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Abstract: Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes
with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties,
being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has
been well described; however, recent findings have shown that they could regulate different signaling
pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by
sPLA2 in collaboration with other molecules in the extracellular space, making important impacts
on the cellular environment, being especially relevant in the contexts of immunity and cancer. For
these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT,
angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally,
we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory
compounds that can be used for cancer treatment.

Keywords: phospholipases; sPLA2; arachidonic acid; tumor microenvironment; EMT

1. Introduction

Phospholipases are enzymes that cleave ester bonds within phospholipids. Lipid
products generated in these hydrolytic reactions regulate many different cellular signaling
pathways. The distinct enzymes are classified according to the cleaved site of the bond
of their phospholipid substrates: the acylhydrolases with phospholipases A1 (PLA1),
phospholipases A2 (PLA2), and phospholipases B (PLB); and the phosphodiesterases
represented by phospholipase C (PLC) and phospholipase D (PLD) [1]. Among them, PLA2
should be highlighted, which are key enzymes that function as primary generators of fatty
acids (FA) and lysophospholipids, precursors of various families of compounds playing
multiple roles in inflammation [2]. They are a large superfamily separated into different
classes: secreted PLA2 (sPLA2), cytosolic PLA2 (cPLA2), Ca2+-independent PLA2 (iPLA2),
platelet-activating factor acetylhydrolase PLA2 (PAF-AH PLA2), lysosomal PLA2 (LPLA2),
and adipose-tissue-specific PLA2 (AdPLA2). Among them, the first three subfamilies,
namely sPLA2, cPLA2, and iPLA2, play critical roles in inflammation and cancer-related
diseases, in some cases having cross-reactivity. Therefore, in many cellular contexts, it is
impossible to discern the effects of a particular PLA2, since the other family members can
influence its activity [3,4].

sPLA2 enzymes comprise the largest family of PLA2, containing 11 mammalian iso-
forms with a conserved catalytic site. Their cellular effects have been commonly associated
with the release of a specific FA, the arachidonic acid (AA), and its eicosanoid metabolites;
however, sPLA2 activity also leads to the release of other mono- and polyunsaturated fatty
acids (PUFAs) and lysophospholipids, such as lysophosphatidylcholine (LPC) [5]. The vari-
ety of phospholipid substrates, the primary and secondary lipid products, and the different

Int. J. Mol. Sci. 2024, 25, 12408. https://doi.org/10.3390/ijms252212408 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms252212408
https://doi.org/10.3390/ijms252212408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4764-2719
https://orcid.org/0000-0002-2180-0408
https://orcid.org/0000-0001-8238-8763
https://doi.org/10.3390/ijms252212408
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms252212408?type=check_update&version=1


Int. J. Mol. Sci. 2024, 25, 12408 2 of 17

known cellular effects of sPLA2s indicate their involvement in a heterogeneity of physio-
logical processes and diseases, including lipid digestion and remodeling, cardiovascular
diseases, reproduction, host defense against infections, acute and chronic inflammatory
events, and cancer [2,6].

It has been reported that different PLA2 subtypes have an important role in inflam-
mation and are expressed in different cancers, through a mechanism of action yet to be
elucidated clearly [7]. Therefore, PLA2 inhibition is considered an advantageous strategy
to prevent and treat inflammation and cancer-associated diseases [8]. It seems that PLA2’s
functional roles in tumorigenesis are dependent on the enzyme studied, the tissue, and the
cancer type involved. Deeper knowledge of the different mechanisms of phospholipase
action, as well as the development of new compounds for their inhibition, can give us tools
to treat largely prevalent pathologies such as inflammation and cancer.

2. Secreted Phospholipases A2

sPLA2 were the first phospholipase A2 enzymes identified and studied in detail in
snake venom whose main conserved function is phospholipid hydrolysis [8]. It encom-
passes a group of 17 enzymes classified according to their chemical structure, containing
between 5 and 8 disulphide bonds, a highly conserved Histidine/Aspartic acid catalytic
dyad, and a Ca2+-binding loop [9]. Several isoforms of phospholipases have been described
in viruses, bacteria, fungi, plants, insects, reptiles, and mammals (Table 1) [10], where they
display a variety of functions which vary depending on the species source.

Table 1. Classification of the different groups of secretory phospholipases A2.

sPLA2 First Source Tissue Molecular
Weight (kDa) Aa Signal Peptide

(Aa) UniProtKB Source Refs.

1A Serpents Venom 13–15 119 - P15445 (cobra) [11,12]

1B Mammals
Intestinal tract,

lungs,
pancreas

16 148 1–15
P04054

(human) [12,13]

2A Serpents,
Mammals

Venom,
Synovial fluid, liver, tongue,
prostate, spleen, intestinal

tract

16 138
144

-
1–20

A0A8C6Y0K5
(cobra)

P14555 (human)
[14–18]

2B Serpents Venom 13–15 118 - P00620 (gaboon
viper) [11]

2C Mammals Testis,
endometrial 15–16 149 1–18 Q5R387 (human) [11,19]

2D Mammals
Pancreas,

spleen,
umbilical cord blood

14–15 145 1–20 Q9UNK4 (human) [12,17,20,21]

2E Mammals Brain, heart, uterus 14–15 142 1–19 Q9NZK7 (human) [10]

2F Mammals

Testis,
embryo, thymus, spleen,

synovial fluid, liver,
prostate

16–17 168 1–20 Q9BZM2 (human) [20–23]

3

Insects,
Arachnids,

Reptiles,
Mammals

Venom,
brain, immune cells 15–57 167

509
1–18
1–19

P00630 (bee)
Q9NZ20 (human) [20,24]

5 Mammals Heart, lung, immune cells,
embryo 14–16 138 1–20 P39877 (human) [25–28]

6 Serpents Venom 15–16 138 1–16 Q6H3C8 (Chinese
viper) [29]
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Table 1. Cont.

sPLA2 First Source Tissue Molecular
Weight (kDa) Aa Signal Peptide

(Aa) UniProtKB Source Refs.

7 Serpents Venom 15 138 1–16 P70089 (Indian
viper) [30]

9 Marine Snails Venom 8 77 - Q9TWL9 (marine
snail) [20,31]

10 Mammals
Heart, spleen, colon,

thymus, lungs, nervous
system, immune cells

14–18 165 1–31 O15496 (human) [20,32]

11 Plants Sprout 12–13 138 1–21 Q9XG80 (rice) [10]

12A Mammals
Uterus, heart, skeletal
muscle, kidney, liver,

pancreas
21 189 1–22 Q9BZM1 (human) [33,34]

12B Mammals Liver, small intestine,
kidney 21 195 1–19 Q9BX93 (human) [33–35]

In snakes, lizards, and bees, sPLA2 are mostly a compound of their venom whose
main conserved function is phospholipid hydrolysis. In particular, sPLA2 penetrate the
interphase of the amphipathic structure of the phospholipid head group to catalyze the
hydrolysis at the sn-2 position, generating FA and lysophospholipids [36,37]. Moreover,
sPLA2 from different venoms (reptiles, insects, and arachnids) demonstrate considerable
cytotoxic effects on cancer cells via the induction of apoptosis, cell cycle arrest, and the
suppression of proliferation [38]. In plants, sPLA2 is important for the biosynthesis of the
plant hormone jasmonic acid, which plays an important role in plant development and
defense against pathogens [39,40].

Focusing on human phospholipases, there are 11 isoforms: 10 catalytically active (1B,
2A, 2C, 2D, 2E, 2F, 3, 5, 10, and 12A) and 1 inactive (12B) with a Leucine/Asp in its catalytic
site [8]. Phospholipases of groups 1, 2, 5, and 10, also known as classical sPLA2, are closely
related enzymes that share its catalytic site, the calcium-binding loop, and up to eight
disulfide bonds that give more structural stability. Atypical sPLA2, 3, and 12 only share
homology with the other phospholipases in their catalytic site and on the calcium binding
loop [41].

The sPLA2 family have a distinct substrate selectivity for sn-2 FA or sn-3 polar head
groups. While PLA2G1B, PLA2G2A, and PLA2G2E have the same affinity for the differ-
ent sn-2 FA, PLA2G5 prefer FA with a lower degree of unsaturation, such as oleic and
linoleic acid, and sPLA2 from groups 2D, 2F, 3, and 10 prefer PUFAs such as AA and ω3
docosahexaenoic acid. Furthermore, in relation to the polar head groups, sPLA2G3, 5, and
10 efficiently hydrolyze phosphatidylcholine (PC), while sPLA2 from group 2 hydrolyze
phosphatidylethanolamine (PE) much better than PC [5]. In terms of functionality, sPLA2’s
specific functions consist of producing lipid mediators, altering membrane phospholipid
composition, degrading phospholipids from microorganisms and from the diet, and mod-
ifying extracellular non-cellular lipid components such as lipoproteins or microvesicles
in response to given microenvironmental signals [5]. Apart from the role of sPLA2 as
enzymes, the existence of sPLA2 without enzymatic activity was an early indication that
sPLA2 can participate in other physiological settings as ligands for membrane and soluble
receptors [9].

One product from PLA2 that has attracted a lot of attention in inflammatory processes
and cancer biology is AA, an important polyunsaturated fatty acid which maintains the
structure and function of the cell membrane. The first step in the AA cascade is the cleavage
and release of AA from the phospholipid bound form [19] (Figure 1). Then, AA can be me-
tabolized by three distinct enzyme systems: cyclooxygenases (COX), lipoxygenases (LOX),
and cytochrome P450 (CYP) [42]. The COX pathway is responsible for the conversion of
AA into different classes of prostanoids: prostaglandins (PG), prostacyclin D2 (PGD2),
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prostacyclin I2 (PGI2), and thromboxane A2 (TXA2) [19]. The second metabolic pathway
corresponds to the LOX pathway, which catalyzes the deoxygenation of AA into hydroper-
oxyeicosatetraenoic acids (HpETE). Ultimately, this is followed by the conversion of HpETE
to their corresponding hydroeicosatetraenoic acids (HETE), leading to the formation of
leukotrienes (LT), lipoxins (LX) and hepoxilins (HO) [20]. Lastly, in the CYP450 pathway,
several isoforms of CYP450 catalyze the nicotinamide adenine dinucleotide phosphate-
oxidase (NADPH)-depenent conversion of AA to HETE and epoxyeicosatrienoic acids
(EET) [21].

Phospholipids

AA

Figure 1. Metabolic products of arachidonic acid (AA). AA is released from membrane phospholipids
by phospholipase A2 (PLA2) and metabolized by three main enzyme families: cyclooxygenases
(COX), lipoxygenases (LOX), and cytochrome P450 (CYP450). COX-1 and COX-2 convert AA into
prostaglandins (PG) D, I, E, A, and F2α, and thromboxanes A2 (TXA2). LOX catalyze the formation of
hydroperoxyeicosatetraenoic acids (HpETE) and hydroxyeicosatetraenoic acids (HETE), leukotrienes
(LT) A, B, C, D, and E, and lipoxins (LX) A and B. Lastly, CYP450 converts AA in epoxyeicosatrienoic
acids (EET) and HETE. Dashed arrows represent each metabolite’s role in inflammation, angiogenesis,
metastasis, proliferation, and immune modulation.

An abundant body of work dating back from the 1990s has documented the involve-
ment of sPLA2, specifically PLA2G5, in AA mobilization and attendant eicosanoid produc-
tion [43]. In general terms, PLA2G5 acts by amplifying the action of cPLA2, which is the key
enzyme in the process, via activity-dependent or independent mechanisms. PLA2G5 shows
no clear FA preference, and is able to release other fatty acids from cells with regulatory
features that are strikingly similar to those of AA release [44]. Moreover, of all members
of the sPLA2 family of enzymes, PLA2G5 has been long known to release various fatty
acids, including AA and oleic acid, and increases prostaglandin E2 production when added
exogenously to phagocytic cells, suggesting the role of this enzyme in inflammation [45].
Furthermore, it is also worth mentioning that although sPLA2 appear to be secreted into
the extracellular space after being synthesized inside the cell, compelling evidence has
already been provided for their intracellular localization and activities [9], allowing them
to participate in AA metabolism, not only in the extracellular space.

Some of PLA2 metabolic byproducts are strongly associated with malignant transfor-
mation. One example is prostaglandin E2, a COX metabolite, which possesses the highest
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tumorigenic and metastatic potential as it inhibits cancer cell apoptosis and increases
invasiveness, as well as promoting angiogenesis in tumors [46]. Therefore, there exists
strong evidence for the potential of anti-inflammatory agents such as COX inhibitors in
cancer prevention.

3. sPLA2 and Cancer-Related Inflammation

The concept that inflammation is a critical step in tumor initation is well established.
Many cancers arise from sites of infection, chronic irritation, and inflammation. Cells
from the tumor microenvironment (TME), like macrophages, neutrophils, and fibroblasts,
release growth factors, cytokines, and proteases that modify the cancer niche and become
indispensables in the neoplastic process. In addition, tumor cells have integrated some
of the signaling molecules of the innate immune system, such as selectins, chemokines,
and their receptors for invasion, migration, and metastasis [47,48]. Several factors such as
cytokines (Tumor necrosis factor α (TNF-α), interleukins, chemokines, and Transforming
growth factor β (TGF-β)), transcription factors (nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), STAT3, molecules related to the Wnt and β-catenin pathway),
eicosanoids, and kinins that are common effectors in inflammation and cancer are produced
in the inflammatory environment [49].

sPLA2 enzymes have been shown to be involved in inflammation by mobilizing
pro-inflammatory lipid mediators and anti-inflammatory lipids, as evidenced by various
studies [50]. The mobilization of distinct lipids by sPLA2 appears to rely not only on their
intrinsic enzymatic properties, but also in the different contexts where sPLA2 act, such
as the lipid composition of target membranes or the spatial and temporal availability of
downstream lipid-editing enzymes [5]. Products of phospholipases that need a special
mention for their relationship with chronic inflammation and cancer are the AA-derived
eicosanoids, including PG, LT, and lipoxins (LX). It is well known that eicosanoid levels
increase under chronic inflammatory conditions. Granulocytes, macrophages, neutrophils,
platelets, mast cells, and endothelial cells are involved in eicosanoid production during
inflammation. In this context, eicosanoids will act as pro-inflammatory molecules (such
as prostaglandin H2), chemoattractants (LTB4), platelet aggregating factors (TXA2), con-
tractors of smooth muscle (CysLTs), and modifiers of the vascular permeability (LT) [51].
Moreover, the overexpression of COX-2, the enzyme responsible for prostanoid synthe-
sis, both TXA2 and PG, has been strongly related to chronic inflammatory events, tumor
growth, angiogenesis, cell invasion, metastasis, and chemoresistance, which lead to a low
patient survival rate [52].

The best described sPLA2 related to inflammation and cancer is PLA2G2A. Its expres-
sion is induced by pro-inflammatory cytokines and lipopolysaccharides (LPS) [53], and
its physiological function consists in the degradation of bacterial membranes [54]. Thus,
PLA2G2A is primarily involved in host defense by killing bacteria and triggering innate
immunity. Meanwhile, the over-amplification of the response leads to the exacerbation of
inflammation by hydrolyzing phospholipids in extracellular microvesicles [55]. Moreover,
it has recently been shown that a loss of PLA2G2A leads to an increased expression of pro-
inflammatory genes and decreased expression of anti-inflammatory genes in the intestine
of mice [56]. The same work highlights the modulation of gut microbiota via changes in
the bacterial composition, which influences immune responses and, indirectly, systemic
inflammation. Other sPLA2 isoforms expressed in the gut epithelium, such as PLA2G1B
and PLA2G10, contribute to the regulation of gut microbiota and systemic responses. These
discoveries suggest a broader role for the sPLA2 family in modulating gut microbiota and,
indirectly, inflammation [56]. PLA2G3 is a sPLA2 that has been associated with the devel-
opment of colorectal cancer by the production of pro-inflammatory metabolites, including
several lysophospholipids, such as lysophosphatidic acid (LPA) and lysophosphatidyli-
nositol (LPI) [57], which have been suggested to promote colon inflammation through
the lysophosphatidic acid 2 (LPA2) and G protein-coupled receptor 55 receptors (GPR55),
respectively [58,59].
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Another secreted phospholipase that has been studied in inflammation is PLA2G5.
It is produced in human and murine macrophages and mast cells, playing a role in AA
signaling and being able to act on the outer membrane of cells [60]. Moreover, recent
studies showed that PLA2G5 has a strong tendency to hydrolyze phospholipids, with a
low content of unsaturated FA at the sn-2 position like dipalmitoyl-phosphatidylcholine.
Such FA is an essential component of lung surfactant [5]. Besides the above described roles,
PLA2G5 has also been found to function as an anti-inflammatory phospholipase through
the modulation of macrophage activity in arthritis [61].

Finally, the secreted phospholipase PLA2G10 has a role in the intestinal epithelium.
Apart from that, the overexpression of PLA2G10 in the airway epithelial cells after allergen
exposition suggests a role in allergy response. Null mice for PLA2G10 were effective in low-
ering airway hyper-responsiveness, goblet cell hyperplasia, and pro-asthmatic eicosanoids,
which are all important contributing factors to asthma [62]. Moreover, PLA2G10 is overex-
pressed in M2-like tumor-associated macrophages (TAMs) in the TME in B cell lymphoma.
There, it degrades phospholipids in tumor-derived extracellular vesicles, generating im-
munosuppressive and pro-tumorigenic lipid metabolites. This activity increases IL-10
production and LPA signaling in TAMs that contributes to tumor growth [63]. Overall,
PLA2G10 displays dual roles in inflammation. On the one hand, it exerts pro-inflammatory
mechanisms in the lungs, and, on the other hand, anti-inflammatory actions in the gut.

4. sPLA2 and Cancer

Several studies have revealed that a dysregulated lipid metabolism is one of the
fundamental metabolic alterations that enable cancer cell survival and sustain rapid growth
and proliferation. It has become clear that changes in FA synthesis, lipolysis, membrane
phospholipid hydrolysis, and reacylation pathways are required for cancer cell growth [64].
Different works demonstrate an association between phospholipases and Wnt signaling, β-
catenin and the Wnt target gene EphB2, TGF-β and Phosphatidylinositol 3-kinase/Protein
kinase B (PI3K/Akt) in different cancer tissues [65–67], all of them molecular pathways
closely linked to tumor processes. Therefore, sPLA2 have emerged as promising targets in
cancer prevention and therapy.

As in inflammatory processes, most of the pathological effects of sPLA2 in cancer are
associated with the metabolism of AA and its conversion to eicosanoids [68]. Eicosanoids
(PG and LT) can stimulate or promote tumor epithelial cell survival, proliferation, invasion,
and metastasis and inhibit apoptosis by modulating multiple signaling pathways. Increased
expression of COX-2, one of the enzymes catalyzing the first step of AA conversion into
PG, has been associated with a number of malignancies [42,51]. Additionally, the gene
knockouts of important enzymes involved in prostanoid metabolism (the cytosolic group 4
of PLA2, COX-1, COX-2, PGE synthase, and prostanoid receptors) lead to reduced tumor
growth in mice [51]. Among all the tumor processes where phospholipases play a role, it
is worth highlighting the antitumor immune response, angiogenesis, and the epithelial–
mesenchymal transition (EMT).

Among sPLA2, group 2A and group 10 enzymes are ubiquitously expressed and are
also the most studied sPLA2 in cancer so far [7]. Focusing on the specific case of group 2,
the enzymatic activities related to cancer depend on the tissue where the phospholipase is
expressed. For instance, they have pro-tumorigenic roles in breast, lung, prostate, ovarian,
and esophageal cancers [69–71], and conversely, an antitumorigenic activity in gastric and
intestinal cancers [66,72].

4.1. EMT Driven by Phospholipases

Metastasis is a sequential process, which begins with the EMT process in tumor cells
that allows them to acquire a mesenchymal phenotype. During this process, tumor cells
lose cell–cell and cell–matrix adhesion and acquire typical mesenchymal features, are able
to degrade the extracellular matrix, and show a more mobile and migratory phenotype.
This process already occurs physiologically during embryonic development. Therefore,
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it is logical to think that tumor cells undergoing EMT have stem cell-like properties that
make them become highly self-renewing and resistant to the usual anticancer regimens [73].
Actually, recent clinical and preclinical research has provided evidence that cancer pro-
gression is being driven not only by a tumor’s underlying genetic alterations, but also by
paracrine interactions within the TME [74].

The biological term TME encompasses a wide range of cell types, from cancer cells to
non-malignant cells such as the immune cells, fibroblasts, and other components present in
the tumor, from blood, lymphatic vascular networks, the extracellular matrix (ECM), and
signaling molecules [47]. Several factors in the TME directly induce the occurrence of EMT:
inflammatory cytokines, including (TGF-β1), TNF-α, and interleukins, among others [75].
Ultimately, the process is orchestrated by master regulators that coordinate a cascade of
events leading to the repression of epithelial genes and the induction of mesenchymal
genes. These regulators include the snail zinc-finger family, SNAI1 and SNAI2 (SLUG);
the distantly related zinc-finger E-box-binding homeobox family proteins ZEB1 and ZEB2
(SIP1); and the basic helix–loop–helix (bHLH) family of transcription factors, including
TWIST1, TWIST2, and E12/E47 [73].

Interestingly, it has been shown that there is a link between EMT and lipid
metabolism [76]; however, the specific signaling pathways involved have not yet been
fully elucidated (Figure 2). AA metabolites produced by sPLA2 interacting with their own
receptors, as EP2 in the cases of PG, or sPLA2 itself acting as a ligand, can function in an
autocrine or paracrine manner, activating some signaling pathways [9]. Furthermore, by
coupling to its binding proteins (sPLA2-BP), sPLA2 can also be translocated to specific
intracellular compartments, such as the cytosol, where they can act as enzymes or receptor
ligands and specifically involve themselves in molecular signaling such as decreasing or
increasing the permeability of certain ion channels, inhibiting or activating tyrosine kinase
receptors, and interfering with integrin-mediated functions, among others [9].

Some studies have explored the crosstalk between the PG produced through the TGF-
β pathway and the induction of EMT through COX-2 overexpression [52,77,78]. TGF-β is
an anti-inflammatory cytokine and the most potent EMT-inducer. It is produced by cancer
cells, myeloid cells, and T lymphocytes and is associated with high-grade malignancies [79].

In addition to the TGF-β pathway, a connection has been seen between the expressions
of secretory phospholipases, specifically PLA2G2A, and components of the Wnt signaling
pathway [66]. The Wnt pathway is activated by the binding of Wnt ligands to the Frizzled
family of membrane receptors, leading to the release and stabilization of β-catenin from
the GSK3–AXIN–APC complex. β-catenin then is translocated to the nucleus and becomes
part of a transcriptional complex that promotes a gene expression program, which induces
the activation of EMT [80].

The promotion of cell growth and proliferation, as well as cell migration and motility
via the induction of EMT, is triggered also by several growth factors. To do so, epider-
mal, fibroblast, insulin, hepatocyte, platelet-derived, and vascular endothelial growth
factors act through their cognate tyrosine kinase receptors. Such bindings trigger receptor
dimerization, followed by the stimulation of the kinase activity that phosphorylates the
receptor and leads to the activation of the PI3K/AKT, ERK/MAPK, p38 MAPK, and JNK
pathways [80]. Phospholipases, specifically through AA, can also activate the ERK/MAPK
pathway [49,55].

NF-κB is one of the most well-known molecular pathways involved in cancer and has
been considered a prototypical pro-inflammatory signaling pathway, activated by cytokines
such as interleukin 6 (IL-6) and TNF-α [81,82]. The canonical NF-κB pathway is activated
by TNF-α inducing IKKβ phosphorylation to mediate the dissociation of NF-κB from
IKBα, resulting in NF-κB translocation to the nucleus, where it activates gene expression.
Moreover, in different cancers the existence of an activation of NF-κB signaling via the
EGFR/ERK axis promoting snail expression has been shown [82]. The activation of the
NF-κB pathway by phospholipase products has been proven by different groups [83]. For
instance, Dinicola et al. demonstrated that COX-2/PGE2 axis overexpression induces
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the activation of the PI3K/Akt pathway, and concomitant NF-kB nuclear translocation,
promoting invasiveness in Caco-2 and HCT-8 colon cancer cells [84].

MEK

EMT related genes

AKT

TGF-β

NF-κB

Growth factors

RAS

TNFα

PI3K SMAD2
SMAD3

SMAD4

SNAI 1/2, ZEB 1/2, TWIST, SLUG

ERK

β-catenin

Wnt
AA met R

sPLA2

sPLA2-BP

AA met

sPLA2
AA met

Figure 2. Signaling networks that regulate epithelial–mesenchymal transition (EMT) activated by
secreted phospholipases A2 (sPLA2). sPLA2 can activate EMT signaling pathways directly by
engaging with sPLA2A-binding proteins (sPLA2A-BP) and being translocated to the cytoplasm,
or by producing arachidonic acid and downstream metabolites (AA met). Transforming growth
factor β (TGF-β), growth receptors and tumor necrosis factor α (TNFα) signaling pathways can
induce EMT by the activation of the transcription factors (TF) SNAI1, ZEB1/2, TWIST, and SLUG.
TGF-β induces EMT by the phosphorylation of Smad2 and Smad3, which localize to the nucleus
with Smad4 to activate EMT TF. Several growth factors that act through tyrosine kinase receptors,
such as epidermal growth factor (EGF), fibroblast growth factor (FGF), and hepatocyte growth factor
(HGF), promote EMT thought the RAS-Mitogen-activated protein kinase (MAPK)/ERK signaling
cascade or the Phosphatidylinositol 3-kinase/Protein kinase B (PI3K)/Akt axis, which ultimately
activate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). TNFα also activates
the NF-κB pathway. Finally, Wnt stabilizes β-catenin, which translocates to the nucleus to activate
ZEB1 and SNAI1 directly.

4.2. Angiogenesis

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is
a critical tumoral process during cancer growth and metastasis to ensure sufficient blood
supply to cover the high nutrient and oxygen demands of tumors for rapid proliferation
and survival. Angiogenesis is tightly regulated by a complex interrelation between both
pro-angiogenic and anti-angiogenic factors within the TME [85,86].

PLA2G2A and PLA2G2D are two types of sPLA2 enzymes that have gained great
attention for their involvement in cancer angiogenesis and metastasis in lung adenocarci-
noma and in non-small cell lung cancer (NSCLC), respectively [87,88]. On the one hand,
PLA2G2A inhibition has been found to decrease the levels of prostaglandin E2 (PGE2)
and proliferation in human lung cancer. PGE2 production is induced by TNF-α in a
pro-inflammatory environment. The study of Halpern and colleagues demonstrated that
PLA2G2A regulates angiogenesis and metastasis through the production of PGE2, which
will, in turn, upregulate the STAT3 transcription factor, activating the expression of ICAM-1,
which enhances the invasion of lung cancer cells [88]. Furthermore, PLA2G2D has been
shown to enhance the cell viability and angiogenic potential of NSCLC cells [84]. One
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key mechanism is its ability to modulate the glycolytic pathway in cancer cells. Metabolic
reprogramming is a hallmark of cancer cells, where they preferentially utilize glycolysis
even in the presence of oxygen, a phenomenon known as the Warburg effect. This metabolic
shift provides energy and metabolic intermediates to cancer cells necessary for their rapid
growth and proliferation [88,89]. It has been shown that PLA2G2D is silenced due to an
upregulation of the glycolytic pathway, a fact that could inhibit aerobic glycolysis in cancer
cells. This suggests that PLA2G2D may drive angiogenesis by promoting glycolysis in
cancer cells. The upregulation of PLA2G2D has been associated with increased glucose
uptake, ATP production, and lactate production, all of which are characteristic features of
aerobic glycolysis in cancer cells [90].

Finally, as occurring in other processes, most of the actions of PLA2 on angiogenesis
are due to AA and their metabolites, predominantly PG and LT, mainly by enhancing VEGF
production [91,92]. Furthermore, enzymes involved in AA metabolism have also been
related to angiogenic processes, as in the case of COX [93,94], LOX [95], and CYP450 [96].

4.3. Induction of the Immune System

Having seen all the roles of phospholipases in inflammation and tumor processes, it
is logical to think that part of their tumoral actions is carried out through the induction
of the immune system. Cancer cells can evade the immune system by altering markers
and signaling pathways, thereby creating an immunosuppressive TME. This environment
is characterized by a dysfunction of antigen-presenting cells (APCs) and the presence of
immune regulatory cells, which inhibit T cell priming and suppress cytotoxic T lymphocyte
(CTL) function [92].

We have previously described the existence of different members of the sPLA2 family.
PLA2G2A is upregulated in lung, prostate, colon, gastric, and breast cancers, favoring
tumorigenesis, proliferation, and cell survival; and increasing local inflammation and an-
giogenesis [7]. Moreover, Miki and collaborators demonstrated that another member of the
sPLA2 superfamily, PLA2G2D, acts as an immunosuppressive molecule in skin cancer by
increasing the polarization of macrophages towards the M2 phenotype and by diminishing
CTL activity [50]. PLA2G10 upregulation is widespread in human cancers and is associated
with impaired T cell infiltration into tumor tissues. This overexpression leads to resistance
to anti-PD1 immunotherapy by excluding T cells from tumor infiltration [97]. More recently,
Ge and collaborators found that PLA2G2A mediates immune escape in pancreatic cancer
through its effects on CD8+ T cells: PLA2G2A derived from cancer-associated fibroblasts
reduces the secretion of IFN-γ and Granzyme B in CD8+ T cells, impairing their cytotoxic
activity against tumor cells and facilitating the immune escape [98].

A role of sPLA has also been found in other inflammatory disorders. PLA2G5 was
found in immune cells, including the macrophage cell line P338D1, bone-marrow derived
mast cells, T cells, and human neutrophils [99]. It is induced in M2 macrophages and is
stimulated by Th2 cytokines IL-4 and IL-13, molecules involved in pathological conditions
like asthma [99]. PLA2G2E is expressed at low levels in multiple tissues and is induced in
lung epithelial cells and alveolar macrophages following influenza virus infection [100].
Two additional sPLA2 enzymes, PLA2G2D and PLA2G10, are also upregulated in the
lungs of mice infected with influenza virus and are implicated in exacerbating infection
outcomes [100].

In addition to that, sPLA2 can act indirectly as an immunosuppressive molecule
through the synthesis of PGE2. PGE2 is a highly immunosuppressive molecule, which is
significantly expressed in colon, lung, breast, and head and neck cancers [101]. Several
actions of PGE2 have been described in the immune system, such as inhibiting NK cells,
promoting the expansion of regulatory cells, enhancing the proliferation and function of
regulatory T cells (Tregs), and also promoting the recruitment of macrophages in TME
and stimulating their polarization towards the M2 phenotype by increasing IL-17 expres-
sion [92]. Additionally, the endogenous PLA2 inhibitor, Annexin A1, plays a role in cancer
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progression, contributing to the suppression of the immune response, and indicating cancer
aggressiveness [92].

Special attention should be paid to the functions of sPLA2 in macrophages during
phagocytosis. Macrophages express surface-associated phospholipases, which may release
the AA necessary for endocytosis and electron lucent vesicle formation (ELV). Additionally,
PLA2 activity can influence the production of other second messengers indirectly by
participating in signaling pathways that involve phospholipase C and phospholipase D,
which can generate inositol trisphosphate (IP3) and diacylglycerol (DAG), respectively [102].
Moreover, it has been shown that PLA2G1B and PLA2G10 induce the production of pro-
inflammatory cytokines such as TNF-α and IL-6 in human lung macrophages through
receptor-mediated mechanisms in which sPLA2 binds to M-type receptors on macrophages,
activating the ERK1/2 pathway, leading to cytokine production [103].

5. Use of PLA2 Inhibitors to Control Cancer Progression

There are multiple mechanisms where phospholipases induce cancer cell growth and
proliferation, either through the metabolism of the AA or by releasing lysophospholipids, as
has previously been explained [4]. For this reason, researchers have explored the potential
benefits of targeting sPLA2 in cancer treatment. However, it should be noted that whilst
some clinical trials have been conducted, very few PLA2 inhibitors have been approved for
the treatment of cancer. In addition, some PLA2 inhibitors with anticancer activity exert
their antitumoral function not directly by inhibiting PLA2 but by targeting other crucial
signaling pathways deregulated in cancer.

Inhibitors of sPLA2

Several sPLA2 inhibitors have been developed, including specific inhibitors, those
that differentiate between the catalytic serine and histidine classes of PLA2, and those that
can differentiate between individual PLA2 isoforms within the same class [4] (Table 2).

Table 2. Inhibitors of phospholipases.

Chemical
Group Compound Selectivity Empirical

Formula
Molecular

Weight (Da) Cas Number Ref.

Indole
derivatives

LY311727 Inhibits sPLA2 IIA C22H27N2O5P 430.43 164083-84-5 [104]

Varespladib
Inhibits sPLA2-IIA, and
less efficiently sPLA2-V

and sPLA2-X
C21H20N2O5 380.39 172732-68-2 [105]

Darapladib Inhibits LpPLA2 (or
sPLA2 VII) C36H38F4N4O2S 666.77 356057-34-6 [106]

Thielocins Thielocin B1 Inhibits sPLA2-II C53H58O17 967.02 144118-26-3 [107]

Sulfonamides Dabrafenib Inhibits sPLA2-IIA C23H20F3N5O2S2 519.6 1195765-45-7 [108]

Carboxamines 1H-indole-2-
carboxamide Inhibits sPLA2-X C9H8N2O 160.17 1670-84-4 [109]

Triterpenoids

Celastrol Inhibits sPLA2-IIA C29H38O4 450.61 34157-83-0 [110]

Maslinic acid Inhibits sPLA2-IIA C30H48O4 472.7 4373-41-5 [111]

Oleanolic acid Inhibits sPLA2-II C30H48O3 456.7 508-02-1 [112]

Ursolic acid Inhibits sPLA2-IIA C30H48O3 456.7 77-52-1 [113]

PLI γCdcPLI Inhibits sPLA2 and/or
cPLA2 - 22,340 - [114]

The class of sPLA2 with the larger number of inhibitors described to date is PLA2G2A.
For example, one such inhibitor is LY311727, which is an indole derivative and was de-
veloped by Eli Lilly laboratories [104]. It was initially tested to inhibit the invasion of
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Toxoplasma gondii, and later on, resulted in a significant decrease in the ability of human
oral squamous cell carcinoma cells to form spheres [115]. Varespladib (LY315920) is another
indole-based nonspecific pan-secretory PLA2 inhibitor that potently inhibits mammalian
PLA2G2A, PLA2G5, and PLA2G10. It has been studied for its anticoagulant effect on PLA2
toxins from snake venoms [105]. The favorable properties of varespladib on lipid and
inflammatory markers encouraged the study of the effects of this compound in cardiovas-
cular disease outcomes. Unfortunately, varespladib did not reduce the risk of recurrent
cardiovascular events and significantly increased the risk of myocardial infarction in a
phase III clinical trial [116]. Recent findings suggest the antitumoral activity of varespladib
in Epstein–Barr-induced lymphoma. The intrasplenic administration of varespladib in hu-
manized mice with this lymphoma suppressed its formation [63]. Similarly, darapladib, the
most selective inhibitor of lipoprotein-associated PLA2 (also named PLA2G7), represents
a novel class of therapeutic agents that target inflammation to treat high-risk atheroscle-
rosis [106]. In the context of cancer, darapladib sensitizes cancer cells to ferroptosis by
remodeling lipid metabolism [117]. Phase III clinical trials evaluating darapladib showed
the efficacy of the inhibitor in blocking atherosclerosis with an absence of severe adverse
events. However, there are still no trials assessing the administration of darapladib for
cancer therapy.

A family of potent sPLA2 inhibitors are thielocins, secondary metabolites from the
fungi Thielavia terricola [118]. Thielocin B1 is a potent inhibitor of PLA2G2 [107] and has
also been described to inhibit the proteasome assembling chaperone (PAC) complexes [119],
being previously discovered as an inhibitor of a protein–protein interactions for TCF7/β-
catenin, PAC1/PAC2, and the PAC3 homodimer from a library containing 123.599 sam-
ples [120]. Nevertheless, further research evaluating the antitumor activity of thielocin B1
is still to be performed.

Other functional groups proved to inhibit sPLA2 are sulfonamides [121]. Sulfonamides
have functionally been modified, adding trifluoromethyl groups to be more active against
sPLA2 [108]. Dabrafenib is a good example of a sulfonamide compound with fluoride
groups, known to inhibit kinase activity, specially targeting the MAPK pathway. Dabrafenib
has been approved by the Food and Drug Administration (FDA) for the treatment of
BRAF mutated (V600E) advanced melanoma, and recently approved in combination with
trametinib for BRAF mutated advanced solid tumors [122]. In addition, dafrafenid is
claimed to be repositioned for the treatment of LPS-mediated vascular inflammatory
responses, harboring anti-inflammatory properties upon treatment on LPS-activated human
umbilical vein endothelial cells and mice [123].

Carboxamines, such as N-Benzyl-4,6-difluoro-1H-indole-2-carboxamide, act as selec-
tive PLA2G10 inhibitors [124], and some related compounds have been proven to demon-
strate anti-cancer activity, especially in pediatric brain cancer cell lines [109]. Specifically,
some indole-2-carboxamide derivatives have the potential to reduce cell viability and cell
proliferation of KNS42, BT12, BT16, and DAOY human cell lines, derived from glioblas-
toma, teratoid/rhabdoid tumors, and medulloblastoma, respectively, without affecting the
non-neoplastic human fibroblast cell lines (HFF1).

Triterpenoids such as celastrol, maslinic acid, oleanolic acid, and ursolic acid are
documented to inhibit sPLA2 [125]. All of them have antitumor properties both in vivo
and in vitro, modulating oncogenic signaling pathways rather than directly inhibiting
sPLA2 [110–112].

Venomous and nonvenomous snakes have PLA2 inhibitory proteins in their blood
serum called phospholipase inhibitors or PLI [126]. The most abundant PLI family are
γPLI, which appear to be specific for PLA2 1, 2, and 3 groups. One example is γCdcPLI,
a glycoprotein isolated from Crotalus durissus collilineatus, which has been proposed to
inhibit both sPLA2 and/or cPLA2. Interestingly, γCdcPLI demonstrated antitumoral effects
by inhibiting the PI3K/Akt pathway on breast cancer cell lines [114].

Whilst targeting sPLA2 seems promising, there are some challenges to consider. As
mentioned previously, and given that sPLA2 is involved in various physiological processes
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in different tissues and organs, its inhibition may result in unwanted side effects. In
addition, the effectiveness of these inhibitors may greatly vary among different cancer types.
Thus, developing a selective sPLA2 inhibitor which does not interfere with nontumoral
cells could be highly challenging and at the same time an important issue to be considered
for the development of new drugs for cancer treatment.

6. Conclusions

In this review, we have provided an overview of the biological functions of sPLA2
mainly focused on cancer and cancer-related processes, such as inflammation, EMT, an-
giogenesis, and antitumoral immune response. PLA2 are a large family of phospholipase
enzymes with a great variety of phospholipid substrates, which have several cellular ef-
fects and are involved in a heterogeneity of physiological processes and diseases [2,6]. In
mammalian cells, there are 11 isoforms with a conserved catalytic site, and their expression
varies between tissues [5].

Various studies evidenced that sPLA2 enzymes promote inflammation by mobilizing
pro-inflammatory lipid mediators and anti-inflammatory lipids [22], and that some of
the metabolites resulting from their action, such as eicosanoids, increase during chronic
inflammatory conditions [51]. It is also well known that dysregulated lipid metabolism is
one of the fundamental metabolic alterations that enables cancer cell survival and sustained
rapid cancer cell growth and proliferation [64]. Phospholipases and their main product,
AA, have been shown to play roles in several tumoral processes, such as the promotion
of EMT, angiogenesis, and the induction of the immune system [42]. For the reasons
exposed, sPLA2 have emerged as promising targets in cancer prevention and therapy.
In fact, several sPLA2 inhibitors have been developed for cancer treatment [4], such as
darapladib, which sensitizes cancer cells to ferroptosis [117]. However, further research
regarding the antitumoral activity and selectivity of these compounds is warranted.
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