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Simple Summary: Locusts are significant agricultural pests; therefore, the identification of novel
control targets for their management is of immense importance. FoxO, a downstream target gene
of cellular nutrient and growth factors, oxidative stress responses, and insulin signaling pathways,
plays a pivotal role in the growth, development, and reproduction of insects. FoxO silencing resulted
in significant changes in the expressions of genes associated with reproduction and the Hippo
pathway and significantly reduced ovary development. These findings indicate that FoxO regulates
reproduction in L. migratoria through the Hippo signaling pathway: when impaired, the reproductive
capacity function declines. In addition, FoxO-mediated energy mobilization is involved in the
regulation of egg production. Overall, these results highlight the potential of targeting FoxO as a
novel molecular approach for controlling L. migratoria.

Abstract: FoxO is a downstream target gene of cellular nutrient and growth factors, oxidative stress
responses, and insulin signaling pathways. It play a crucial role in insect growth, development,
and reproduction. Locusta migratoria is a significant agricultural pest; therefore, the identification
of novel control targets for its management is of significant importance. After injecting dsRNA to
interfere with FoxO expression, we observed changes in the reproduction-related gene expression
and ovary development through RT-qPCR and morphological observation. Simultaneously, the
trehalose and glycogen contents were measured following RNAi. The results demonstrate that
interference with FoxO significantly downregulates key genes in the Hippo pathway and Notch
gene expression. In terms of carbohydrate metabolism, the trehalose content decreases significantly
while the glycogen content increases markedly after FoxO silencing. Additionally, FoxO silencing
considerably inhibits reproductive-related gene expression, resulting in delayed ovarian development.
These findings indicate that FoxO regulates L. migratoria reproduction through the Hippo signaling
pathway: when impaired, the reproductive capacity function declines. In addition, FoxO-mediated
energy mobilization is involved in the regulation of egg production. These results indicate that the
RNAi of FoxO may be a useful control strategy against L. migratoria.

Keywords: Locusta migratoria; RNAi; FoxO; Hippo pathway; reproduction

1. Introduction

Reproduction is a crucial factor that influences the adaptability of insects [1]. In
terms of insect reproduction, the occurrence of yolk directly impacts their reproductive
capacity [2]. Yolk occurrence primarily involves vitellogenin (Vg) production in the fat
body, its release into the hemolymph, and its uptake by mature oocytes [3,4]. In Locusta
migratoria, developing oocytes selectively incorporate Vg from outside the egg through
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endocytosis mediated by the vitellogenin receptor (VgR) [5]. Once inside the oocyte,
Vg is stored as crystalline vitellin, serving as a nutritional reserve for future embryonic
development [6,7]. At the oogenesis stage, the Notch pathway is involved in the spatial and
temporal regulation of follicle cell differentiation and proliferation [8,9]. In L. migratoria,
the increase in JH expression ensures high Notch abundance, consequently contributing to
successful egg production [10].

In addition, the insulin signaling pathway in insects can influence their reproduction
by regulating Vg protein synthesis [4,11]. As downstream target genes for cellular nutrients,
growth factors, oxidative stress responses, and insulin signaling pathways (IIS), FoxO exerts
both activating and inhibitory functions through transcriptional regulation mediated by
interactions with regulators [12,13]. It binds to multiple target gene promoters and further
modulates physiological activities such as growth, development, and reproduction [14,15].
In insects, FoxO functions as a transcriptional repressor that binds to the promoter region
of Vg. Upon phosphorylation, it is expelled from the cell nucleus, thereby triggering Vg
synthesis [16,17]. FoxO exerts an impact on reproduction in various insects, including
Cyrtorhinus lividipennis, Tribolium castaneum, and Blattella germanica [18–20]. In B. germanica,
FoxO RNAi in fed females caused substantially reduced Vg expression and arrested oocyte
growth [21]. Similarly, FoxO knockdown caused reductions in the Vg mRNA levels in fed T.
castaneum adult females [22].

The Hippo signaling pathway is a cascade reaction that governs organ size by regulat-
ing cell growth, proliferation, and apoptosis. Additionally, it plays a pivotal role in stem
cell renewal and tissue regeneration [23,24]. Its core constituents comprise Hippo (Hpo),
Warts (Wts), and Yorkie (Yki), as well as the scaffold protein Salvador (Sav) [25–28]. More-
over, the Hippo pathway exerts essential control over the Notch receptor levels in follicle
cells. The disruption of this pathway results in the aberrant differentiation of follicle cells,
thereby impacting oocyte polarity [29,30]. In Drosophila, the Hippo pathway plays a crucial
role in regulating follicle cell differentiation and oocyte polarity formation during ovarian
development, in conjunction with the Notch, EGFR, and JAK-STAT pathways [30,31]. Both
the EGFR and Hippo signaling pathways are indispensable for maintaining germ cell
populations [32].

L. migratoria is a significant agricultural pest due to its short reproductive cycle, high
reproduction rate, migratory behavior, and tendency to aggregate [33,34]. Therefore, the
identification and exploration of novel locust control targets is of immense practical signifi-
cance. In this study, we investigated the interplay between FoxO and the Hippo signaling
pathway and elucidated the role of FoxO in regulating reproduction in L. migratoria. Our
findings highlight the potential of targeting FoxO as a novel molecular approach for con-
trolling L. migratoria.

2. Materials and Methods
2.1. Insects for Testing

Eggs of L. migratoria were purchased from a locust farm in Huaibei, Anhui Province.
Locust eggs (50 g) were placed in a box (10 cm × 15 cm × 20 cm) with a layer of wet sand
(2–3 cm) and reared at 30 ± 2 ◦C and 80% RH (relative humidity), with a 16 h light–8 h dark
photoperiod. After hatching, the locusts were fed a mixture of fresh wheat seedlings and
wheat bran. Approximately 200–300 individuals in each cage were placed in an insect cage
(50 cm × 50 cm × 50 cm) in an artificial climate chamber. The feeding and temperature
conditions were the same as those described above.

2.2. Bioinformatic Analysis of LmFoxO

The LmFoxO protein sequence (accession number QJX15634.1) was retrieved from
GeneBank. The cDNA sequence of the FoxO gene was obtained from the locust transcrip-
tomic database and was identified from genomic data on L. migratoria [35]. The ExPASy
Proteomics website (http://web.expasy.org/protparam/ (accessed on 1 July 2021)) was
used to predict the molecular mass and isoelectric point of LmFoxO. The SMART tool
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(http://smart.embl.de/ (accessed on 1 July 2021)) was used to predict the conserved struc-
tural domains of the FoxO protein. The BLAST search developed by the NCBI compared
the homology of locusts with other species, selected the top 10 sequences with the highest
identity, and used the multiple sequence results of MEGA 11 to build the evolutionary tree.

2.3. RNA Extraction and RT-qPCR

Total RNA was extracted using the Trizol reagent (TaKaRa, Dalian, China). The
RNA concentration was determined using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). Reverse transcription (RT) reactions were carried out using
the PrimeScript RT Reagent Kit (Takara, Dalian, China). The cDNA was diluted 10 times for
the subsequent general polymerase chain reaction (PCR), reverse transcription quantitative
PCR (RT-qPCR), and dsRNA synthesis studies.

RT-qPCR was performed using a Bio-Rad Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, USA). All RT-PCR primers were designed using Primer 5.0 software (Table 1).
Lmβ-actin was used as the internal reference gene. The gene expressions of FoxO, Hpo, Sav,
Yki, Met, and Vg were detected via real-time fluorescence quantitative PCR using 10.0 µL of
the PCR reaction system, 5 µL of SYBR Premix Ex Taq (Takara, Japan), 0.4 µL of forward
primer, 0.4 µL of reverse primer, 1 µL of template cDNA, and 3.2 µL of RNase-free ddH2O.
The reaction procedure included an initial pre-denaturation at 95 ◦C for 3 min, followed
by 32 cycles of denaturation at 95 ◦C for 30 s, annealing at 58 ◦C for 30 s, and extension
at 72 ◦C for 10 min. The relative expressions of the target genes were calculated using the
2−△△CT method [36].

Table 1. Primers for PCR.

Primer Name F-Primer Sequence [5′–3′] R-Primer Sequence [5′–3′] Method

FoxO1 AGATGGACCCGTCGTTCGAG GGCTGAAGTCTGAAGTTGAAGTC

cDNA Clones
FoxO2 CTGGACGTGGTGGTGAAGCA CGTGCTTGATCACCTCGTCC
FoxO3 GCCAAGAAGAACACCAGCC CGTCTCGATGTTGAGGTTGAGG
GFP AAGGGCGAGGAGCTGTTCACCG CAGCAGGACCATGTGATCGCGC

FoxO GAACTCGATCCGGCATAACC CGCCTCCACCTTCTTCTTG

RT-qPCR

VgA CCCACAAGAAGCACAGAACG TTGGTCGCCATCAACAGAAG
VgB GCACTTAGCAGCATTAAGACCC GGCAACGATAGATGGATAGGAC

VgR1 ATAAAGGTCTACCATCCAGCCC GACAGGCACAGGTGTAGGAGTT
VgR2 GGCAAAAGGGATCACTCGA GCCACCATCAGCCCAAAAT
Met GCGGTCACCTCTTGTCAATAAT CACTTTCTGATGCTGCCCTAA
Hpo GCTGAAAACATAAAGGGAGG CTGGAATGGATTCGGAGG
Sav CTGCTTTGGTTCCTTCAGT GTTGGTAGCCCTTCTTTCTC
Yki AAGCCCCTGCTCGTATTTAT TCTATCCGCACCACCAAGTT

Notch CGGAAACCGAGTGTCAAG CGGGCTGGGAATGCTA

dsFoxO TAATACGACTCACTATAGGGAGAT
GGACCCGTCGTTCGAG

TAATACGACTCACTATAGGGGGCTGAA
GTCTGAAGTTGAAGTC dsRNA

Synthesis
dsGFP TAATACGACTCACTATAGGGAAGG

GCGAGGAGCTGTTCACCG
TAATACGACTCACTATAGGGCAGCAGG

ACCATGTGATCGCGC

2.4. Tissue Expression Analysis of FoxO

To investigate the tissue-specific expression pattern of FoxO, five tissues were dissected
from adult locusts (12 h post-adult eclosion): ovary, fat body, integument, midgut, and
brain tissues. All samples were collected with three biological replicates, with five locusts
per sample. The samples were snap-frozen in liquid nitrogen and stored at −80 ◦C for
the subsequent total RNA extraction. The tissue-specific expression pattern of FoxO was
analyzed using RT-qPCR.

http://smart.embl.de/
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2.5. RNAi-Mediated FoxO Silencing

To further investigate the function of FoxO, we employed RNA interference (RNAi) to
knock down the expressions of target genes, with the green fluorescent protein (GFP) gene
serving as a negative control. Due to the high GC content in the FoxO genome, nested PCR
was chosen for its amplification. The specific primers used for the FoxO PCR amplification
and dsRNA synthesis were designed using Primer 5.0 software (Table 1). The thermal
profile for the nested PCR consisted of an initial denaturation at 95 ◦C for 5 min, followed by
30 cycles of denaturation at 95 ◦C for 30 s and annealing at 55 ◦C for 30 s. The dsFoxO and
dsGFP were synthesized in vitro using the T7RiboMAX Express RNAi System (Promega
Corporation, Madison, WI, USA), and they were purified following Tenlen’s method,
described previously [37]. The synthesized dsFoxO and dsGFP were dissolved in ddH2O,
and the final concentration was adjusted to 2 µg/µL. Approximately 20 µg (10 µL) of
dsFoxO was injected into the abdomen between the second and third abdominal segments
of each female locust in the early eclosion phase. All locusts treated with dsRNA were
maintained under identical conditions, as described above, for the subsequent analysis.
Samples were collected 5 days after injection for further analyses. The other parts of the
locusts were bred until the insects died, and the weight of each pod was weighed and
recorded. At the same time, the pod was carefully opened with a writing brush, and the
number of eggs in each pod was counted.

2.6. Glycogen and Trehalose Determination

For the glycogen and trehalose content measurements, hemolymph was collected
5 days after injection for subsequent analysis. Each group included three biological repli-
cates of five locusts. The samples were then centrifuged at 4 ◦C for 20 min at 3500 rpm to
remove the hemocytes. Subsequently, 5 µL of hemolymph was mixed with PBS (32 µL) and
10% trichloroacetic acid (148 µL). The mixture was then centrifuged at 4 ◦C for 2 min at
10,000 rpm as the test sample.

The glucose standard curve was prepared with the glucose standard solution and
the standard dilution with concentrations of 0 mg/L, 0.02 mg/L, 0.04 mg/L, 0.06 mg/L,
0.08 mg/L, and 0.1 mg/L. An amount of 30 µL of the sample was tested, the standard
solution was taken, and 600 µL of the developer was added to a 90 ◦C water bath for 10 min,
followed by an ice bath for 3 min. After mixing, the reaction mixture was added to the
enzyme label plate, and the absorbance (A0) was determined at a wavelength of 620 nm.

The trehalose standard was diluted on a concentration gradient with preparations of
0.8 mM, 0.4 mM, 0.2 mM, 0.1 mM, and 0.05 mM as the standard curve test samples. An
amount of 30 µL of the test samples or standard samples was added to a 1.5 mL Eppendorf
(EP) tube, and 30 µL of 1% H2SO4 was added, followed by a 90 ◦C water bath for 10 min
and an ice bath for 3 min. An amount of 30 µL of 30% KOH was added, followed by a 90 ◦C
water bath for 10 min and an ice bath for 3 min. An amount of 600 µL of the developer
(600 µL of 0.02 g of anthrone in 100 mL 80% H2SO4) was added, followed by a 90 ◦C water
bath for 10 min and an ice bath for 3 min. After mixing, the reaction mixture was added to
the enzyme label plate, and the absorbance was determined at a wavelength of 630 nm.

2.7. Data Statistics and Analysis

Data are expressed as means ± standard errors (SEs) and were evaluated for their
normality and homogeneity of variance. Statistical analysis was performed using SPSS
26.0 software. One-way analysis of variance (ANOVA) followed by Tukey’s multiple range
test was used to compare the differences between the treatment and control groups, and
Student’s t-tests were used for the independent samples. All experiments were performed
in triplicate with three biological replicates and at least three technical replicates.



Insects 2024, 15, 891 5 of 14

3. Results
3.1. Bioinformatics Analysis of FoxO

The cDNA sequence of LmFoxO (GenBank accession number QJX15634.1) was iden-
tified based on the transcriptome data. The predicted protein has a calculated molecular
mass (MM) of approximately 52,186 and an isoelectric point (pI) of 9.30, as determined
using the ExPASy Proteomics website. The amino acid sequence of FoxO consists of an FH
domain spanning residues 95–175 and a FoxO-TAD domain spanning residues 406–438
(Figure 1A). The secondary structure analysis revealed that the FoxO protein comprises
α-helices, extended chains, β-turns, and random coils (Figure 1B), with random coils con-
stituting the largest proportion at 63.71%, which is consistent with the predicted tertiary
structure (Figure 1C).
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Figure 1. Bioinformatics analysis of FoxO in L. migratoria. (A) Prediction of conserved domains in
LmFoxO proteins, which contain two functional domains: the FH and FoxO-TAD structure domains.
(B) Secondary structure of LmFoxO. (C) Tertiary structure of LmFoxO. (D) Evolutionary tree analysis
of LmFoxO using the neighbor-joining method with insect FoxO protein sequences from S. americana,
B. germanica, C. secundus, H. vitripennis, T. castaneum, H. axyridis, C. lectularius, L. yunnana, M. genalis,
P. apterus, A. rosae, D. similis, N. virginianus, D. melanogaster, B. mori, and A. aegypti.



Insects 2024, 15, 891 6 of 14

The similarity of locusts with other species was assessed using a BLAST search on
the NCBI website, and the top 10 sequences with the highest identity were selected. The
multiple sequence results obtained from MEGA 11 were utilized to construct the evolution-
ary tree. A significant level of homology was revealed in the amino acid sequence of FoxO
between L. migratoria and Schistocerca americana (XP_047001363.1) (Figure 1D).

3.2. Tissue-Specific Expressions of FoxO and Key Hippo-Related Genes in L. migratoria

To investigate the tissue-specific expression patterns of FoxO and the key genes of
the Hippo pathway, we performed RT-qPCR to detect the transcript levels in five tissues
from female locusts. FoxO expression was detected in all five tissues, with predominant
expression in the integument and relatively high expression in the ovary (Figure 2A). Yki
exhibited prominent expression in the ovary and relatively high expression in the integu-
ment (Figure 2B). Hpo showed relatively higher expression levels in the ovary compared to
the integument, and the lowest expression levels were observed in the midgut (Figure 2C).
Sav displayed significantly higher expression levels in the ovary compared to the other
tissues (Figure 2D). These findings suggest that LmFoxO and the Hippo pathway may play
a role in the reproductive processes of L. migratoria.
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Figure 2. Relative expression of FoxO in different tissues. The tissue-specific expression patterns of
FoxO and Hippo-related genes in L. migratoria, including (A) FoxO, (B) Yki, (C) Hpo, and (D) Sav in
the fat bodies, ovaries, midguts, integuments, and brains of female adults within 12 h post-eclosion.
The values are presented as means ± SEs (n = 3). Different letters indicate significant differences
among the tissues (p < 0.05) based on one-way ANOVA. Three biological replicates were established
for each developmental stage, with no fewer than five test worms.
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3.3. Effects of dsFoxO on Expressions of FoxO and Key Hippo-Related Genes

FoxO RNAi resulted in a significant 59.75% reduction in the transcript abundance of
FoxO in the fat body of adult females at 5 days after the treatment (Figure 3A). To investigate
the impact of LmFoxO interference on the key genes involved in the Hippo pathway, we
assessed the expression levels of three crucial genes using RT-qPCR. The data revealed
that the knockdown of LmFoxO effectively downregulated the Yki transcript levels, as well
as reduced the expressions of the Sav and Hpo genes (Figure 3B), indicating that dsFoxO
influenced the Hippo pathway and inhibited related gene expressions.
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3.4. Effects of FoxO Silencing on L. migratoria Reproduction

To investigate the impact of FoxO silencing on locust reproduction, we examined the
expression levels of the reproduction-related genes as well as the ovarian development.
Our findings revealed a significant downregulation in the mRNA levels of VgA, VgB, and
Met in the fat body (Figure 4A), indicating the inhibition of vitellogenin synthesis. The
expression levels of VgR1 and VgR2 in the ovary were also observed to be downregulated,
although there was no significant difference. Furthermore, there was a notable reduction in
ovarian weight and severe atrophy in ovarian development (Figure 4B,C). Additionally,
we observed substantial decreases in both the egg pod weight and number following the
dsFoxO injection (Figure 4D,E). These results underscore the profound impact of FoxO
silencing on L. migratoria’s reproductive capabilities.

3.5. Effects of FoxO Silencing on Glycogen and Trehalose in L. migratoria

The active reproduction of insects is closely intertwined with their metabolism. There-
fore, we aimed to explore whether FoxO contributes to the reproduction–metabolism
balance in locusts. We measured the trehalose and glycogen levels of females under dif-
ferent experimental conditions. Upon dsFoxO injection, the locusts exhibited significantly
increased glycogen contents but significantly decreased trehalose contents, indicating a
regulatory role for FoxO (Figure 5).
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4. Discussion

The Forkhead box (Fox) protein family, consisting of 19 subfamilies, is a widely
distributed transcription factor family in animals that is characterized by a conserved
DNA-binding domain (the Forkhead-box or Fox) [38,39]. Among these subfamilies, FoxO
has been extensively studied and exhibits a highly conserved structure and function across
species [14,40,41]. In this study, we identified LmFoxO and found that the amino acid
sequence of FoxO consists of an FH domain and a FoxO-TAD domain (Figure 1A), which
demonstrates the conservation of FoxO. The multiple sequence results obtained from MEGA
5.1 were utilized to construct the evolutionary tree. The multiple sequence alignment
revealed a significant level of homology in the amino acid sequence of FoxO between L.
migratoria and Schistocerca americana (XP_047001363.1) (Figure 1D).

Multiple studies have demonstrated that the Hippo signaling pathway serves as
a primary target through which FoxO governs cellular homeostasis and lifespan regu-
lation [26,42–44]. Additionally, gene ontology analysis has revealed the enrichment of
differentially expressed FoxO target genes in aging fat bodies within the Hippo signaling
pathway [45]. Previous studies employing ChIP-Seq technology have confirmed the Hippo
pathway as a major target of FoxO in wild-type fruit flies [45]. Regulators of the Hippo
pathway are among the FOXO-dependent upregulated genes [46] (Figure S1). Alternatively,
via the STRING database, we predicted an interaction between FOXO proteins and the key
proteins of the Hippo pathway in Drosophila (Figure S2; Table S1). These aforementioned
investigations provide a theoretical foundation for exploring the relationship between
FoxO and the Hippo signaling pathway, as well as their joint mechanisms that regulate
insect reproduction. In female locusts with disrupted FoxO function, there was a significant
reduction in the expressions of the key genes Yki, Hpo, and Sav (Figure 3). These findings
confirm that the Hippo pathway is targeted by FoxO in L. migratoria.

In this study, we initially assessed the expression profiles of both FoxO and the key
genes involved in the Hippo pathway. We observed the widespread expression of FoxO
across various tissues in the female locusts, with predominant expression in the integument
tissue and relatively high expression levels in the ovaries (Figure 2A), suggesting the
potential involvement of FoxO in diverse biological processes, including reproduction. We
selected female adult locusts that had undergone molting 12 h prior tothe tissue expression
analysis. This stage is a critical period for cuticle development, as the locusts have just
completed molting, and yolk formation has not yet commenced [47]. The experimental
findings revealed the predominant expression of FoxO in the epidermal tissues, with
relatively high expression levels observed in the ovaries (Figure 2A). As a downstream
target gene of cellular nutrients, growth factors, and insulin signaling pathways (IIS),
FoxO plays a regulatory role in physiological processes such as growth, development,
and reproduction, including insect molting and metamorphosis. In Bombyx mori, the
transcriptional levels of FOXO increase during the ecdysone hormone 20E-induced molting
and pupation processes, highlighting its crucial involvement [48]. FOXO silencing in
Helicoverpa armigera results in failed molting and the inhibition of the 20E signal gene
expression, further confirming its necessity during insect molting and metamorphosis [49].
Therefore, we hypothesize that the primary function of FoxO in newly molted locusts lies
in epidermal development rather than in ovarian development. However, the specific
mechanism requires further investigation. Notably, the key genes associated with the
Hippo pathway exhibited significantly higher expression levels, specifically within the
female locust ovaries, compared to other tissues such as the brain, integument, and midgut
(Figure 2B). Based on these findings, we predict that both FoxO and the Hippo signaling
pathway play crucial roles in insect reproduction.

FoxO exerts an impact on reproduction in various insects [2,50,51]. In the mosquitos
Culex pipiens and Aedes aegypt, FoxO knockdown represses Vg expression, leading to re-
duced reproductive rates [52,53]. The depletion of FoxO also suppresses Vg expression and
diminishes ovarian development in the soybean pod borer Maruca vitrata [54]. Collectively,
these studies support our observation that FoxO knockdown in vitellogenic female locusts
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significantly reduces Vg expression while impeding oocyte maturation and arresting ovar-
ian growth (Figure 4). Following interference with the FoxO expression, the depletion of
FoxO leads to a significant reduction in adipocyte polyploidy, accompanied by decreased
Vg expression and impaired oocyte maturation, resulting in hindered ovarian growth in
locusts [16]. Wu et al. provide evidence that FoxO is a crucial player in JH-dependent
polyploidization, vitellogenesis, and egg development, which extends the view of JH action
in insect cell polyploidization and vitellogenesis; however, the regulatory role of FoxO in
insect vitellogenesis is not well defined.

Notch plays a crucial role in insect oogenesis [29,55,56]. The loss of function of Notch
arrests the development of stalk and polar cells [57]. In L. migratoria, Notch-depleted adult
females had blocked oocyte maturation and arrested ovarian growth [10]. This is consistent
with our findings. In our study, we demonstrated that the dsFoxO treatment resulted in
significantly decreased Notch expression levels (Figure 3B), accompanied by reduced Vg
transcripts (Figure 4A), arrested oocyte maturation, and blocked ovarian growth (Figure 4B).
Additionally, the Hippo pathway plays a crucial role in regulating the Notch receptor levels
in follicle cells [29,30,58]. In D. melanogaster, the control of the mitosis–endocycle switch in
follicular cells has been associated with the Notch pathway, as Notch signaling is attenuated
in Hippo mutants [30,59]. In Drosophila imaginal discs, the Hippo pathway regulates
membrane receptor trafficking, including the Notch receptor [60]. Our study demonstrated
that the dsFoxO treatment resulted in significantly decreased levels of the key genes of
Hippo (Figure 3B), accompanied by reduced Notch transcripts (Figure 3B) and suppressed
reproduction (Figure 4). In the previous section, we demonstrated that the Hippo signaling
pathway is one of the targets of FoxO in L. migratoria and that it promotes Notch signaling
in the regulation of cell differentiation and proliferation, and oocyte polarity. Although we
could not exclude the involvement of other potential signaling molecules, the findings in
the present study, together with our previous analysis, suggest that FoxO regulates locust
reproduction through Hippo–Notch.

Egg production is one of the most energy-demanding events in the adult lives of
female insects. In addition to Vg, large amounts of carbohydrates and lipids are required to
meet the energy demands of oocyte growth [61]. The insulin signaling pathway is involved
in the regulation of the circulating sugar levels; thus, FoxO plays an important role in the
regulation of sugar levels as a downstream target gene of the insulin signaling pathway [62].
It is obvious that the female reproductive processes require considerable amounts of energy-
rich substrates and FoxO-mediated energy mobilization may be involved in the regulation
of egg production [63,64]. In insects, trehalose accumulation primarily arises from glycogen
breakdown metabolism [65–67]. The change pattern of the trehalose content is opposite to
that of the glycogen content, which aligns with the experimental results obtained in this
study. Our experiment revealed a significant decrease in the trehalose content (Figure 5B)
after FoxO RNAi, while the glycogen content increased significantly (Figure 5A). Decreasing
glycogen storage leads to a metabolic shift, resulting in increased internal trehalose [68].
Considering the dynamic fluctuations in the total sugar and glycogen contents, a reciprocal
conversion between trehalose and glycogen may occur. Trehalose homeostasis regulates
vitellogenesis and oocyte development in female insects. In L. migratoria and P. americanahe,
trehalose involvement in Vg synthesis in the fat body and Vg uptake by the developing
oocytes have been confirmed [69,70]. In our experiments, FoxO interference severely
reduced the trehalose content, thus greatly reducing the synthesis and uptake of Vg in
locusts disrupted by FoxO. This also demonstrates that FoxO-mediated energy mobilization
is involved in the regulation of egg production.

5. Conclusions

Our study provides evidence that FoxO promotes fat body vitellogenesis in locusts
through the Hippo signaling pathway–Notch. FoxO silencing results in decreased female
locust reproduction. In addition, FoxO-mediated energy mobilization is involved in the
regulation of egg production. These findings expand our understanding of the physiological
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functions of FoxO in insects and emphasize its significance in locust reproduction. Overall,
these results highlight the potential of targeting FoxO as a novel molecular approach for
controlling L. migratoria.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/insects15110891/s1, Supplementary File S1: The cDNA sequence
and primers for FoxO clones and sequencing results; Figure S1: Heatmap depicting the increases in
mRNA expression [46]; Figure S2: Interaction between FOXO protein and key proteins in Hippo
pathway in Drosophila melanogaster; Table S1: Interactions between FoxO and Hpo, Sd, and Yki in
Drosophila melanogaster.
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