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Abstract: A number of standard molecules are used for the molecular and histological character-
ization of lymphatic endothelial cells (LECs), including lymphatic vessel endothelial hyaluronan
receptor 1 (LYVE1), Podoplanin (D2-40), VEGFR3, Prospero homeobox protein 1 (PROX1), and CD31.
The number of molecules whose mutations cause lymphatic malformations or primary congenital
lymphedema is considerable, but the majority of these diseases have not yet been characterized at the
molecular level. Therefore, there is still considerable scope for molecular and functional studies of
the lymphatic vasculature. Using RNASeq, we have previously characterized lymphatic endothelial
cells (LECs) under normoxic and hypoxic conditions. We used this information to compare it with
immunohistochemical data. We carried out some of the immunohistology ourselves, and systemati-
cally studied the Human Protein Atlas, a cell and tissue database based in Sweden. Here we describe
molecules that are expressed at RNA and protein levels in LECs, hoping to stimulate future functional
studies of these molecules.

Keywords: lymphatic endothelial cell; ANKRD37; CAV1; CAV2; CD59; CNN3; DYSF; KANK3;
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1. Introduction

The lymphatic vascular system was already known in ancient times, although its
functions were misinterpreted. Venae albae or Ductus lactei were already known to Hip-
pocrates of Kos (460–370 BC), Aristoteles (384–322 BC), and the doctors of the Alexandrian
school (approx. 300 BC–600 AC) (cited from [1]). When Gaspare Aselli (re)discovered the
lymphatics [2], he knew exactly what he had to look for. He was aware that the Venae
albae were easy to find in the mesenteries of dogs, for example, but he was probably the
first to establish a connection between these milky vessels and food intake. The anatom-
ical representation of the lymphatic vascular system was especially advanced at Italian
universities [3], although the function of the system was still very mysterious. One of the
first to recognize the importance of directed fluid transport in the lymphatics was Olof
Rudbeck [4]. Contrary to the prevailing doctrine, which postulated a lymph flow into the
liver, he described the connection to the central venous system. He also recognized a valve
system in lymphatics and the coagulability of the lymph.

We should be very humble when evaluating ancient knowledge, because one thing is
certain: we are still far from fully understanding the functions of the lymphatic vascular
system, although more and more functions are being discussed [5–8]. The complexity is
immediately apparent when we visualize the heterogeneity of lymphatic endothelial cells
(LECs) [9] and the long lists of molecules expressed in LECs [10,11], lymph collectors [12],
or lymph nodes [13,14]. Development and behavior of LECs is critically regulated by the
transcription factor PROX1 [15–17], and the histological characterization of human LECs is
typically performed with antibodies against PROX1 and CD31 [18], the Vascular endothelial
growth factor receptor-3 (VEGFR3, FLT4) [19], the Lymphatic vessel endothelial hyaluronic
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acid receptor 1 (LYVE1) [20], and the type-I integral membrane glycoprotein Podoplanin
(PDPN) [21].

Congenital malformations of the blood vascular system are very common. Those of
the lymphatic system are much rarer, mostly located in the head-neck region, and can be
life threatening. Most of the lymphatic malformations are caused by somatic mutations in
genes involved in the VEGFR3 signaling pathway [22–25]. However, most genetic causes
of lymphatic malformations and primary lymphedema have not yet been discovered.
This illustrates that there is still a very large number of molecules whose significance
for the development and function of the lymphatic vessels is not yet known. We have
previously used RNASeq to study human foreskin-derived LECs under normoxic and
hypoxic conditions and defined 162 genes that are significantly regulated by hypoxia [10],
as well as highly expressed genes that influence the composition of the extracellular matrix
and may be involved in lymphedema-induced fibrosis [26]. Here, we went through the
RNASeq list and studied the large number of highly expressed LEC genes. We compared
RNA expression with protein expression by systematically studying the Human Protein
Atlas [27] (https://www.proteinatlas.org/; accessed on 20 August 2024). In this way, we
sought to define additional molecules that can be used for deeper characterization of
lymphatic vessels and to define further functions of LECs.

2. Results and Discussion

We recently performed expression analyses of three well characterized human foreskin-
derived LEC lines under normoxic and hypoxic conditions [10,26] and received a list of
approx. 16,000 LEC-expressed genes. Only a very small number of these molecules have
been studied in LECs thus far. We have tried to systematically match RNA expression
with protein expression using the Human Protein Atlas [27]. According to the Human
Protein Atlas, the tissues are normal tissues, though, of course, concomitant diseases of
the mostly older donors cannot be ruled out. With the exception of dysferlin, which we
studied in combination with the endothelial marker CD31, we relied on morphological
criteria to identify lymphatics in tissue sections. We have concentrated on molecules whose
function has not yet been investigated in LECs. The number of matches between RNA and
protein expression was not very high, but there can be many technical reasons (fixation
time of tissue, paraffine permeability of the antibodies, etc.) for this. The expression of the
molecules we describe in the manuscript is not restricted to LECs. Some occur in BECs or
in other cell types. However, it should be noted that the commonly used LEC markers also
occur in various other cell types, and ultimately a selection of molecules will always be
necessary to characterize a cell type.

One of the main functions of the lymphatics is regulation of fluid homeostasis. The
fluid is mainly absorbed via the flexible microvalves of the initial lymphatic vessels. How-
ever, part of the fluid uptake also occurs by means of active transcytosis, which has also
been observed for the uptake of chylomicrons by lacteals [28–30]. Very recently, the uptake
of myofibroblast-derived microvesicles (MVs) was studied in human dermal blood vascular
endothelial cells (BECs) and LECs [31]. The authors describe that MVs cross an LEC layer
but not a BEC layer in vitro. For both endocytosis and transcytosis, the caveolin-dependent
pathway is of utmost importance. High expression of caveolin 1 (CAV1) and CAV2 (Table 1)
for endo- and transcytosis seems to be in line with the free passage of MVs through LECs,
and antibodies against CAV1 and CAV2 clearly stain lymphatics and selected blood vessels
(Figures 1 and 2).

https://www.proteinatlas.org/
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Table 1. RNASeq analysis of three defined human dermal LEC lines under normoxia and hypoxia.

Gene_ID Gene-
Name Chromos. Start End Width Strand Gene_Bio-

Type HDLEC-5 HDLEC-6 HDLEC-7 Hypox-5 Hypox-6 Hypox-7

ENSG00000186352 ANKRD37 4 1.85 × 108 1.85 × 108 4608 + protein_cod. 93 117 124 312 549 650

ENSG00000105974 CAV1 7 1.17 × 108 1.17 × 108 36,184 + protein_cod. 28,254 22,816 40,041 41,886 29,070 44,229

ENSG00000105971 CAV2 7 1.16 × 108 1.17 × 108 221,162 + protein_cod. 5923 6362 8339 8258 7425 10,628

ENSG00000085063 CD59 11 33,703,010 33,736,491 33,482 − protein_cod. 25,997 30,542 33,420 25,878 36,425 34,222

ENSG00000117519 CNN3 4 94,896,949 94,927,223 30,275 − protein_cod. 16,690 24,868 11,454 14,357 20,711 8938

ENSG00000135636 DYSF 2 71,453,722 71,686,768 233,047 + protein_cod. 2656 1698 4385 3354 2205 5193

ENSG00000186994 KANK3 19 8,322,584 8,343,262 20,679 − protein_cod. 2257 4008 2949 3946 4202 5177

ENSG00000175130 MARCKSL1 1 32,333,839 32,336,233 2395 − protein_cod. 8786 9698 8004 8408 7819 4811

ENSG00000138722 MMRN1 4 89,879,532 89,954,629 75,098 + protein_cod. 199,494 204,322 16,869 263,839 303,443 38,908

ENSG00000138119 MYOF 10 93,306,429 93,482,334 175,906 − protein_cod. 12,506 4987 5959 11,865 2877 11,681

ENSG00000167693 NXN 17 799,310 979,776 180,467 − protein_cod. 5647 7278 2263 4813 5743 2401

ENSG00000115155 OTOF 2 26,457,203 26,558,698 101,496 − protein_cod. 1187 1088 464 499 109 146

ENSG00000197694 SPTAN1 9 1.29 × 108 1.29 × 108 81,105 + protein_cod. 10,798 8181 6610 8411 9524 8409

ENSG00000115306 SPTBN1 2 54,456,317 54,671,446 215,130 + protein_cod. 23,119 28,282 11,418 25,384 39,160 14,477

Three human dermal lymphatic endothelial cell lines (HDLEC-5, 6, and 7) were investigated under 21% pO2 as well as under 1% pO2 (Hypox-5, 6, and 7). RNASeq was performed by
the NGS-Integrative Genomics Core Unit, UMG, Göttingen (details see: [10]. The number of reads is presented. The molecules shown here are not regulated by hypoxia with two
exceptions: Otoferlin (OTOF), which is a moderately high expressed gene, is downregulated by hypoxia. OTOF belongs to the ferlin family of proteins, additionally including dysferlin
(DYSF) and myoferlin (MYOF). ANKRD37 is a lowly expressed gene, which is upregulated by hypoxia.
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Figure 1. Immunostaining of CAV1 in lymphatics (arrows) of human (A) Oral mucosa, Antibody 
CAB003791 (B) Rectum, Antibody CAB003791 (C) Breast, Antibody CAB003791, and (D) parietal 
layer of lymph node marginal sinus, Antibody HPA049326. From: The Human Protein Atlas. Bar = 
60 µm in (A,D), and 40 µm in (B,C). 

 

Figure 1. Immunostaining of CAV1 in lymphatics (arrows) of human (A) Oral mucosa, Antibody
CAB003791 (B) Rectum, Antibody CAB003791 (C) Breast, Antibody CAB003791, and (D) parietal layer
of lymph node marginal sinus, Antibody HPA049326. From: The Human Protein Atlas. Bar = 60 µm
in (A,D), and 40 µm in (B,C).
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Figure 2. Immunostaining of CAV2 in lymphatics (arrows) of human (A) Esophagus, Antibody
HPA044810 (B) Colon, Antibody CAB013488, (C) Oral mucosa, Antibody HPA044810, and (D) Skin,
Antibody HPA044810. From: The Human Protein Atlas. Bar = 60 µm in (A–D).
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Very active transcytosis by LECs is also reflected by the RNA expression the ferlin
family members: myoferlin (MYOF; very high), dysferlin (DYSF; high), and otoferlin
(OTOF; moderate) (Table 1). Ferlins regulate membrane fusion and fusion of vesicles to
cell membranes e.g., for exocytosis or membrane regeneration [32]. Of the three ferlins, we
observed clear immunostaining against DYSF (dystrophy-associated fer-1-like protein) in
various organs (Figure 3) and performed immunodouble staining with CD31 in human
foreskin (Figure 4). We observed DYSF in dermal lymphatics. Blood vessels were mostly
negative, except for the subepithelial capillary plexus. We tested various OTOF antibodies
but did not receive a positive result; and, in contrast to the high RNA expression, we found
no immunopositivity for MYOF in the Human Protein Atlas. As already mentioned, this
apparent discrepancy may be due to technical problems with antibody staining. Antibodies
need to be improved and protocols refined. However, DYSF is clearly present in LECs at
the RNA and protein levels, which is in line with high transcytotic activity.
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Figure 3. Immunostaining of DYSF in lymphatics (arrows) of human (A) Breast, Antibody 
CAB002510, (B) Duodenum, Antibody CAB002510, (C) Colon, Antibody HPA017071, (D) Skin anal, 
Antibody CAB002510. From: The Human Protein Atlas. Bar = 70 µm in (A,B), and 90 µm in (C,D). 

Figure 3. Immunostaining of DYSF in lymphatics (arrows) of human (A) Breast, Antibody CAB002510,
(B) Duodenum, Antibody CAB002510, (C) Colon, Antibody HPA017071, (D) Skin anal, Antibody
CAB002510. From: The Human Protein Atlas. Bar = 70 µm in (A,B), and 90 µm in (C,D).

Both the initial lymphatic vessels and the lymph collectors exhibit strong functional
fluctuations in their diameter, and they have valves whose elasticity is of great importance
for reliable valve closure. Spectrins have originally been identified as the major elastic
component of erythrocytes, linking the actin cytoskeleton to the cell membrane. However,
nonerythroid spectrins have also been identified [33–35]. Spectrins form tetrameric proteins
of alpha and beta subunits. SPTAN1 (spectrin, alpha, nonerythrocytic 1) and SPTBN1
(spectrin, beta, nonerythrocytic 1) are highly expressed in LECs (Table 1) and they are well
detectable at protein level in lymphatics of various organs (Figures 5 and 6). Neuropathies
related to malfunction of the two molecules have been observed, but lymphedema has not
yet been described.
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view with epidermis (A–C) and higher magnification of dermis (D). Blood vessels strongly express 
CD31; lymphatics have a punctate weak staining. Nuclei are stained blue with Dapi. In lymphatics, 
the red DYSF staining is dominant, but subepithelial capillaries also express DYSF. (A–C) 10× objec-
tive; Bar = 100 µm, (D) 40× objective; Bar = 25 µm. 
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Figure 4. Immunostaining of DYSF (red) and CD31 (green) in lymphatics of human foreskin; overview
with epidermis (A–C) and higher magnification of dermis (D). Blood vessels strongly express CD31;
lymphatics have a punctate weak staining. Nuclei are stained blue with Dapi. In lymphatics, the
red DYSF staining is dominant, but subepithelial capillaries also express DYSF. (A–C) 10× objective;
Bar = 100 µm, (D) 40× objective; Bar = 25 µm.

Among the genes most highly expressed in LECs is Multimerin 1 (MMRN1) (Table 1).
Lymph contains fibrinogen and can coagulate [36], and we have previously pointed out
that LECs are an important source for factor VIII (F8, antihemophilic globulin A) and its
carrier protein von-Willebrand factor (VWF) [8]. MMRN1 is a specific coagulation factor
V binding platelet protein with a role in hemostasis and coagulation, and accordingly it
is highly expressed in megakaryocytes [37]. In addition, it is found with extremely high
specificity in endothelial cells; despite this, a clear distinction between BECs and LECs
has not been made [38]. However, it appears that LECs are clearly more strongly positive
than BECs (https://www.proteinatlas.org/ENSG00000138722-MMRN1/single+cell+type;
accessed on 5 November 2024). We found immunopositivity for MMRN1 in lymphatics
of various organs (Figure 7). During lymphostasis, the accumulation of pro-coagulatory
factors (F8, VWF, MMRN1) and the decrease in the anti-coagulatory and anti-inflammatory
5′-nucleotidase (CD73) of the LECs [39] can be important reasons for the increased tendency
to thrombosis and inflammation.

https://www.proteinatlas.org/ENSG00000138722-MMRN1/single+cell+type
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in (B,C).
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MARCKS-like protein-1 (MARCKSL1 = MLP) has great similarity with the myristoy-
lated, alanine-rich protein MARCKS [40,41], a substrate for protein kinase C. MARCKSL1
has mainly been studied in neural development and in cancer cell migration [42]. High
MARCKSL1 expression has a strong prognostic value in lymph node-negative breast cancer
patients [43]. Upon phosphorylation, MARCKSL1 induces actin bundling and inhibits cell
migration [42]. We observed high RNA expression of MARCKSL1 in LECs (Table 1) and
immune-positive lymphatics in various organs (Figure 8). The influence of MARCKSL1 on
LEC stability and function has not yet been studied.
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Another molecule associated with the actin cytoskeletal system is calponin 3 (CNN3). It
consists of an acidic C terminus and a basic N terminus [44,45]. CNN3 regulates contractility
of actomyosin-containing stress fibers of non-muscle cells [46]. Thereby, control of stress
fiber contractility by CNN3 was found to be associated with mechanosensitive Yap/Taz
(Yes-associated protein/transcriptional coactivator with PDZ binding motif) transcriptional
activation [47]. We observed high RNA expression of CNN3 in LECs (Table 1) and immune-
positive lymphatics in various organs (Figure 9), making LECs an attractive model for
further studies on the function of CNN3. The importance of the Yap/Taz signaling in the
Hippo pathway for lymphangiogenesis is well recognized [48,49].

The cytoskeleton of LECs appears to be very stable, and accordingly, the invasive-
ness of LECs is usually extremely low; the only exception being vanishing bone disease
(Gorham-Stout disease, GHS) with approx. 350 cases being reported [50–52]. The ankyrin
repeat domain protein 37 (ANKRD37) is not only associated with preeclampsia during
pregnancy. Its knock-down enhances trophoblast invasiveness, migration, and regulation
of key invasion proteins [53]. ANKRD37 is expressed at very low levels in LECs and is
significantly upregulated by hypoxia (Table 1) [26]. It is a hypoxia-inducible factor-1 (HIF1)
target gene [54]. Its expression in GHS has, to the best of our knowledge, not yet been
studied. We observed immune-positivity for ANKRD37 in LECs (Figure 10). However, due
to the large number of ANKRD family members expressed in LECs specificity of antibody
staining might be problematic.

Another molecule involved in actin stress fiber formation and containing an ankyrin
repeat domain is KANK3 (KN motif- and ankyrin repeat domain-containing protein 3) [55].
KANK3 is highly expressed in LECs (Table 1) and immune-positivity is seen in lymphatics
of various organs (Figure 11). The four members of the KANK family regulate integrin-
mediated adhesion, actomyosin contractility, and link focal adhesions to the cortical micro-
tubule stabilization complex [56]. Specific expression of KANK3 in endothelial cells has
been noted [56], but functional studies are lacking.
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Lymph contains high amounts of immunoglobulin G (IgG) heavy chain [36]. Antigen-
IgG complexes represent a starting point for the classical complement system, which
can stimulate phagocytes, inflammation, and the cell-killing membrane attack complex
(MAC) [57]. LECs express high amounts of CD59, also known as Protectin (Table 1), a
glycoprotein functioning as a membrane-bound inhibitor of MAC [58]. Malfunctioning of
CD59 causes hemolytic anemia with immune-mediated polyneuropathy [59]. The specific
function in LECs has not been investigated yet. Immune-positivity is seen in lymphatics
and blood vessels (Figure 12), suggesting an important immune-suppressive function in
vessels. Strong expression of CD59 in colorectal cancer is associated with higher incidence
of lymph node metastasis [55]. In ulcerative colitis, a chronic inflammatory disease of the
colon, CD59 belongs to the complement components that have been shown to safeguard
the intestinal barrier and reduce intestinal inflammation [60].

It was previously shown that the non-canonical WNT (Wingless-type MMTV inte-
gration site) signaling pathway is of great importance for the elongation of lymphatics
during embryonic lymphangiogenesis [61,62]. Nucleoredoxin (NXN) is a 48 kDa protein
and a redox-dependent negative regulator of the Wnt signaling pathway [63]. NXN mRNA
is highly expressed in LECs (Table 1), and it can be detected in lymphatics of various
organs by immunohistology (Figure 13). Similar to mutations in WNT5A [64] and other
WNT signaling members, mutations in NXN cause Robinow syndrome [65], which is
mainly characterized by dysmorphic facial features and short-limbed dwarfism. To our
knowledge, morphology and function of the lymphatics have not yet been investigated in
Robinow patients.
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3. Materials and Methods
3.1. Cell Culture

We used three well characterized human dermal lymphatic endothelial cell lines
(PromoCell, Heidelberg, Germany). Cells and culturing were described before [10,26].

3.2. RNA Sequencing

RNASeq of defined lymphatic endothelial cells was performed as described [10,26].

3.3. Immunofluorescence (IF)

IF was performed on human foreskin derived from operations performed at the Uni-
versity Medical Center Goettingen (UMG). Specimens were fixed in 4% paraformaldehyde
for 1 h, embedded in tissue freeze medium, and sectioned at 12 µm. Studies were per-
formed with the informed consent of the patients or their parents and were approved by the
ethics committee of the UMG (application no. 18/1/18). Primary antibodies were mouse-
anti-human CD31 (BD Pharmingen, Franklin Lakes, NJ, USA, dilution 1:50, Lot: 550389)
and rabbit-anti-human dysferlin (Sigma, St. Louis, MO, USA, dilution 1:200, Lot: 19895).
Secondary antibodies were Alexa 488-conjugated goat-anti-mouse IgG (H + L) (Invitrogen,
Waltham, MA, USA, dilution 1:200, Lot: 2765658) and Alexa 594-conjugated goat-anti-rabbit
IgG (H + L) (Invitrogen, dilution 1:200, Lot: 2506100). Nuclei were counterstained with
Dapi (Invitrogen).

3.4. Immunohistochemistry

We compared our RNASeq expression data with protein expression by systemati-
cally studying the Human Protein Atlas [27] (https://www.proteinatlas.org/; accessed on
5 November 2024). All figures shown here can be found and further studied at variable
magnification in this repository.

4. Conclusions

The exome of lymphatic endothelial cells is very extensive, as in other cell types.
The correspondence with the protein expression that we have studied in the Human
Protein Atlas is comparatively low. However, this can probably be attributed to simple
technical reasons when studying paraffin-embedded human tissues. The selected images
show preparations of both the body wall (skin, breast) and internal organs. This indicates
that the selected molecules may be important in LECs of somatic and visceral origin.
We found good agreement for molecules associated with the high transcytosis activity
of LECs (caveolin, dysferlin). There was very good agreement for molecules that have
important functions in the structure and regulation of the cytoskeleton. This may be due
to the fact that the LECs of the initial lymphatic vessels have a unique morphology and
function. This is expressed in the oak leaf-like morphology of the cells with the formation
of specialized button-like junctions and microvalves, which are of essential importance
for the directed lymph flow [66–68]. Accordingly, we found expression of molecules that
mediate cellular elasticity (spectrins) and interact with actin microfilaments (ANKRD37,
CNN3, KANK3, MARCKSL1). In terms of immune regulation, lymphatic vessels are a
double-edged sword [8]. They are the main route for the emigration of leukocytes towards
the lymph nodes. However, they can also have an immunosuppressive effect, which is
reflected in the expression of CD59. The influence of LECs on coagulation, which has
already been described several times, was confirmed in our investigations (multimerin1).
The importance of the WNT signaling pathway for development and function of lymphatics
still needs to be investigated in greater detail (NXN). In sum, we hope our studies can
stimulate further studies on the complex morphology and functions of lymphatics.
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