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Abstract

Background and methods

Systematic reviews, i.e., research summaries that address focused questions in a struc-

tured and reproducible manner, are a cornerstone of evidence-based medicine and

research. However, certain steps in systematic reviews, such as data extraction, are labour-

intensive, which hampers their feasibility, especially with the rapidly expanding body of bio-

medical literature. To bridge this gap, we aimed to develop a data mining tool in the R pro-

gramming environment to automate data extraction from neuroscience in vivo publications.

The function was trained on a literature corpus (n = 45 publications) of animal motor neuron

disease studies and tested in two validation corpora (motor neuron diseases, n = 31 publica-

tions; multiple sclerosis, n = 244 publications).

Results

Our data mining tool, STEED (STructured Extraction of Experimental Data), successfully

extracted key experimental parameters such as animal models and species, as well as risk

of bias items like randomization or blinding, from in vivo studies. Sensitivity and specificity

were over 85% and 80%, respectively, for most items in both validation corpora. Accuracy

and F1-score were above 90% and 0.9 for most items in the validation corpora, respectively.

Time savings were above 99%.

Conclusions

Our text mining tool, STEED, can extract key experimental parameters and risk of bias

items from the neuroscience in vivo literature. This enables the tool’s deployment for probing

a field in a research improvement context or replacing one human reader during data
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extraction, resulting in substantial time savings and contributing towards the automation of

systematic reviews.

Introduction

Synthesising evidence is an essential part of scientific progress [1]. To this end, systematic

reviews—i.e. the rigorous identification, appraisal, and integration of all available evidence on

a specific research question—have become a default tool in clinical research [2, 3]. Yet, they

are also increasingly employed for preclinical in vivo research [4–7].

Systematic reviews allow the identification of trends that may be missed when reviewing

individual, smaller studies, and add soundness to one’s conclusions. For this reason, the use of

systematic reviews in animal research is an acknowledged aid to implementing the reduction,

replacement, and refinement of animal experiments [8], e.g., by gaining knowledge without

the use of new animal experiments or by improving the ethical position of animal research by

increasing the value and reliability of research findings [9].

The process of manual evidence synthesis is highly laborious [10]. This problem is further

hampered by the skyrocketing amount of publications in the biomedical field [11] and these

numbers are set to increase still further in the near future [12]. With this, it becomes increas-

ingly difficult to keep abreast with the published evidence which in turn precludes evidence-

based research [13]. Consequently, automation of the labour-intensive steps of a systematic

review is warranted to optimize the value of published data in the age of information overload.

One particularly labour-intensive systematic review task which would profit from automation

is data extraction [14, 15], i.e., the manual retrieval of specific data from publications. Based on

these shortcomings, we set out to develop a text mining tool to automatically extract key study

parameters from publications of animal research modelling motor neuron diseases and multi-

ple sclerosis. Our endeavour is focused on two key domains of experimental science, that is 1)

disease model parameters such as animal models and species, and 2) risk of bias measures

such as randomization or blinding.

Methods

Study protocol

The development of the text mining tool was part of a systematic review on neuroimaging

findings in motor neuron disease animal models registered as prospective study protocol in

the International Prospective Register of Systematic Reviews (PROSPERO,

CRD42022373146).

Literature corpora

Three literature corpora were included in this study: one for the training of the text mining

toolbox and two for its validation. The training corpus was identified by searching Medline via

PubMed for animal motor neuron disease models using the search string: "motor neuron dis-
ease" OR motor neuron diseases [MeSH] OR "amyotrophic lateral sclerosis" OR "ALS" OR
"MND" OR "SOD" and limiting the search to the publication year 2021. The two validation cor-

pora are derived from two in-house systematic reviews: a systematic review on neuroimaging

findings in motor neuron disease animal models [16] and a systematic review on neuroimag-

ing findings in multiple sclerosis animal models [17].
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Parameters to extract and development of text mining tool

We defined items of interest to extract a priori which belong to two domains: first, experimen-

tal parameters including 1) animal species, 2) animal sex, 3) model disease, 4) number of

experimental animals used, and 5–7) experimental outcomes, i.e., whether a respective study

assessed behavioral, histological, or neuroimaging outcomes. Second, risk of bias items includ-

ing: 1) implementation in the experimental setup of any measure of randomization, 2) any

measure of blinding, 3) prior sample size calculation (power calculation), 4) statement of

whether conducted animal experiments are in accordance with local animal welfare guidelines,

5) statement of a potential conflict of interest, and 6) accordance with the ARRIVE guidelines

[18]. This second domain also includes an item for the data availability statement, i.e., a state-

ment whether and where primary study data are available.

For each item of interest, we developed a library of regular expressions (RegEx) in the R

programming environment. RegEx are patterns of characters that define specific text matches.

This library was built by methodically gathering relevant words and phrases from the training

corpus. Notably, only one study in our training corpus reported neuroimaging outcomes,

prompting us to enrich our RegEx library with terms from another unpublished animal sys-

tematic review. We aimed to minimize overfitting by avoiding hard-coded expressions, yet

some unique terms were essential to include to the RegEx libraries.

Using the RegEx libraries, we created an R function to extract data from scientific papers.

This process starts with converting PDFs to text using the ’pdftools’ package and then applying

the ’stringr’ package to identify relevant RegEx patterns. The function segments each paper

into sections (like results or methods), strips the ‘references’ section, searches for matching

RegEx patterns, and then aggregates this data into a dataframe. Each paper corresponds to one

row in the dataframe, with columns representing the different data points extracted.

The RegEx libraries and the R function were iteratively improved to maximize perfor-

mance, based on a pre-defined threshold (see below). Both our RegEx libraries and the R func-

tion are available at: https://github.com/Ineichen-Group/Auto-STEED or on the Open Science

Framework (OSF): https://osf.io/n8dz7/.

Assessment of text mining tool performance

Performance of our text mining function was gauged using the following metrics:

Sensitivity ¼
TP

TP þ FN
1ð Þ

Specificity ¼
TN

TN þ FP
2ð Þ

Precision ¼
TP

TP þ FP
3ð Þ

Accuracy ¼
TP þ TN

TP þ TN þ FP þ FN
4ð Þ

F1 � score ¼
2∗TP

2∗TPþ FPþ FN
5ð Þ

With TP, TN, FP, and FN being true positive, true negative, false positive, and false nega-

tive, respectively. We used R to calculate these performance metrics.
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All included literature corpora have undergone dual and independent manual extraction of

these parameters (WEZ, AEC, BVI) constituting the ‘gold standard’ for data extraction. We

measured mean extraction time for both the human and the automated extraction to gauge

time savings by the automated extraction. As defined in the protocol, for development of the

text mining function in the training set, automated extraction of individual items was consid-

ered to be sufficiently accurate if they attained a sensitivity of 85% and a specificity of 80% (i.e.,

with a slightly higher sensitivity as per recommendation by the ‘Systematic Living Information

Machine’ [SLIM] consortium).

Results

General characteristics of literature corpora

We included three literature corpora with manual annotation by two trained and independent

reviewers. The training corpus comprised 45 individual publications on motor neuron disease

animal models from 2021. The validation sets included 31 publications on neuroimaging in

motor neuron disease animal models and 244 publications on neuroimaging in multiple scle-

rosis animal models, with median publication years of 2014 and 2009, respectively (see

S1 File).

The median reporting prevalence for experimental parameters was 85%, 95%, and 93% in

the training and validation corpora, respectively. Similarly, the median reporting prevalence

for risk of bias items was 58%, 19%, and 20% in the training and validation corpora, respec-

tively. A detailed summary of the characteristics and reporting prevalence of the literature cor-

pora is presented in Table 1.

The interrater agreement was 85–95% for experimental parameters and 81–100% for risk of

bias items in the training and validation corpora.

Architecture of text mining tool

Due to copyright restrictions on data mining from HTML, the tool was developed for extract-

ing data at the PDF publication level. Initially, the text mining function reads in PDFs of the

relevant publications and converts them to text. This text is then cleaned of certain keywords,

such as ’random primer,’ to reduce false positives for items we aim to extract, like randomiza-

tion. Subsequently, the manuscript’s body is parsed into different sections (e.g., abstract, intro-

duction, materials, and methods) based on the appearance of specific RegEx, such as the

heading ’materials and methods.’ Then, specific sections of the paper are mined for relevant

regular expressions, using RegEx libraries tailored to each item that needs to be extracted.

More concretely, the function extracts experimental parameters as well as some risk of bias

items (randomization, blinding, and animal welfare statement) from the methods section and

the other risk of bias items from the entire manuscript (excluding the ‘references’ section). The

mining pipeline is depicted in Fig 1. The tool can be accessed directly on Github at https://

github.com/Ineichen-Group/Auto-STEED.

PDFs of full texts are imported into the R environment, converted to text, and cleaned. Sub-

sequently, the text is parsed into different sections such as ‘materials and methods’ or ‘results’.

Then, individual items to mine are extracted using custom-made Regex libraries and a data

frame with the extracted items is created.

Performance metrics of STEED

In the training set, the text mining function was tuned until it reached a sensitivity of 85% and

a specificity of 80% for each individual item. The specificity threshold was not attained for the
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Table 1. Characteristics of included literature corpora and reporting prevalence for parameters to extract.

Training corpus Validation corpus 1 Validation corpus 2

Characteristics of eligible publications

Topic Motor neuron disease animal

models

Neuroimaging in motor neuron disease animal

models

Neuroimaging in multiple sclerosis animal

models

Number of publications 45 31 244

Publication year median and

range

2021 (2021–2021) 2014 (2004–2020) 2009 (1985–2017)

Number of different journals 35 22 72

Reporting prevalence

Experimental parameters:

Species 100% 100% 100%

Sex 87% 61% 78%

Model 100% 100% >99%

Outcome histology 82% 90% 85%

Outcome behaviour 73% 42% 61%

Outcome imaging 2% 100% 100%

Risk of bias items:

Randomization 58% 23% 20%

Blinding 47% 19% 32%

Animal welfare 98% 90% 78%

Conflict of interest 96% 58% 25%

Sample size calculation 27% 10% 1%

ARRIVE guidelines 29% 0% 1%

Data availability 69% 19% 2%

https://doi.org/10.1371/journal.pone.0311358.t001

Fig 1. Architecture of the text mining function.

https://doi.org/10.1371/journal.pone.0311358.g001
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items ‘sample size calculation’, ‘sex’, and ‘outcome behaviour’ with only 78%, 67% and 50%,

respectively but with above-threshold sensitivity. Some items such as accordance with the

ARRIVE guidelines or whether a conflict-of-interest statement was included reached a sensi-

tivity close to 100%. F1-score and accuracy were above 90% for most items (Table 2).

The mining function performed well on both validation corpora. In the motor neuron dis-

ease corpus, the mining function accomplished above-threshold specificity and sensitivity for

most items, except for ‘outcome behaviour’ with slightly below-threshold specificity and ‘data

availability’, ‘sample size calculation’, and ‘sex’ with slightly below-threshold sensitivity. In the

multiple sclerosis validation corpus, additional items did not reach the specificity and sensitiv-

ity thresholds. However, F1-score and accuracy were above 90% for most items in the motor

neuron disease validation corpus and above 80% in the multiple sclerosis corpus, respectively

(Table 2).

Time savings automated versus manual extraction

Mean time for the manual extraction was 12 (± standard deviation: 8), 13 (± 7), and 15 (± 11)

minutes per publication and per human reader for the training corpus and the two validation

corpora, respectively. This amounts to a total of 540, 403, and 3660 minutes for one reader for

the three corpora, respectively. In contrast, the mining function required 0.3 seconds to mine

one record amounting to 0.23, 0.15, and 1.22 minutes for the three corpora. With this, the text

mining function provides time savings above 99%.

Reporting of items on abstract versus full text level

For the experimental parameters, we quantified how commonly the respective items were

reported in the abstract in addition to the full text. Disease models and species as well as out-

come measures were commonly reported on abstract level in all three literature corpora with

reporting frequencies between 95–100%. However, animal sexes were only rarely reported

with reporting frequencies between 0 and 5%.

Discussion

Main findings

We developed STEED (STructured Extraction of Experimental Data), an R-based text mining

tool designed to automatically extract key experimental details, such as animal models and spe-

cies, and risk of bias factors like randomization or blinding, from preclinical in vivo studies.

The tool demonstrated high sensitivity, specificity, and accuracy for extracting most items

across two validation literature corpora. These corpora included one in a field similar to the

training set (motor neuron diseases) and another in a different area (multiple sclerosis), both

encompassing older publications as well. The use of STEED substantially reduced the time

required to extract these data.

Findings in the context of existing evidence

STEED performed well on literature corpora outside of the field is has been developed in as

well as in corpora with older publication years, i.e., it has been developed in a corpus covering

the motor neuron disease literature and performed well in a corpus of the multiple sclerosis lit-

erature. Thus, our developed function could be applied to literature bodies of other research

fields. However, adapting STEED to new disciplines requires some consideration: While the

tool has shown flexibility across related fields, creating discipline-specific versions may neces-

sitate refining the underlying RegExes to accurately capture more distinct experimental
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Table 2. Summary of performance measures of STEED compared with manual human ascertainment.

Specificity Sensitivity Precision Accuracy F1-score

Training corpus (motor neuron diseases, n = 45)

Species NA 96 100 96 0.98

Sex 67 85 94 82 0.89

Disease model NA 96 100 96 0.98

Outcome histology 89 92 97 91 0.94

Outcome behaviour 50 97 84 84 0.90

Outcome imaging 96 NA NA 96 NA
Randomization 84 96 89 91 0.93

Blinding 95 92 96 93 0.94

Animal welfare NA 86 97 84 0.92

Conflict of interest 100 98 100 97 0.99

Sample size calculation 78 92 63 82 0.75

ARRIVE guidelines 100 100 100 100 1.00

Data availability 85 94 94 91 0.94

Validation corpus 1 (motor neuron diseases, n = 31)

Species NA 100 100 100 1.00

Sex 100 74 100 84 0.85

Disease model NA 90 100 90 0.95

Outcome histology 100 96 100 97 0.98

Outcome behaviour 78 85 76 81 0.79

Outcome imaging NA 100 100 100 1.00

Randomization 100 86 100 97 0.92

Blinding 100 89 100 97 0.94

Animal welfare 100 89 100 90 0.94

Conflict of interest 92 94 94 94 0.94

Sample size calculation 81 80 44 81 0.57

ARRIVE guidelines 100 NA NA 100 NA
Data availability 96 83 83 94 0.83

Validation corpus 2 (multiple sclerosis, n = 244)

Species NA 75 100 75 0.86

Sex 76 83 93 82 0.88

Disease model NA 87 100 88 0.93

Outcome histology 64 96 93 91 0.95

Outcome behaviour 66 91 81 82 0.86

Outcome imaging NA 94 100 94 0.97

Randomization 93 81 75 90 0.78

Blinding 98 85 96 93 0.90

Animal welfare 86 80 95 82 0.87

Conflict of interest 96 97 90 97 0.93

Sample size calculation 94 100 27 97 0.43

ARRIVE guidelines 100 100 100 100 1.00

Data availability 100 80 80 100 0.80

Specificity, sensitivity, precision, and accuracy are denoted in percentage. For details regarding measures, please see the materials and methods section. Items reaching

or exceeding our pre-defined thresholds (sensitivity of 85% and a specificity of 80%) are printed in bold font.

https://doi.org/10.1371/journal.pone.0311358.t002
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parameters pertinent to each field. This process would involve collaborative efforts with

domain experts to ensure the tool’s precision and subsequent validation [19]. Consequently,

while separate packages for each discipline are conceivable, they would require some adapta-

tion efforts to maintain STEED’s standards of accuracy and utility.

Although STEED showed relatively high performance, it is not yet ready for evaluating

individual publications and cannot completely replace manual data extraction. Nevertheless,

this automated tool has two practical applications: first, it can be employed to large reference

libraries (over 1000 records) to survey specific fields for experimental parameters and potential

biases [20]. Secondly, STEED can serve to replace one human reviewer during the data extrac-

tion of e.g., a systematic review, which would still lead to substantial labour savings [15, 21].

Any discrepancies between human and machine analysis can be manually reviewed for

accuracy.

Similar approaches have been leveraged to extract specific information—such as the study

population, intervention, outcome measured and risks of bias—from abstracts [22] or full

texts [20, 23]. Bahor and colleagues developed a text mining function in a literature body of

stroke animal models able to extract certain risk of bias items including randomization, blind-

ing, and sample size calculation [24]. The achieved accuracy was between 67–86% for random-

ization (our approach: 90–97%), 91–94% for blinding (our approach: 93–97%), and 96–100%

for sample size calculation (our approach: 81–97%). With this, our developed tool shows simi-

lar performance metrics and does complement former tool by extracting additional risk of bias

items such as statement of a conflict of interest, accordance with local animal welfare regula-

tions, a data availability statement, and accordance with the ARRIVE guidelines [18]. Another

text mining toolbox based on natural language processing (NLP) was developed by Zeiss and

colleagues [22]: This toolbox extracts data such as species, model, genes, or outcomes from

PubMed abstracts with F1-score between 0.75 and 0.95.

For many tasks, NLP models seem to outperform RegEx-based text mining [11, 25]. Yet

they are more complex and labour-intensive to develop and deploy and thus only warrant

application in more complex extraction tasks. Wang and colleagues tested performance of a

variety of models such as convolutional neural networks to extract risk of bias items from pre-

clinical studies [20]. These models outperformed RegEx-based methods for four risk of bias

items with F1-score between 0.47–0.91. The validity of NLP for such tasks has also been cor-

roborated by SciScore—a proprietary NLP tool that can automatically evaluate the compliance

of publications with six rigour items taken from the MDAR framework and other guidelines

[23]. These items mostly relate to risk of bias, including compliance with animal welfare regu-

lations, blinding/randomisation, prior sample size calculation and other items such as organ-

ism or animal sex. SciScore was developed on a training corpus from PubMed open access

articles. In contrast, our approach was developed on preclinical neuroscience corpora thus

being more tailored to this field. Additionally, techniques involving generative large language

models like GPT have been explored to automate data extraction from systematic reviews [26].

While these methods show promise, they require further evaluation to establish reliability.

Current findings indicate that such models may extract incorrect data [27]. Furthermore,

these models often face challenges in extracting key information and tend to be more prone to

errors, especially when summarizing extensive text.

While our original plan included extracting the number of animals used in studies, we had

to abandon this objective due to the highly heterogeneous ways these numbers are reported—

such as in the methods/results sections, tables, figure legends, graphs, or only separate for

experimental and control groups. A possible approach to address this issue could be to treat it

as an NLP categorization task, classifying studies into small (for instance, fewer than 10 ani-

mals), medium (10–50 animals), and large groups (more than 100 animals).
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Limitations

Firstly, our method was developed and tested specifically for preclinical neuroscience research.

Its effectiveness in other areas, such as in vivo cancer studies, is yet to be determined. Secondly,

our tool relies on full-text PDFs for data extraction. While extracting data from online versions

of publications (HTML format) could solve problems related to PDF conversion, such as

inconsistent layouts and varying journal formats, current copyright regulations and the need

for costly licenses make this challenging [28]. Lastly, while our automated approach offers sub-

stantial time savings compared to manual data extraction, this does not take into account the

time needed to verify the results of the automated process.

Conclusions

Our developed text mining tool STEED is able to extract key risk of bias items and experimen-

tal parameters from the neuroscience in vivo literature. Accelerating the usually labour-inten-

sive data extraction during a systematic review contributes towards automation of systematic

reviews.
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Bugajska, Bernard Friedrich Hild, Benjamin Victor Ineichen.

Formal analysis: Benjamin Victor Ineichen.

Methodology: Ewoud Ewing, Benjamin Victor Ineichen.

Supervision: Benjamin Victor Ineichen.

Validation: Daniel Salo Reich.

Visualization: Marianna Rosso.

Writing – original draft: Benjamin Victor Ineichen.

Writing – review & editing: Wolfgang Emanuel Zurrer, Amelia Elaine Cannon, Ewoud
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