = 402)

Age [years]
(median, IQR) 10.08 (22.33) 1.04 (7.72) 17.63 (22.04) 5.00 (11.36)

Sex
(n, %)

unreported 2 (1.3%) - 2 (2.1%) -
female 81 (52.9%) 30 (53.6%) 51 (52.6%) 181 (45.0%)
male 70 (45.8%) 26 (46.4%) 44 (45.4%) 221 (55.0%)

SMN2 copies
(n, %)

no SMA 7 (4.6%) 3 (5.4%) 4 (4.1%) 402 (100%)
2 46 (30.1%) 42 (75.0%) 4 (4.1%) -
3 68 (44.4%) 10 (17.9%) 58 (59.8%) -
4 32 (20.9%) 1 (1.8%) 31 (32.0%) -

Motorscores [points]
(n, mean ± SD)

unreported 72 (47.1%) 22 (39.2%) 50 (51.5%) 402 (100%)

CHOP-INTEND 32.21 (±11.70)
(n = 39)

31.88 (±12.00)
(n = 32)

33.71 (±10.92) 1

(n = 7)
-

HFMSE 25.00 (±20.11)
(n = 42)

8.50 (±2.12)
(n = 2)

25.83 (±20.26)
(n = 40) -

1 CHOP-INTEND was reported in 7/97 patients in G12.1 group. Mean age was 6.32 (±5.34) years; all patients
were reported as having SMA type II.

2.2. 1H-NMR Metabolic Profiles of Urine, Plasma, and CSF Show Clear Separation Between
Patients with SMA and Healthy Controls

The urinary samples from the severely (G12.0, SMA type I, n = 39) and mildly to
moderately (G12.1, SMA type II/III, n = 77) affected patients with SMA were pooled and
tested against a healthy control group (n = 339). The PCA/CA/k-NN classification of the
metabolic profiles in urine (NSMA = 116, vs. NHEALTHY = 339) showed good separation
with a sensitivity of 84% and a specificity of 94% (Figure 1A).

To extend these findings to other biofluids and determine the ideal medium for
metabolic profiling, we next analyzed plasma (NSMA = 38 [NG12.0 = 8; NG12.1 = 30] vs.
NHEALTHY = 30) and CSF (NSMA = 59 [NG12.0 = 25 vs. NG12.1 = 34] vs. NHEALTHY = 33)
samples. After confirming the findings in urine, the patients with SMA were identified
with a comparable accuracy of >90% (Figure 1B,C).

Together, these findings suggest that all three biomaterials show adequate properties
and comparable accuracy for identifying patients with SMA vs. healthy controls using
1H-NMR-based metabolic profiling.

2.3. 1H-NMR Metabolic Profiles of Urine, Plasma, and CSF Can Predict SMA Disease Severity

After showing that individuals with SMA can be robustly distinguished from healthy
individuals, we next analyzed whether the 1H-NMR profiles were able to reflect disease
severity. Patients with SMA were divided into early and severely affected (G12.0, SMA
type I) vs. mildly to moderately affected groups (G12.1, SMA type II/III) according to the
latest ICD-10 classification. Since, from a clinical standpoint, there is a particular need for
biomarkers identifying early-onset (SMA type I) patients who need immediate treatment
from later-onset (SMA type II and III) patients, and since clinical distinction between type
II and III patients is sometimes challenging, reflecting a disease continuum rather than
separate entities, we refrained from further subdividing the G12.1 group. Biomaterial was
collected to establish a urine cohort (NG12.0 = 39 vs. NG12.1 = 77 vs. NHEALTHY = 339) as well
as cohorts for plasma (NG12.0 = 8 vs. NG12.1 = 30 vs. NHEALTHY = 30) and CSF (NG12.0 = 25
vs. NG12.1 = 34 vs. NHEALTHY = 33).

The healthy controls were correctly classified in all biomaterials with high sensitivity
and a specificity in the range of 86–94% (Figure 2). False assignment to the mildly to
moderately affected cohort occurred in a few cases (4% of urine samples, 7% of plasma
samples, and 7% of CSF samples). Erroneous classification of healthy individuals and
severely affected G12.0 patients was rarely observed (2% of urine samples, 1% of CSF
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samples, and none of the plasma samples). The severely affected G12.0 group was correctly
classified in roughly two-thirds of cases across all biomaterials (urine: 72%, plasma: 70%,
and CSF: 68%) and showed overlap with the G12.1 group in 21% (urine), 30% (plasma),
and 29% (CSF) of cases. False assignment of G12.0 cases to healthy controls rarely occurred
in the urine samples (8%) and in CSF samples (3%) and was not observed for plasma.
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Figure 1. 1H-NMR metabolic profiles in urine (A), plasma (B), and CSF (C) from patients with SMA
vs. healthy controls. PCA/CA classification and MCCV showed clear discrimination between SMA
group and healthy control group.

Similarly, for the G12.1 cohort, 64% (urine), 76% (plasma), and 77% (CSF) of patients
were correctly assigned to their groups, while overlap with the healthy cohort occurred in
22% (urine), 11% (plasma), and 11% (CSF) of cases. False classification to the G12.0 group
was equally rare (14% for urine and plasma and 12% for CSF).
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2.4. Protein Signal Plays a Major Role in SMA Subgroup Differentiation

The untargeted PCA/CA/k-nn/MCCV classification approach described above, also
known as the top-down strategy, bypasses the need for a predetermined a priori hypothesis
regarding the selection of a specific set of metabolites, but instead examines the entire
metabolic profile. Therefore, untargeted metabolomics can also be regarded as a “discovery
mode” based on differential comparisons between study groups.

Statistical differences between the study groups were evaluated by applying the
Kruskal–Wallis H-test, revealing significant differences (p < 0.05) in the SMA subgroups
and healthy controls across the 1H-NMR spectra in all three biofluids. In urine, significant
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differences were found in both the aliphatic and aromatic regions (Figure 3). Overall, 69%
of the analyzed urinary spectral regions showed significant differences between at least
two groups, with 46% of these differences involving metabolites or proteins that have not
been annotated and attributed to quantified substrates yet. Similarly, significant differences
among subgroups were found in 76% of plasma and 72% of CSF profiles, with 32% and
52% not yet being attributed to quantified metabolites, respectively.
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Figure 3. A univariate analysis of the full 1H-NMR urinary spectrum for G12.0, G12.1, and the healthy
control group. The discriminating region between the groups revealed by the Kruskal–Wallis test
(at p < 0.05 significance level) is highlighted in light pink. The median of each group is represented
by a line (G12.0 is red, G12.1 is blue, and the healthy control is purple), and the 5–95% percentile of
each group is represented by the corresponding light color area. (A) full 1H-NMR urinary spectrum
(0.8–9.0 ppm). (B) A zoomed in figure of the aliphatic region (0.8–2.5 ppm). (C) A zoomed in figure of
a specific region illustrating the discrimination between all 3 groups (2.6–2.8 ppm).

2.5. Quantitative Enrichment Analysis Reveals Distinctive Differences in Energy and Amino Acid
Metabolism Among SMA Subtypes

Despite lacking annotations of large parts of the 1H-NMR spectra, the mean metabolite
concentrations in the well-annotated regions showed minor but relevant differences among
groups in all biofluids (Figure A1). To explore differentially enriched metabolic pathways
in the patients with SMA vs. healthy controls, as well as the SMA subtypes, we performed
a quantitative enrichment analysis (QEA) among the annotated metabolites in all three
biofluids [32]. The top 10 enriched metabolite sets distinguishing severely from the mildly
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to moderately affected patients with SMA are shown in Figure 4A–C. Interestingly, changes
in the urinary spectra showed the most pronounced differences in separating early- from
late-onset SMA. Overlaps of enriched metabolite sets across all biofluids were merged in
a Venn diagram (Figure 4D). A total of 23 metabolic pathways were identified as being
altered between the SMA severity groups in the QEA among all three biomaterials, mainly
involving energy and amino acid metabolism. The complete QEA results for G12.0 vs.
G12.1 are shown in Supplementary Material Table S2.
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are the citrate cycle (TCA cycle); alanine, aspartate, and glutamate metabolism; glyoxylate and
dicarboxylate metabolism; starch and sucrose metabolism; neomycin, kanamycin, and gentam-
icin biosynthesis (D-Glucose); primary bile acid biosynthesis; galactose metabolism; cysteine and
methionine metabolism; valine, leucine, and isoleucine biosynthesis; lipoic acid metabolism; glu-
tathione metabolism; porphyrin metabolism; glycine, serine, and threonine metabolism; pyruvate
metabolism; glycolysis/gluconeogenesis; pantothenate and CoA biosynthesis; phenylalanine, ty-
rosine, and tryptophan biosynthesis; phenylalanine metabolism; arginine and proline metabolism;
butanoate metabolism; tyrosine metabolism; valine, leucine, and isoleucine degradation; and glyc-
erophospholipid metabolism.

3. Discussion

Since the development of disease-modifying therapeutics and the successful imple-
mentation of newborn screening programs for SMA in a growing number of countries,
the life expectancy and disease trajectories of patients with SMA have dramatically im-
proved. However, the timely initiation of therapy remains a critical challenge given the
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cost, invasiveness, and safety concerns associated with these novel treatments. Despite
notable progress in genetics and biomarker research, differentiating between early- and late-
onset patients and developing reliable diagnostic algorithms remain clinically important
challenges. In particular, the identification of children who are at risk for early symptom
onset and a severe disease course requiring imminent treatment initiation remains an
unmet need.

In a previous pilot study, we demonstrated that 1H-NMR spectroscopy-based metabolic
profiling is a feasible and effective method for the diagnosis and prediction of clinical phe-
notypes in urine samples from 24 treatment-naïve symptomatic individuals with SMA [23].
In this study, we extended our cohort to analyze urine, plasma, and CSF samples from 153
treatment-naïve symptomatic patients with SMA. Across all biomaterials, we were able to
generate specific metabolic profiles from treatment-naïve symptomatic patients.

Our prediction models show robust discrimination between patients with SMA and
healthy controls in approximately 90% of cases. Even though the sample sizes differed
considerably between the urine, plasma, and CSF cohorts, the accuracy of our predictions
was comparable across all biomaterials, suggesting that disease-specific changes in SMA
may affect multiple organ systems in line with previous studies demonstrating ubiquitous
SMN expression in all tissues [33]. Since SMA is increasingly recognized as a multisystem
disease and the loss of SMN appears to lead to the disruption of intricate molecular
networks [34], the systemic effects resulting in SMA pathology might be more accurately
reflected in urine and plasma than in CSF.

From a clinical perspective, no biomaterial appears to be superior to the other. We sug-
gest that urine, which is a non-invasive and easily accessible medium, is an optimal choice
for clinical translation. However, plasma, which is obtained during clinical diagnostics and
is non-inferior, may also be a suitable biomaterial for the clinical validation of our models.

To address the clinical challenge of differentiating between severely and mildly to
moderately affected individuals, disease severity models were created in the second step.
Patients were assigned to a severely affected group (G12.0, SMA type I) or a mildly to
moderately affected group (G12.1, SMA type II/III). This simplification was made to reduce
differences in age between groups and reflects the clinically relevant risk stratification.
Influences due to medication were eliminated by including only treatment-naïve samples
in our analysis.

The metabolic profiles in all biomaterials demonstrated reliable recognition of healthy
individuals and an overall good recognition of severe SMA cases. As expected, given
the fact that SMA is clinically and biochemically a disease continuum with borderline
phenotypes, there was a 10–20% overlap of the mildly to moderately (G12.1) affected group
with both severe cases (G12.0) and healthy controls. Interestingly, those cases from the G12.1
group that were misassigned to the healthy control group showed a tendency to depict
higher scores in motor function tests, although these differences did not reach significance.
Conversely, a few healthy individuals were assigned to the mildly to moderately affected
group. We hypothesize that this could be due to a heterozygous SMN1 carrier status;
however, we are currently unable to prove this hypothesis.

To explore the potential metabolic pathways responsible for the differences between
patients with SMA and healthy controls, as well as between different SMA subtypes, we
conducted a quantitative enrichment analysis on our identified metabolite sets. Significant
differences in arginine and proline metabolism were observed between the patients with
SMA and healthy controls, which can be attributed to the unspecific but highly altered
creatine/creatinine ratios. Among all biomaterials, the metabolite sets involved in energy
and amino acid metabolism showed significant differences, which is consistent with previ-
ous data from patients with SMA and animal models [35,36]. Additionally, a recent study
by Errico et al. showed alterations in similar pathways induced by Nusinersen treatment
in CSF samples [37], underscoring their potential role in SMA pathophysiology. Along
these lines, resting energy expenditure has been found to be elevated in patients with
SMA type I, highlighting the altered energy metabolism in SMA types and suggesting a
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potential overall increase in catabolic pathways in severe cases. The differences in energy
metabolism between early- and late-onset patients with SMA were the most pronounced in
the urinary metabolome. Interestingly, urine has previously been proposed as the preferred
medium for biomarker development in neurologic diseases due to its lack of homeostatic
mechanisms that might attenuate subtle systemic fluctuations reflective of disease onset
and progression [38,39].

Overall, the differences in the metabolite sets observed in our QEA were within the
range of one standard deviation, with significant overlap between the groups, therefore
providing limited use as potential biomarkers. However, a significant amount of informa-
tion contained in the spectra can currently not be included in this approach due to a lack
of annotation. This particularly involves large regions of protein background, including
the aliphatic and aromatic regions of the spectrum where the major differences between
subgroups of patients with SMA and healthy individuals seem to reside. Further in-depth
investigations of these non-annotated areas of the spectrum, including the use of com-
plementary omics approaches, might provide future insights into the pathophysiology of
SMA and allow for developments of more specific biomarkers. Until then, an untargeted
approach appears to be more beneficial, taking into account the entire information present
in a biological sample. Systems biology approaches in mouse models of SMA have already
begun to unravel the complex molecular networks interacting with the SMN protein and
identified potential molecular regulators that might serve as therapeutic targets [36].

Together, our findings underline the potential benefits of using untargeted 1H-NMR
spectroscopy-based metabolic profiling as an additional tool complementing current strat-
ification strategies, such as SMN2 copy numbers and CMAP-testing, in predicting the
severity of patients with SMA. Given its minimal preanalytical requirements and time-
efficient measurement, the implementation of 1H-NMR spectroscopy may be feasible and
beneficial in a time-critical clinical setting. The results provided in this study might help in
increasing understanding of the complex pathophysiology of SMA and offer guidance in
future clinical trials and therapeutic decision making.

We acknowledge several limitations to our approach, with some being specific to
our study design and others being inherent to NMR spectroscopy. First, our results
may be biased by varying sample sizes across sub-cohorts and the limited availability
of treatment-naïve biosamples for different age groups. The implementation of several
disease-modifying therapies along with newborn screening programs during the recruit-
ment period of this study naturally limited the availability of treatment-naïve symptomatic
patients with SMA to pre-screening cohorts. However, despite these challenges, our pre-
dictions remained consistently robust across all biomaterials, underscoring the overall
reliability of our approach. Second, while we were able to identify highly significant
changes in core metabolic pathways within well-annotated regions of the 1H-NMR spectra,
a substantial portion of the spectra contributing to the differences between patients with
SMA and healthy controls, as well as SMA subtypes, comprise a non-annotated protein
background, which is currently beyond the scope of our method. We show that despite this
inherent limitation of NMR spectroscopy, an untargeted approach can accurately predict
SMA disease severity. Nevertheless, elucidating the precise proteomic and metabolomic
changes underlying SMA phenotypes across multiple cell lines and disease models, in-
cluding patient-derived iPSC-neurons or brain organoids, would be desirable to fully
understand the molecular mechanisms of disease progression. Along these lines, a bedside-
to-bench approach using complementary techniques in SMN-deficient mouse models has
recently confirmed and further characterized some of the biochemical alterations in SMA
reported in this study [34].

In conclusion, we showed that metabolic profiling using 1H-NMR spectroscopy is
a suitable “fingerprinting” method for untargeted diagnosis and disease severity predic-
tion in a real-life multicenter SMA cohort. Despite the multifaceted influences on the
metabolome, we were able to develop models suitable for the diagnosis and severity
prediction of SMA. Our work highlights the potential for translating 1H-NMR metabolic
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profiling into clinical practice. Even outside of highly controlled conditions and with a
diverse clinical cohort, the chosen approach yielded promising results. Together with
other genetic (e.g., SMN2 copy number, modifier genes), clinical (e.g., CHOP INTEND at
baseline), and electrophysiological (e.g., CMAP) parameters, our method might help to
establish a reliable toolbox for predicting early disease onset and therefore the necessity for
immediate treatment initiation. Especially in milder phenotypes and children with four
SMN2-copies diagnosed via newborn screening, this marker set might help to determine
optimal time windows for treatment initiation.

Future research projects might address the questions of whether 1H-NMR spectra
can predict disease onset and severity in pre-symptomatic children identified through
newborn screening and to analyze whether dynamic changes in metabolic profiles under
therapy might predict treatment responses. Collectively, 1H-NMR-based metabolic pro-
filing identified relevant metabolic differences between healthy individuals and patients
with SMA and revealed potential biochemical determinants of SMA disease progression.
Our findings point to the presence of complex interaction networks involved in SMA
pathology that might serve as a starting point to develop risk–benefit assessment tools
or even personalized treatment strategies for individuals affected with SMA and related
neurogenetic disorders.

4. Materials and Methods
4.1. The MetabNMD Study

This work comprises data and samples from the MetabNMD study (study reference:
EUPAS32033). In this multicenter longitudinal observational study, biomaterials (urine,
plasma, and CSF) from 202 individuals with genetically confirmed SMA were collected
from five participating centers (University Hospitals Essen, Giessen, Hamburg, Heidelberg,
and Munich) in Germany between 2018 and 2023.

For this study, biomaterials from 153 treatment-naïve patients were selected. A total of
116 urine, 59 CSF, and 38 plasma samples were analyzed. A total of 402 healthy individuals
were used as the control cohort as reported previously [23].

4.2. Clinical Data

Clinical data were collected during routine inpatient and outpatient visits. Data
analyzed included age, sex, SMN2 copy number, SMA subtype, and CHOP INTEND and
HFMSE motor scores. SMA subtypes were grouped into two main categories according
to the International Statistical Classification of Diseases and Related Health Problems
(ICD-10) [40]:

(1) G12.0: SMA type I (“severe”);
(2) G12.1: SMA type II/III (“mild to moderate”).

4.3. Sample Collection and Preparation

Standard operating procedures (SOP), based on the technical specification DIN CEN/TS
16945:2016-11 [41], were created for sample collection, preanalytical processing, storage,
and shipment. Samples were processed in the respective centers and stored in the NCT
Cell and Liquid Biobank, Heidelberg, Germany, at −80 ◦C. All shipments were sent on dry
ice, and temperature was constantly monitored.

Whenever possible, midstream urine was obtained, either spontaneously or as a “clean
catch” sample. Whenever midstream sampling was impossible (e.g., young children or
individuals with impaired bladder control), bagged urine was obtained. A urinary point-
of-care test for leucocytes, blood, glucose, and proteins was performed, the results were
documented, and the urine was transferred to a sample tube. Samples were stored at room
temperature for a maximum of 30 min and for 6 h at 4 ◦C prior to processing. Urine samples
were centrifuged at 4 ◦C and 2500× g for 5 min. Subsequently, supernatant was pipetted
into 2 mL cryovials and stored at −80 ◦C. Urine with a pathological point-of-care diagnostic
was excluded from the analysis. Cerebrospinal fluid (CSF) was obtained during a routine
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diagnostic procedure or prior to intrathecal medication application. An amount of 2 mL of
CSF was collected according to clinical standards. CSF was stored at room temperature
for a maximum of 30 min. Subsequently, CSF was centrifuged at 4 ◦C and at 2500× g for
5 min, and the supernatant was aliquoted to 750 µL cryovials and stored at −80 ◦C. CSF
with procedural blood contamination was excluded from the analysis. An amount of 2.7
or 9 mL of venous blood was taken during routine diagnostic procedures using K+-EDTA
tubes according to clinical standards. EDTA blood was stored for a maximum of 30 min
at room temperature or 4 h at 4 ◦C prior to processing. EDTA blood was centrifuged at
2500× g at room temperature for 10 min. Plasma was separated from buffy coat and red
blood cells and stored at −80 ◦C.

Urine, plasma, and CSF samples were prepared according to standard procedures as
described previously [42,43]. Frozen urine, plasma, and CSF samples were thawed at 4 ◦C
and shaken before use. An amount of 0.9 mL of urine was added to 0.1 mL of potassium
phosphate buffer (pH 7.4) containing trimethylsilyl propionic acid-d4 sodium salt (TSP)
and sodium azide, and 0.35 mL of plasma was added to 0.35 mL of sodium phosphate
buffer (pH 7.4) containing trimethylsilyl propionic acid-d4 sodium salt (TSP) and sodium
azide. An amount of 0.75 mL of CSF was added to 0.6 mL of buffer. The mixture, either
urine, plasma, or CSF, was homogenized, and 0.6 mL was transferred to a 5 mm NMR tube
and placed in a cooled sample changer for analysis.

4.4. 1H-NMR Spectroscopy

All samples were measured in full automation according to standard procedures on
a Bruker IVDr System, as described previously [42]; a 600 MHz Bruker Avance III HD or
Avance NEO NMR spectrometer equipped with a SampleJet sample changer with sample
cooling and a pre-heating station, a 5 mm inverse probe with z-gradient and automated
tuning and matching, and a BCU-I TopSpin 3.6 or higher cooling unit in combination
with Bruker’s body fluid NMR method package B.I.Methods 2.0/2.5 were used for fully
automated acquisition and processing controlled by ICON NMR (Bruker Biospin GmbH,
Ettlingen, Germany).

Prior to measurement, samples were kept for 5 min inside the NMR probe head for
temperature equilibration at 27 ◦C (300 K) for urine and CSF and at 37 ◦C (310 K) for
plasma. Tuning and matching, locking, shimming, the optimization of the lock phase,
and the calibration of the hard pulse at 90 ◦C were carried out automatically for the
optimization of the NMR experimental conditions. Next, one-dimensional 1H-NMR NOESY
(Nuclear Overhauser Effect SpectroscopY, 32-scan) spectra were acquired by applying a
standard pulse sequence with suppression of the water signal (Bruker pulse program library
noesygppr1d, Bruker Biospin GmbH, Ettlingen, Germany). Fourier transformation and
fully automated phasing and baseline correction were carried out via the Bruker standard
automation program APK0.NOE (Bruker Biospin GmbH, Ettlingen, Germany). Spectra
were quantitatively calibrated via the PULCON principle using an external reference
sample [44]. TSP (Trimethylsilyl propionic acid-d4 sodium salt) served as the reference
peak. Two-dimensional 1H-NMR JRES (J-RESolved spectroscopy, 2-scan) spectra were
acquired. For plasma, CPMG (Carr–Purcell–Meiboom–Gill, 32-scan), DIFF (DIFFusion,
32-scan), and PGPE (Pulsed Gradient Perfect Echo, 64-scan) spectra were run.

4.5. Spectral Analysis and Binning

Urine: Spectral intensity was scaled using a minimum baseline scale using the
1.0–4.3 ppm region to eliminate any variability coming from spot urine. Afterward, each
spectrum was segmented from 0.8 to 9 ppm into consecutive bins containing 0.01 ppm, and
the pertaining regional integrals (bin intensities) excluding the 4.5–6.5 ppm region were
calculated.

CSF: Spectral intensity was scaled to a mmol/L concentration scale. Afterward, each
spectrum was segmented from 0.8 to 4.55 ppm into consecutive bins containing 0.02 ppm,
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and the pertaining regional integrals (bin intensities) excluding the 4.5–6.5 ppm region
were calculated.

Plasma: Spectral intensity was scaled to a mmol/L concentration scale. Afterward,
each spectrum was segmented from 0.3 to 10 ppm into consecutive bins containing 0.01 ppm,
and the pertaining regional integrals (bin intensities) excluding the following regions were
calculated: 3.04–3.31 ppm, 3.59–3.66 ppm, and 4.5–5.5 ppm. The exclusion of the named
bins was necessary to remove biases from irrelevant sample variability, i.e., water signals
present in all biofluids and EDTA signals present in plasma samples. A so-called bucket
table was created, with rows representing samples and columns representing bins.

4.6. Multivariate Analysis

Principal component analysis (PCA): PCA was used as an unsupervised multivariate
technique for coordinate transformation on the initial bucket table to separate relevant
signals from noise. It projects correlated variance distributed over several variables onto
single new variables, the Principal Components, thus simplifying visualization and inter-
pretation. In this study, dimensionality reduction and data visualization were carried out
by PCA, and data tables were prepared for further multivariate analyses.

PCA/CA/k-NN Classification: After dimensionality reduction in the bucket table
by a PCA, a canonical analysis (CA) in combination with a MANOVA was performed to
determine the subspace for maximum class separation and its respective dimension. A
classification system was introduced using the k-nearest neighbor (k-NN) concept. Together,
the PCA/CA/k-NN classification procedure is a supervised method to first project a new
sample into the PCA/CA subspace and then assign its class by k-NN.

Monte-Carlo embedded cross-validation (MCCV): As PCA/CA/k-NN classification
is a supervised method, related models are established with known class membership
for each sample. Therefore, an extensive validation is necessary to avoid overfitting
the model during the training phase. In this study, MCCV was used to optimize the
correct classification. A confusion matrix with n × n fields (with n representing the
number of classes to be discriminated) was created from MCCV, where diagonal fields
represent the probability of true classification and off-diagonal fields relate to probabilities
of misclassification, e.g., samples of class A being falsely assigned to a different class,
such as B.

PCA/CA/k-NN classification and MCCV are further described by Assfalg et al. and
Bernini et al. [45,46]. The prediction of sample classes in the discriminatory space was
carried out by selecting the lowest distance to the center of the group.

4.7. Univariate Analysis

We employed the Kruskal–Wallis H test to identify significant differences among the
SMA groups. Each bin’s intensity was treated as an independent observation. The Kruskal–
Wallis test compared the median intensities of these bins across the different groups to
assess spectral bins showing statistically significant variations between groups.

4.8. Quantitative Enrichment Analysis

Quantification results of 150 urinary metabolites were obtained directly after the
NMR measurement using the Bruker IVDr Quantification in urine for children and adults
(B.I.QuantUR-e 1.1, Bruker Biospin GmbH, Ettlingen, Germany) module. The concentra-
tions of the 112 lipoproteins and subclasses, the 40 small molecules, and the 5 inflammatory
analytes were obtained by analyzing the plasma spectra using the Bruker IVDr Lipopro-
teins and Subclasses analysis (B.I.LISA 1.0, Bruker Biospin GmbH, Ettlingen, Germany)
module, the Bruker IVDr Quantification in plasma (B.I.QuantPS2.0, Bruker Biospin GmbH,
Ettlingen, Germany) module, and the PhenoRiskPACS module(Bruker Biospin GmbH,
Ettlingen, Germany), respectively. Lipoproteins were not included in the enrichment anal-
ysis. The concentration of the 29 analytes in CSF was obtained using a Bruker in-house
quantification algorithm. To provide a comprehensive visualization of metabolite concen-
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trations, heatmaps using normalized data and the Euclidian distance between metabolites
were generated (Figure 4) [47]. A metabolite set enrichment analysis was conducted using
MetaboAnalyst 6.0 [32]. Urinary metabolite concentrations were normalized to a relative
concentration presented in mmol/mol creatinine and auto-scaled by mean-centering and
division by the standard deviation of each metabolite. Plasma and CSF metabolites (abso-
lute concentration mmol/L) were mean-centered and divided by the standard deviation
of each metabolite. Metabolic pathways were annotated using the KEGG Metabolic path-
ways Homo sapiens database [48]. Globaltest was used to calculate the Q-statistics for each
metabolite set, describing the correlation between the concentration profiles and clinical
outcomes in a linear model [49]. A Venn diagram was used to visualize overlaps in the
enriched metabolite sets.

4.9. Baseline Statistics

Baseline characteristics were summarized using either the mean and standard devi-
ation (SD) or median and interquartile range (IQR) or median and min-max description
depending on the distribution of data tested by visualization with histograms, quantile-
quantile plots, and normality testing using the Shapiro–Wilk test. Sample sizes are indicated
(n) for each analysis. The t-test (for normally distributed variables) and the Mann–Whitney
U and Kruskal–Wallis tests (for non-parametric distributions) were performed to test for
statistical differences.
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