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Abstract: The classical function of the mineralocorticoid receptor (MR) is to maintain electrolytic
homeostasis and control extracellular volume and blood pressure. The MR is expressed in the central
nervous system (CNS) and is involved in the regulation of the hypothalamic–pituitary–adrenal (HPA)
axis as well as sleep physiology, playing a role in the non-rapid eye movement (NREM) phase of
sleep. Some patients with psychiatric disorders have very poor sleep quality, and a relationship
between MR dysregulation and this disorder has been found in them. In addition, the MR is involved
in the regulation of the renal peripheral clock. One of the most common comorbidities observed
in patients with chronic kidney disease (CKD) is poor sleep quality. Patients with CKD experience
sleep disturbances, including reduced sleep duration, sleep fragmentation, and insomnia. To date, no
studies have specifically investigated the relationship between MR activation and CKD-associated
sleep disturbances. However, in this review, we analyzed the environment that occurs in CKD and
proposed two MR-related mechanisms that may be responsible for these sleep disturbances: the
circadian clock disruption and the high levels of MR agonist observed in CKD.

Keywords: mineralocorticoid receptor; sleep quality; circadian clock; chronic kidney disease

1. Introduction

Activation of the mineralocorticoid receptor (MR) and its role in the hypothalamic–
pituitary–adrenal (HPA) axis have been implicated in sleep physiology. Activation of the
MR is a necessary condition to establish and maintain a good night’s sleep, especially
in the non-rapid eye movement stage [1]. In addition, the MR has been studied in sleep
deregulation, especially in pathological contexts such as major depression disorder (MDD)
or autism spectrum disorder (ASD). In all these pathologies, MR under/overactivation has
been associated with refractivity to treatment and a worse prognosis and worse symptoms,
including sleep disturbances [2,3]. Sleep disorders, including restless legs syndrome
(RLS), sleep apnea, poor sleep quality, and insomnia, are a common comorbid condition
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observed in individuals with chronic kidney disease (CKD) [4]. These disorders have a
significant negative impact on the quality of life of CKD patients, with insomnia being
up to three times more prevalent in patients with CKD than in the general population.
Furthermore, this prevalence appears to be positively correlated with CKD progression
and patient age [5]. The role of the MR in the pathophysiology of CKD is well established.
MR antagonists (MRAs), including both classical steroidal and modern non-steroidal
MRAs, have been shown to halt CKD progression and improve outcomes in comorbidities
such as cardiovascular and metabolic diseases [6–8]. Despite significant advances in our
understanding of sleep processes, the phenomenon of sleep remains largely enigmatic.
Given the involvement of the MR in both CKD and sleep physiology, this review discusses
what role the MR might play in CKD-associated sleep disturbances. In addition, we
propose two MR-related mechanisms that could be responsible for these CKD-related
sleep disturbances.

2. Mineralocorticoid Receptor

The nuclear receptor subfamily 3 group C member 2 (NR3C2) gene encodes the
protein known as the MR. The MR is located in humans at cytogenetic position 4q31.23
and is approximately 363 kb with 13 exons (NCBI gene ID: 4306). This receptor belongs
to the steroid hormone receptor family and can be activated by mineralocorticoids and
glucocorticoids with similar affinity, although its canonical ligand is the mineralocorticoid
aldosterone [9]. The MR has three functional domains: an N-terminal domain (NTD)
that interacts with the coregulatory protein, a DNA-binding domain that binds to target
genes in hormone response elements (HREs) and assists in dimerization, and a C-terminal
ligand-biding domain (LBD) that interacts with chaperones in the absence of a ligand and
allows the conformational change [9,10]. In the absence of a ligand, the MR remains in
the cytoplasm in association with cytoplasmic proteins, such as heat shock protein (HSP)
90, HSP70, p23, FK506-binding protein (FKBP)51, FKBP52, cyclophilins, or serine/protein
phosphatase 5, to maintain the receptor conformation for ligand-specific binding and avoid
non-specific activation. Ligand binding induces a ligand-specific conformational change,
allowing nuclear translocation facilitated by HSP90 and FKBP51, dimerization with another
MR or glucocorticoid receptor (GR), post-translational modifications, and interaction with
DNA and coregulatory proteins. The MR can act as a transcription factor by binding to
HREs or by interacting with the epidermal growth factor receptor (EGFR). Once the MR is
associated with HREs, it interacts with certain coactivators to enhance transcription, such
as steroid receptor coactivator 1 (SRC-1), SRC-2, peroxisome proliferator-activated receptor
γ coactivator 1-α, or the histone acetyltransferase p300/CREB-binding protein, among
others [9].

2.1. Mineralocorticoid Receptor Ligands

The MR can bind with high affinity to several types of steroids, including aldosterone,
deoxycorticosterone, glucocorticoids (cortisol, corticosterone in rodents) and progesterone.
However, in the case of progesterone, even when it binds the MR with high affinity, it has a
predominant anti-mineralocorticoid effect [11]. Aldosterone is considered the canonical
ligand of the MR under physiological conditions [12]. The circulating concentration of
cortisol is 100–1000 times higher than that of aldosterone and can bind to the MR with
similar affinity [9,13].

Many of the corticosteroids listed in Table 1 have important pharmacological uses.
Glucocorticoids, such as dexamethasone, are used as anti-inflammatory and immunosup-
pressive agents for the treatment of many diseases [14]. In addition, their role in wound
healing has been demonstrated [15], as well as their usefulness in the treatment of various
ocular diseases [16]. Mineralocorticoid antagonists have been proposed as potential key
drugs in the treatment of various renal pathologies, including CKD, due to their ability to
modulate stress activation systems [17]. On the other hand, some MR agonists, such as
fludrocortisone (9a-fluorocortisol), have shown their efficacy in the treatment of hypoten-
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sion [18]. Likewise, their combination with hydrocortisone has been proven to be effective
in the treatment of septic shock [19]. Although known to be a weak partial agonist and a
competitive MRA [20,21], progesterone binds to the MR with high affinity in vitro [22], and
its binding affinity in vivo is even significantly higher than that of aldosterone [23–25].

Table 1. Natural and synthetic compounds and their ability to bind the mineralocorticoid receptor
(MR)/glucocorticoid receptor (GR).

Compound Name Binding Receptor Origin References

11-Deoxycorticosterone MR Natural [26]

Aldosterone MR Natural [27]

Corticosterone MR/GR Natural [28]

Cortisol MR/GR Natural [29]

Cortisone MR/GR Natural [30]

Progesterone MR Natural [31]

11-oxa-Cortisol GR Synthetic [32]

11-oxa-Prednisolone GR Synthetic [32]

19-Noraldosterone MR Synthetic [33]

19-Nor-Desoxycorticosterone MR Synthetic [34]

19-Nor-progesterone MR Synthetic [35]

Beclomethasone GR Synthetic [36]

Betamethasone GR Synthetic [37]

Budesonide GR Synthetic [38]

Deoxycorticosterone acetate MR Synthetic [39]

Dexamethasone GR Synthetic [40]

Dexamethasone oxetanone GR Synthetic [32]

Eplerenone MR Synthetic [41]

Finerenone MR Synthetic [42]

Fludrocortisone MR Synthetic [43]

Hydrocortisone MR/GR Synthetic [44]

Prednisolone MR Synthetic [45]

Prednisone GR Synthetic [46]

Spironolactone MR Synthetic [41]

Triamcinolone GR Synthetic [47]

Vamorolone GR Synthetic [48]

The mechanisms by which the MR achieves differential activation by the two corti-
costeroid hormones and exerts tissue-specific effects can be considered at the pre-receptor,
receptor, and post-receptor levels. Pre-receptor metabolism of cortisol is a key mechanism
for maintaining MR selectivity in specific target tissues.

The activity of 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) converts cortisol in
humans and corticosterone in mice to its inactive forms, cortisone and 11-dehydrocorticosterone,
respectively [49]. However, this mechanism is only present in epithelial cells of the distal
nephron, colon, sweat glands, and blood vessel walls [50]. Expression of 11β-HSD2 is
minimal or absent in other MR-expressing tissues, such as the myocardium and hippocam-
pus. At the receptor level, mineralocorticoid selectivity is produced by ligand-induced
conformational changes that differ between cortisol and aldosterone. It has been shown
that aldosterone dissociates more slowly from the MR and induces greater transactivation
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than cortisol at any given concentration [51]. Furthermore, the interaction between the
NTD of the MR and the C-terminal hinge and LBD (or N-/C-interaction), which may
serve to stabilize ligand binding to the receptor [52], is much stronger in the presence of
aldosterone than cortisol, providing another mechanism of ligand specificity in the MR [53].
At the post-receptor level, an expanding library of more than 300 nuclear receptor (NR)
co-regulators have been identified in the last decade [54]. NR co-regulators play a central
role in the modulation of NR-mediated gene expression and are thought to confer tissue
and ligand specificity due to their structural and functional diversity [55].

Receptor isoforms generate diversity in the tissue-specific receptor response. This
has been demonstrated in the case of the GR, which has multiple potential isoforms,
derived from the same gene, capable of eliciting unique biological responses to the same
hormone in different tissues [56]. Transcription of the MR can be directed by two functional
promoters, P1 and P2, to generate human MR-α and human MR-β isoforms that differ in
the 5′ untranslated region and show differential tissue expressions [57]. Furthermore, both
promoters are found to be glucocorticoid-inducible by glucocorticoids, whereas only P2
appears to be sensitive to mineralocorticoids, suggesting that ligand specificity may also be
determined by the MR isoform generated.

2.2. Canonical Function of the Mineralocorticoid Receptor

The associated classical function of the MR encompasses electrolytic homeostasis,
extracellular volume control, and blood pressure regulation [10,58]. Eight days after
birth, genetic inactivation of the MR in mice triggers hyperkalemia, hyponatremia, a
sharp increase in plasma renin, angiotensin II, and aldosterone, and a potent reduction in
epithelial sodium channel (ENaC) levels, although its mRNA levels are unchanged. These
mice die within 10 days of birth due to water and Na+ loss [59].

In general terms, MR activation leads to Na+ retention and K+ secretion at the distal
nephron [59]. Na+ levels are mainly controlled by the MR through the Na+−Cl− cotrans-
porter (NCC) in the early and late distal convoluted tube (DCT) and the ENaC present
from the late DCT to the cortical collecting duct (CCD), which allows Na+ entry into the
apical membrane of epithelial cells [60]. Na+ entry in these cells is due to the presence
of Na+/K+ ATPase in the basolateral region, keeping intracellular Na+ low [59,60]. Na+

uptake by the ENaC depolarizes the apical membrane, but at the same time, the renal
outer medullary K+ channel (ROMK) and Ca2+−regulated K+ channels (BK or Maxi-K) or
the KCl cotransporter allows K+ secretion to the lumen under normal conditions. When
K+ levels are too low, a change in K+ flux can occur, resulting in K+ uptake through the
apical H+/K+ ATPase pump [10,59,60]. Upstream of the ENaC is the NCC, which allows
reabsorption of Na+ and Cl− without the need to excrete K+. Its inhibition permits the
delivery of Na+ to the ENaC, although this does not stimulate K+ secretion [60]. Although
the NCC is mainly regulated by peritubular K+ levels [10], it has been reported that chronic
stimulation with aldosterone increases NCC expression in the distal nephron [10]. The MR
response promotes the increase in ENaC and Na+/K+ ATPase activity, whereas the late
response promotes the upregulation of these channels [10].

Electrolytic homeostasis is largely regulated by the MR through several molecular
mechanisms including transcriptional or non-genomic regulation. First, the MR acts as a
transcriptional factor leading to the generation of proteins such as period homolog 1 (PER1),
endothelin 1 (ET-1), serum- and glucocorticoid-regulated kinase 1 (SGK1), glucocorticoid-
induced leucine zipper, or ENaC [10]. Second, the MR also acts through the EGFR or
insulin-like growth factor [10].

Upon activation, the MR triggers a quick increase in SGK1 expression. SGK1 is a
major kinase for the MR to exert its function in tubular channels [60,61]. In addition, SGK1
phosphorylates Lysine Deficient Protein Kinase 4, preventing the endocytosis of the ENaC
and ROMK and leading to the α subunit of the ENaC increasing its electrophysiological
function [61]. Additionally, SGK1 phosphorylates ROMK, increasing its intracellular traffic



Int. J. Mol. Sci. 2024, 25, 12320 5 of 24

to enhance its presence in the membrane, and participates in the activation of BK channels
and other Ca2+, Mg2+, and Cl− channels [61].

Moreover, MR action leads to an indirect increase in blood volume and blood pressure.
Blood pressure depends on cardiac output and vascular resistance. At the same time,
cardiac output depends on the stroke volume, which is modified by changes in blood
volume and heart rate [62,63]. Na+ is the main osmolyte in the extracellular space and it
moves parallel to water, which means that the accumulation of Na+ in the body increases
blood volume and, therefore, blood pressure [63]. The kidney eliminates excess Na+ by
increasing diuresis. To eliminate Na+ without losing water, the kidney uses urea as an
osmolyte, although the total balance also depends on metabolic, respiratory, fecal, and
transcutaneous water. The objective of the kidney is to maintain blood Na+ concentration,
but the amount of Na+ in the tissues depends on blood Na+ and this is variable [63].

2.3. Non-Canonical Functions of the Mineralocorticoid Receptor

The MR also has other non-canonical functions, such as the control of arterial pressure
through the MR present in endothelial cells and vascular smooth muscle cells (VSMC).
The endothelial MR does not affect blood pressure under basal conditions. However,
in pathological conditions or conditions of MR overexpression, its activation modifies
arterial pressure and vascular status by regulating vascular reactivity [62,64]. Endothelial
MR activation leads to exocytosis of the Weibel–Palade body containing proinflammatory
cytokines, an increase in reactive oxygen species by stimulation of nicotinamide adenine
dinucleotide phosphate oxidase, and a reduction in glucose 6 phosphate dehydrogenase.
These changes reduce nitric oxide (NO) availability, leading to endothelial dysfunction
and even prothrombotic effects when the endothelium is injured. On the other hand,
the MR of VSMCs regulates vascular tone by promoting the expression of L-type Ca2+

channels, which potentiate the contractile response and promote vascular remodeling and
calcification, increasing vascular stiffness [58,62,64].

Many pathological processes are associated with chronic or increased activation of
the MR. Continued activation of the MR can lead to fluid retention due to excessive
NaCl reabsorption resulting in hypertension, alkalosis due to NaHCO3 retention, and
proteinuria [10,64]. Sustained MR activation is also associated with fibrosis, extracellular
matrix remodeling, and cell proliferation. In the cardiac context, it has been associated
with atrial fibrillation or ventricular arrhythmias [58]. In the context of aging in mice, the
MR of macrophages plays a proinflammatory and fibrogenic role [65,66]. Adipocytes also
present the MR, which is involved in adipocyte differentiation and secretion of adipokines
and proinflammatory markers implicated in insulin resistance and adipocyte dysfunction.
In the retina, the MR maintains water and K+ homeostasis, leading to chronic aldosterone
infusion, retinal ganglion cell death, and optic nerve degeneration [58].

2.4. The Mineralocorticoid Receptor in the Central Nervous System

Corticosteroids produce diverse actions in many organs and in various areas of the
brain through the activation of the MR and GR. Both receptors show a specific and selective
distribution in the brain [67,68]. The MR is strongly expressed in the hippocampus and
medial and central amygdala, olfactory nucleus, layer II of the cortex, and motor and
brainstem neurons. Expression is low in the hypothalamus and is found mainly in the
paraventricular nucleus (PVN). In contrast, the GR is more ubiquitously expressed, with
elevated expression found in the hippocampus, septum, hypothalamus, amygdala, and
cerebral cortex [69]. Of note, the brain regions where these receptors are expressed are
important for declarative and spatial memory. Moreover, the region in the amygdala with
the MR and GR is important for emotional memory. Therefore, these receptors play a key
role in the function and effect of stress, memory consolidation, and learning [70,71].

The MR is also expressed in neurons in brain areas of the autonomous nervous
system [69]. In neurons belonging to the sympathetic nervous system, the function of
aldosterone/MR activation is the regulation of cardiac activity and blood pressure by
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sympathetic activation [72,73]. However, as explained above, the MR also binds cortisol
with a higher affinity than aldosterone. In some areas of the organism, such as the kidney,
this binding is prevented by 11β-HSD2, which converts cortisol to cortisone. This does
not usually occur in the central nervous system (CNS), which allows cortisol to bind to
the MR [74]. Nevertheless, there are sites of aldosterone-preferential MR activation in the
CNS, areas where the MR is co-expressed with 11β-HSD2, and which are involved in salt
homeostasis, volume regulation, and sympathetic outflow. These areas are in the anterior
hypothalamus and circumventricular organs [75].

The cortisol induced by stress is largely regulated by the HPA axis. The HPA axis
is primarily responsible for the synthesis and secretion of cortisol in the adrenal glands.
The anterior pituitary or adenohypophysis produces and secretes adrenocorticotropic
hormone (ACTH) in response to corticotropin-releasing hormone (CRH), released by the
PVN of the hypothalamus [76]. Next, the adrenal glands produce and secrete cortisol in
response to ACTH [77]. In turn, blood cortisol levels close the cycle by feeding back to the
CRH-producing neurons, which stop releasing CRH when cortisol levels are elevated [78].
Therefore, glucocorticoids exert negative feedback on the hypothalamus, reducing the
stress levels (Figure 1). Some regions of the hippocampus influence the HPA axis and
susceptibility to stress [79].
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Figure 1. Hypothalamic–pituitary–adrenal (HPA) axis components and regulations. The deliv-
ery of corticotropin releasing hormone (CRH) by the hypothalamus to the pituitary gland induces
the secretion of adrenocorticotropic hormone (ACTH). ACTH leads to the adrenal glands produc-
ing cortisol and aldosterone, which mediates negative feedback to the hypothalamus through the
mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR).

The HPA axis is characterized by the generation of rhythms. Cortisol follows two types
of rhythms, ultradian and circadian rhythms. The circadian rhythm is strongly associated
with light–dark cycles and food availability [69]. Ultradian rhythms are due to pulsatile
ACTH secretion [80]. In the hippocampus, the coordinated action of MR and GR activation
with the innervation of CRH-producing neurons of the hypothalamus leads to a decrease in
ACTH synthesis and secretion and, therefore, to a reduction in cortisol release [81]. Activa-
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tion of the HPA axis during stress produces rapid increases in cortisol or corticosterone [76].
Both bind the MR with high affinity and subsequently occupy the GR. Binding to the MR
produces excitation of hippocampal neurons in the first few minutes [69]. Thus, activation
of the MR constitutes the initial response to stress, acting on the genome and maintaining
the stability and integrity of the system. After these initial moments, the GRs become
progressively engaged, initiating the end of the response to the stressor by triggering
slow mechanisms at the genomic level. In these cases, GR expression levels correlate with
sensitivity to negative situations. Indeed, an excess of stress or glucocorticoids during
fetal development may be responsible for an increased risk of cardiovascular, metabolic, or
neuroendocrine disorders in adulthood [82,83].

In summary, the MR not only has a role in the kidney and electrolyte homeostasis,
but it is also expressed in the CNS, and it is very important in the HPA axis and the
stress response.

3. Sleep

Sleep is a highly conserved process in the animal kingdom. Although the exact
function of sleep is not very clear, it is known to be present even in animals without a
CNS [84]. Since animals are helpless while they sleep, and do not eat or reproduce, it
is difficult to explain why they sleep. The theory of inactivity states that this is the very
purpose of sleep, to keep the animal inactive once it has accomplished all these tasks
(eating or reproducing); in fact, this seems to be a safer activity than wandering, exposing
itself to predators and wasting energy [85]. There are other theories: the theory of energy
conservation, restorative theory, and the theory of brain plasticity. The first theory states
that sleep is a process to reduce energy expenditure during times when it is more difficult to
hunt or gather food. Restorative theory claims that sleep time is a time for the organism to
repair and replenish cellular components damaged or depleted during waking time. Finally,
the theory of brain plasticity asserts that the process of brain growth and reorganization
occurs when the organism is asleep [86]. Sleep may fulfill several aspects of these theories
rather than only one of them. Despite the great unknowns when talking about sleep
function, it is currently accepted that sleep is important for memory consolidation [87];
regulation of the immune system, e.g., antigen-specific antibody and T-helper cell responses
have been shown to be enhanced in nighttime sleep compared to wakefulness [88,89]; and
regulation of metabolism, directly affecting glucose tolerance as well as the appetite [90].

Basically, the sleep process can be divided into two phases, non-rapid eye movement
(NREM) sleep and rapid eye movement (REM) sleep. In turn, NREM is divided into three
stages: (1) stage 1 NREM sleep, which lasts between 1 and 7 min, in which sleep is very
light and the individual can wake up very easily; (2) stage 2 NREM sleep, which lasts
between 10 and 25 min, in which sleep much deeper than in stage 1, but the individual can
still be woken up with a strong stimulus; and (3) stage 3 NREM sleep, lasting 20–40 min, in
which sleep is deep sleep, also known as Slow-Wave Sleep (SWS), a time when memory
consolidation [87] and immunity boosting activities take place [88,89] and when the organ-
ism is less metabolically active [90]. REM sleep is the dreaming phase of sleep. Voluntary
muscle contraction stops except for the eyes, producing the eye movement characteristic of
this phase. Brain activity during this phase is similar to wakefulness, and the body does
not regulate temperature adequately. As people age, sleep becomes fragmented and the
efficiency of sleep is lower [91]. Nighttime sleep is composed of 4–5 cycles of these stages.
As the night progresses, the duration of the different stages changes, with more time in
stage 2 NREM sleep and REM sleep [92,93].

There are several brain structures involved in sleep. The basal forebrain can promote
both sleep and wakefulness. Cholinergic neurotransmission is active during wakefulness
and REM sleep [94]. The reticular activating system maintains wakefulness by sending
excitatory signals to the basal forebrain, thalamus, and hypothalamus [94]. The thalamus
regulates sleep-related oscillatory activity and has been proposed to integrate central and
decentral sleep signaling to produce a global signal [95]. In the hypothalamus, the lateral
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hypothalamic area consists of different types of neurons that can promote wakefulness as
well as SWS and REM sleep [94,96].

In 1982, Borbely postulated that the sleep process is regulated by the hypothalamus by
two mechanisms: the sleep–wake pattern (S-process) and the circadian clock (C-process).
The interaction between these two factors determines the amount of time that we spend
asleep [97]. Later, a third actor, the location factor (Z-process), was introduced, because it
had been shown that electroencephalogram slow-wave activity varies with different loca-
tions, adding a geographical variable [98]. In this review, we focus on the circadian clock.

3.1. The Circadian Clock

The existence of circadian rhythms was discovered in 1937 in Drosophila melanogaster [99].
Using this same model, in 1971, Konopka and Benzer found a genetic base underlying
this circadian process [100]. Since then, it has been shown that an internal clock exists in
almost all living organisms, from animals and plants to bacteria and archaeobacteria [101].
This internal clock can synchronize with some environmental signals. This ability is called
“entrainment”. These signals used by the clock for entrainment are called zeitgebers (time-
givers); the most important zeitgebers are the dark–light pattern, the metabolic homeostasis,
and the need for rest [102,103].

In mammals, the circadian clock is controlled by the hypothalamic suprachiasmatic
nucleus (SCN), a small network of neurons capable of producing autonomous circadian
rhythms [104]. There are peripheral circadian oscillators that operate independently but are
entrained by the SCN. Nevertheless, they are entrained by other environmental cues and
provide an independent circadian functioning of the tissue where they are expressed [102].
Light is the strongest known zeitgeber for the central clock [102]. Neurons from the hy-
pothalamic SCN receive light input through the retinohypothalamic tract, which constitutes
the photic stimulus input for entrainment of the internal clock with the light–dark pat-
tern [102]. There are other signals that these peripheral clocks can use for entrainment:
food availability, body temperature, or circulating factors such as corticoids [103,105].

The circadian clock is composed of a transcriptional machinery (cell autonomous
transcription–translation feedback loop) that binds enhancer box (E-box) elements. Nearly
50% of genes have circadian regulation in mice and humans [106]. The circadian clock
has regulatory arms. These include the positive regulator arm and the negative regulator
arm. In the positive arm, Circadian locomotor output cycles kaput (CLOCK) and brain and
muscle aryl hydrocarbon receptor nuclear-like 1 (BMAIL1) form a heterodimer binding the
E-box motif in the promoter of the genes with circadian regulation. The genes Cry and Per
also have E-box motifs in their promoters, increasing their transcription. Cryptochrome
(CRY) and period circadian protein homolog (PER) belong to the negative arm of the
circadian clock interfering with CLOCK and BMAL1 expression, inhibiting, therefore,
their own transcription. The NR retinoid-related orphan (ROR) receptor and reverse
erythroblastosis virus α (REV-ERBα) are part of the positive arm and the negative arm
of the circadian machinery, respectively. The former activates and the latter inhibits the
transcription of BMAL1 [107]. The protein casein kinase (CK)-1δ/ε is an important regulator
of the cell cycle. CK-1δ/ε controls the PER function by phosphorylation [108,109] (Figure 2).

It has recently been shown in D. melanogaster that chromatin accessibility also follows
a 24-h oscillation and could play an important role in the maintenance of the internal
clock [109]. The proper functioning of the circadian clock depends on the activation of
histone acetyl/methyl transferases [110]. It has even been observed that CLOCK, a member
of the circadian core machinery, possesses histone acetyltransferase activity on its own [111].

Circadian regulation of the HPA axis has been described. There is a direct axonal
connection between the SCN and the PVN. Furthermore, circadian secretion of CRH leads
to increased ACTH levels and decreased vasopressin release from the SCN, allowing the
organism to reach a cortisol nadir [112]. Indeed, both endogenous MR agonists, aldosterone
and cortisol, follow a circadian pattern of release [113–115]. Cortisol level varies throughout
the day and is also regulated according to metabolic demands. There is a peak in cortisol
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after awakening, and it gradually decreases until sleep, reaching a nadir in the early night
hours [113]. In the case of aldosterone, sleep increases the release of this hormone and this
correlates with plasma renin activity but not with cortisol. After awakening, aldosterone
levels experience a large increase associated with increased adrenal gland activity and
correlated with cortisol levels [114]. Thus, aldosterone is controlled by both sleep and the
circadian clock [115]. The circadian clock is a strong determinant of the wake/sleep cycle,
and its dysregulation could be the cause of difficulties in initiating and maintaining sleep
or insomnia [116].
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Figure 2. Circadian clock pathway. CLOCK: Circadian locomotor output cycles kaput, BMAL1:
brain and muscle aryl hydrocarbon receptor nuclear-like 1, E-box: enhancer box, CRY: cryptochrome,
PER: period circadian protein homolog, ROR: retinoid-related orphan receptor, REV-ERBα: reverse
erythroblastosis virus α, CK1δ/ε: Casein Kinase 1 isoforms δ/ε, RRE: ROR response element.

3.2. Role of the Mineralocorticoid Receptor in Sleep

Direct regulation of REM and SWS by cortisol has been described. Cortisol reduces
REM, via GR activation, and increases SWS, via MR activation [1]. In fact, it seems that the
activation of the MR is necessary to enter SWS and consolidate memory. However, when
cortisol levels are elevated, both the MR and the GR are engaged, and this activation of
the GR impairs SWS entry and memory consolidation [117]. A study in healthy young
men shows that blocking the MR impairs memory consolidation, whereas blocking the
GR improves it [118]. In the early evening, cortisol levels are lowest, allowing an MR
occupancy rate of about 50–70% without GR occupancy [117]. This MR/GR activation ratio
has also been found to be crucial for the migration of naïve T-cells to lymph nodes, which
contributes to immune memory formation [119].

MR activation is also responsible for the HPA axis inhibition observed during early
nocturnal sleep in humans [120]. With aging, the hippocampus undergoes changes that
end in a disinhibition of the HPA axis. Since cortisol reduces both SWS and REM, HPA axis
activation could contribute to insomnia and sleep fragmentation observed with normal
aging [91].
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Dexamethasone, a treatment for pediatric acute lymphoblastic leukemia, has among
its side effects emotional symptoms, behavioral problems, and sleep disturbances [121].
Dexamethasone is a highly selective GR agonist and has a very low affinity for the MR. This
means that it can inhibit the HPA axis by reducing circulating cortisol, which reduces MR
activation in aldosterone-free territories. The addition of hydrocortisone to dexamethasone
treatment reduces both neuropsychological and sleep-associated side effects. These data
suggest that the MR has an important role in mood, behavior, and sleep. Therefore, it is
important to maintain MR activation in glucocorticoid therapy, such as dexamethasone
treatment [121].

A special case is patients with ASD, who have a high incidence of sleep disor-
ders [3,122]. An ASD study identified 69 genes associated with ASD and with a form
of ASD caused by a mutation in the promoter of the NR3C2 gene [123]. A zebrafish NR3C2
KO model has confirmed features of ASD, including social behavior deficits and sleep
disorders. Like ASD patients, NR3C2 KO zebrafish exhibit problems in sleep initiation and
maintenance [123].

MDD is a mental condition strongly associated with sleep disturbance and is related
to chronic dysregulation of cortisol and the HPA axis. Patients with MDD have a shorter
duration of SWS. In addition, aldosterone levels have also been proposed as a marker
of MDD [2]. Low peripheral MR activation is a predictor of therapeutic refractoriness of
MDD, so patients with MDD who have low plasma Na+ levels and low blood pressure may
have a poor prognosis. These patients have a discrepancy between central and peripheral
MR function, leading to increased aldosterone levels, which acts in the CNS producing
anxiety-like symptoms, but has little effect in the periphery [124]. Recently, treatment with
MRA has been suggested to treat anxiety-related behavior [125]. Treatment with Glycyrrhiza
glabra, an 11β-HSD2 inhibitor, increases peripheral MR activation, reducing refractoriness
in these patients [126]. However, MRAs have shown no clear beneficial effects in patients
and, in addition, have side effects including an increased risk of type 2 diabetes mellitus [2].
In addition, aldosterone and primary aldosteronism have been found to produce depressive
and anxious phenotypes, both of which are associated with poor sleep quality [127]. Finally,
a particular subform of MDD is associated with hyperaldosteronism, and a possible role for
drugs that interfere with the renin–angiotensin–aldosterone system (RAAS) seems to be an
underused option that could provide a good outcome in the treatment of MDD, especially
that associated with high aldosterone levels [128].

3.3. Sleep Quality in Human Diseases

Among the sleep disorders, insomnia is the most common. Insomnia has a prevalence
of 10% in the general population and about 20% of the population suffers occasional symp-
toms of insomnia [129]. Individuals suffering from insomnia have poor sleep efficiency and
sleep satisfaction. Symptoms include difficulty initiating sleep, difficulty maintaining sleep,
and/or waking up early in the morning. To fully fit the diagnosis, these symptoms must
occur at least three times per week for at least three months and must be accompanied by
daytime disturbances [130].

Sleep disorders are associated with a risk of occupational injury due to a lack of
alertness and fatigue [131]. Insomnia has been linked to many other health problems, but
also prolonged sleep. For example, short sleep duration has been shown to increase the
risk of cancer in Asians and prolonged sleep increases the risk of colorectal cancer [132].
A meta-analysis found that both short sleep (less than 7 h) and long sleep (more than 9 h)
are associated with an increase in cardiovascular events and all-cause mortality [133]. In
a study conducted in China involving 409,156 adults with no history of stroke, coronary
heart disease, or insomnia, it was observed that individuals who slept between 7 and
8 h had the lowest risk, whereas those who slept too little or too much (≤5 h or ≥10 h)
had a 10% and 12% higher risk of stroke and 23% and 22% higher risk of major coronary
events, respectively [134]. These data are confirmed by another meta-analysis involving
528,653 people from 16 prospective studies, where it was observed that the lowest risk
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was found in individuals who slept 7 h, while an increase of 1 h of sleep compared to
the baseline raised the risk of total stroke to 13%. However, in this case, no effect on risk
was observed for individuals with little sleep [135]. Finally, another systematic review of
13 prospective studies with 122,501 subjects followed for 20 years concluded that insomnia
increases the risk of developing or dying from cardiovascular disease [136].

Short sleep duration or chronic sleep deprivation is also known to increase the risk
of type 2 diabetes mellitus [90], as well as the risk of developing MDD [137] or the risk
of Alzheimer’s disease [138]. Insomnia has also been associated with a worse prognosis
of congestive obstructive pulmonary disease [139]. Finally, insomnia symptoms among
middle-aged and older adults were associated with increased all-cause mortality [140]. A
recent study shows that individuals with moderate to severe obstructive sleep apnea (OSA)
had an increased risk of CKD progression [141], although the reliability of studies showing
an association between insomnia and somatic disorders is questionable due to problems
with diagnosis and inconsistencies in the definition of insomnia and methodology [130].
Therefore, studies with a consensus methodology and an established definition of insomnia
are needed to clarify the exact impact of insomnia on somatic disorders.

4. Sleep and Kidney Function
4.1. The Circadian Clock Controls Kidney Function

The kidney is a vital organ for maintaining electrolyte homeostasis and water balance,
thus playing an important role in the regulation of blood pressure, and is also responsible
for the excretion of metabolic waste products. The kidney is the second peripheral organ
with the highest circadian rhythm-dependent gene expression (almost 50%), including
genes involved in blood pressure regulation and waste excretion [108,142]. Excretion of
both Na+ and K+ follows a circadian pattern, being maximal during the day for humans
and during the night for rodents [143].

Several mechanisms of Na+ balance are controlled by the circadian clock. For exam-
ple, Na+/H+ antiporter 3 (NHE3) is regulated by direct binding of the BMAL1:CLOCK
dimer to E-box motifs in the NH3 gene promoter [144] and also by PER1, one of the core
members of the circadian clock. Pharmacological inhibition and small interfering RNA
(siRNA) of PER1 decrease NHE3 levels [145]. In addition, the expression of Na+- glucose
transporter 1 (SGLT1) is also reduced after pharmacological inhibition of PER1 [145]. PER1
deficiency causes lower ENaC expression. Thus, PER1 is involved in Na+ homeostasis in
the kidney [108]. Indeed, Per1 KO mice show increased natriuresis. Moreover, inhibition of
CK1δ/ε prevents the entry of PER1 into the nucleus and decreases the levels of subunit α
of ENaC (αENaC) [108,146]. On the other hand, the decrease in PER1 levels is accompanied
by a decrease in FXYD domain-containing ion transport regulator 5, also named dysadherin
in humans or RIC in mice, which controls Na+/K+ ATPase activity, and an increase in
ubiquitin-conjugating enzyme E2E3 (UBE2E3), caveolin-1 (CAV-1), and ET-1. UBE2E3
participates in the turnover of αENaC, reducing its presence in the membrane and marking
it for degradation. CAV-1 and ET-1 contribute to the reduction in ENaC activity [108].
The NCC is also regulated by PER1. Pharmacological inhibition of PER1 decreased NCC
expression and activity [147]. However, it appears that the regulation between aldosterone
and PER1 is bidirectional, as PER1-deficient cells do not show the typical circadian pattern
of increased aldosterone during the active phase. This may be due to a decrease in 3-(β)-
hydroxysteroid dehydrogenase (3β-HSD) [108]. PER1, as well as the CRY1/2 protein, is
part of the negative regulatory arm of the circadian clock. However, Cry1/2 KO mice show
opposite effects to those observed in Per1 KO mice, which could be due to a differential
effect of the components on distinct genes. Finally, Cry1/2 KO mice exhibit elevated levels
of 3β-HSD and aldosterone, as well as salt-sensitive hypertension [148].

K+ balance is controlled by the circadian clock. The ratio of excretion between the low-
est time of excretion to the highest one is 5:1 in humans with a normal K+ diet. According
to this study, distal K+ uptake in the nephron follows a circadian pattern and is similar in
all cells. There is a movement of intracellular K+ into the extracellular compartment in the
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morning and intercalated cells produce a similar movement of K+ into the distal nephron
fluid, thus increasing K+ excretion. The opposite occurs in the late afternoon [149]. In line
with this, there is a circadian variation in the expression of H+/K+ ATPase type 2, the pump
responsible for K+ resorption from the distal nephron [150]. Thanks to the work of Firsov
et al., in which they microdissected the DCT, connecting segment, and CCD segments from
mice every 4 h for a 24 h period, circadian-regulated K+ channels are known. Among the
regulated genes are the major elements of distal tubule K+ transport, such as the catalytic
subunits of H+/K+ ATPase (Atp4a and Atp12a), several subunits of Na+/K+ ATPase (Atp1a1,
Atp1a2 and Atp1b2), and the β subunit of the BK channel (Kcnmb1). Other genes, such
as several voltage-gated K+ channels and inward rectifiers, including the Kir1.3 inward
rectifier (Kcnj15), were also found [143,151]. Finally, Clock KO mice exhibit aberrant K+

excretion, showing again the regulation of K+ fluxes by the circadian clock [143] (Figure 3).
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Figure 3. Kidney function circadian coupling. Representation of the circadian time (black line) with
the peak of Na+/K+ excretion, the peak of blood pressure, and the peak of adrenal hormone release.
Adrenal hormones: cortisol and aldosterone.

The Na+ and K+ excretion peaks overlap, which is counterintuitive. The peak in Na+

excretion is thought to be due to a decrease in Na+ reabsorption, while the peak in K+ is due
to an increase in K+ secretion. Indeed, the diuretic drug amiloride seems to blunt the peak
in K+ excretion while increasing that in sodium Na+. Therefore, ENaC-ROMK regulation
may play a role in this effect [143]. ROMK shows a circadian variation of 30% during the
zeitgeber time 20, coinciding with the second part of the activity period and the peak of K+

excretion in mice [151] (Figure 3).
Water uptake is also affected by the circadian clock. The type 2 vasopressin receptor, as

well as aquaporin-2 and aquaporin-4, responsible for the water resorption in the collecting
duct, peak in expression in the middle of the active phase. Clock KO mice show a phenotype
similar to diabetes insipidus-like, a condition in which vasopressin signaling is impaired
and water reabsorption capacity in the distal nephron is weakened [151,152].

Therefore, the kidney is tightly regulated by the circadian machinery.

4.2. Sleep Quality in Chronic Kidney Disease Patients

The role of sleep disorders, including insomnia, in the pathophysiology of several
diseases has been discussed. However, this association is bidirectional, and some diseases,
including ASD [3,122], MDD [121], Alzheimer’s disease [91], and cancer [153] have a
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high incidence of sleep disorders. In this line, CKD increases the prevalence of sleep
disorders. Besides problems related to renal function such as anemia, bone disorder, loss
of electrolyte balance, and accumulation of waste products, patients with CKD suffer
other types of central alterations such as depression, anxiety, and insomnia or poor sleep
quality [4,154,155]. Indeed, sleep disorders and insomnia constitute one of the comorbidities
of CKD that impair the quality of life of patients with kidney disease. The three most
frequent sleep disorders are sleep apnea, RLS, and insomnia [156]. Sleep disorders have
been associated with both CKD and non-CKD-related renal disorders, including RLS,
parasomnias, circadian sleep–wake disorders, hypersomnolence, central sleep apnea (CSA),
OSA, and hypoventilation [156].

The incidence of these disorders in the general population is different from that in
patients with CKD. For example, sleep apnea, which produces a worse evolution of kidney
function, has two different origins: OSA and CSA. In both cases, the incidence is higher in
CKD patients than in the general population, 25–57% vs. 10–49% for OSA and 10% versus
1% for CSA, respectively [4,141]. The prevalence of RLS in the general population is 5%,
while in CKD patients it grows as the renal disease progresses and increases to 15–30%.
CKD patients with RLS are three times more likely to have insomnia than those without
RLS [4,157]. Interestingly, this association may be bidirectional, and sleep disorders may
be responsible for an increased prevalence of RLS [158]. The prevalence of insomnia in
CKD patients ranges from 38 to 70%, whereas in the general population, the values are
between 10 and 20% [4]. Despite not modifying the progression of renal disease, insomnia
increases the risk of cardio-cerebrovascular disease and all-cause mortality risk in patients
with end-stage renal disease [159,160].

In a study conducted in patients diagnosed with CKD, the prevalence of poor sleep
quality and insomnia was 59% and 48% for CKD patients without kidney replacement
therapy (KRT), 68% and 46% for patients on hemodialysis, 67% and 61% for patients on
peritoneal dialysis, and 46% and 26% for renal transplant patients. In addition, age seemed
to increase the prevalence of insomnia, being higher in patients over 50 years than in
younger patients [5].

As mentioned above, patients on KRT show a higher prevalence of insomnia, especially
those on peritoneal dialysis [5]. Interestingly, the time of dialysis seems to have an impact
on sleep disturbances. It has been observed that patients on evening dialysis show longer
nocturnal sleep time, less daytime sleepiness, and need less hypnotic medication [161]. On
the other hand, nocturnal hemodialysis improves sleep apnea symptoms [157]. Within pa-
tients on KRT, renal transplantation seems to have a beneficial impact on sleep quality and
insomnia, since several studies showed an improvement in sleep quality in transplanted
patients compared with when they were receiving hemodialysis [5,162,163]. However, an-
other study with patients undergoing renal transplantation did not show an improvement
in either sleep quality or nocturnal blood pressure dipping, but it did improve daytime
sleepiness [163]. Baker et al. reported an improvement in sleep quality after transplantation
in male patients but not in female patients [164]. Nevertheless, sleep quality remains a
big problem even after transplantation, being one of the factors impairing the quality of
life of these patients [165]. In addition, a Cochrane systematic review published in 2015
shows how different interventions have little to no effect in the management of sleep
quality in CKD patients and highlights the need to address this pitfall in CKD symptom
handling [166]. In short, more studies are needed to establish how to improve sleep quality
in CKD patients.

5. Role of the Mineralocorticoid Receptor in Sleep Disorders in CKD

Although sleep quality and the prevalence of sleep disturbances are important in
patients with CKD, unfortunately, sleep disturbances are poorly controlled in patients with
CKD [166]. To the best of our knowledge, there is no existing literature that evaluates
the use of the MR as a target to treat sleep problems in the context of CKD. However,
below, we discuss the role of the MR in CKD and hypothesize whether the impaired MR
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function observed in patients with CKD could be responsible for the impaired sleep quality
described in these individuals.

There is a much literature describing the role of the MR in the pathophysiology of CKD.
At the end of the 20th century, MRAs began to be proposed as a treatment for CKD. The
beneficial effects of spironolactone, the first MRAs developed, in cardiovascular and renal
disease, have been described [167]. The side effects caused by spironolactone, including
progestational and anti-androgenic effects such as gynecomastia, abnormal menstrual
cycles, and impotence, led to the development of eplerenone, another steroidal MRA [167].
Since then, many studies have reported the benefits of MRA therapy in patients with CKD
for both renal [6,168] and CKD-associated comorbidities such as vascular calcification [169],
insulin resistance [170], left ventricular mass and function, blood pressure, and vascular
stiffness [171]. All studies to date have found hyperkalemia to be a worrisome effect of
treatment in patients with CKD [6]. The AMBER trial studied one of the strategies adopted
to overcome hyperkalemia after MRA treatment: the use of drugs such as patiromer that
prevent K+ absorption in the gastrointestinal tract, which allows prolonged treatment of
CKD patients on an MRA [172]. Preclinical studies have been conducted demonstrating the
effect of steroidal MRAs [170,173] and modern non-steroidal MRAs, which have a lower
incidence of side effects [174,175]. Finerenone, a non-steroidal MRA, has been studied
as a treatment in patients with CKD and type 2 diabetes mellitus for renal function and
cardiovascular events [7] and in the new onset of heart failure [8].

Furthermore, as mentioned, the MR is involved in electrolyte homeostasis [10,58],
so an imbalance in these electrolytes, involved in renal physiology, could alter circadian
signaling and, therefore, CKD-associated sleep disturbances. Indeed, a high-salt diet
advances peripheral circadian rhythms by 3 h in mouse livers, kidneys, and lungs [176] and
delays them by 5.5 h in rat kidneys [177]. Along the same line, a reversal of circadian K+

excretion has been observed, with a 39% increase in nocturnal urinary K+ levels in patients
with CKD [143]. Moreover, an imbalance in the Na+ excretion rhythm accompanied by an
altered nocturnal blood pressure dipping has been described in CKD [178].

CKD also increases plasma aldosterone and cortisol plasma because of impaired
urinary clearance [179,180]. In CKD, diurnal cortisol levels remain similar to healthy levels,
but the rate of decline is lessened and nadir levels are not reached [180]. This cortisol
can regulate the HPA axis, prevent the cortisol nadir needed to enter the SWS phase, and
activate the renal MR upon a decrease in 11β-HSD2 activity, which is known to occur in
CKD [181]. High levels of aldosterone are common in CKD [179]. High aldosterone levels
correlate with poor prognosis and increase cardiovascular risk [182]. Aldosterone can also
activate the central MR, altering MR occupancy and the GR/MR activation rate, which are
known to be important for entering the SWS phase [117,118].

5.1. MR-Related Mechanisms Able to Trigger Sleep Disturbances in CKD

Although, to our knowledge, MR-related mechanisms capable of triggering sleep dis-
turbances in CKD have not been described so far, here we propose two possible mechanisms
by which CKD could lead to sleep disturbances.

5.1.1. Circadian Clock Disruption

CKD is accompanied by dysregulation of the MR, which is involved in electrolyte
balance [10,58]. This electrolyte imbalance can dysregulate the circadian clock [143,176–178],
which is a strong determinant of the wake/sleep cycle. Dysregulation of the circadian clock
is one of the causes of difficulties in initiating and maintaining sleep or insomnia [116],
possibly through the HPA axis or the regulation of other substances such as melatonin [183]
(Figure 4A).
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Figure 4. Potential mechanisms by which chronic kidney disease (CKD)-associated mineralocorticoid
receptor (MR) dysregulation may lead to sleep disturbances. (A) The electrolytic imbalance observed
in CKD through the overactivation of the MR could disrupt the circadian clock, which controls sleep
and the hypothalamic-pituitary-adrenal (HPA) axis. Then, the altered HPA axis could dysregulate
non-REM sleep phase (NREM) and rapid eye movement sleep phase (REM). (B) Hyperaldosteronemia
and hypercortisolemia associated with CKD could lead to sleep disturbances in two ways. On one
hand, through the HPA dysregulation and the consequent over occupancy of the glucocorticoid
receptor (GR). On the other hand, increased levels of cortisol and aldosterone, as well as HPA axis
dysregulation, lead to overactivation of the central GR and MR and entrance into the SWS phase.SWS:
Slow-Wave Sleep.

5.1.2. High Levels of MR Agonist

Both MR ligands, aldosterone and cortisol, are increased in patients with CKD. An
elevated aldosterone level in CKD patients is an independent risk factor for CKD pro-
gression [181]. In addition, the RAAS has also been associated with depression, which is
often accompanied by insomnia [128]. On the other hand, plasma cortisol levels increase
in CKD, producing some Cushing’s syndrome-like symptoms, such as depression and
cognitive impairment, due to dysregulation of the HPA axis [182]. As mentioned above,
cortisol can promote SWS entry through MR activation and reduce REM via GR activa-
tion [1]. Therefore, the elevated cortisol levels observed in CKD may alter sleep in two
ways: through overactivation of the MR and through alteration of the GR/MR activation
ratio [113,117–119] (Figure 4B).

5.2. Putative Therapeutic Interventions
5.2.1. Insomnia-Related Regulatory Protein-Based Therapeutic Intervention

Once the relationship between the MR and CKD sleep disturbances is established,
other molecular mediators that have been linked to sleep disturbances in CKD, such as
orexin [184], could be studied in the context of MR activation. Orexin has been implicated
in sleep problems [185] and also follows a circadian pattern of expression [186]. However,
the relationship between MR activation and orexin has not been studied.
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5.2.2. RAAS-Based Therapeutic Interventions

CKD therapy often includes drugs that interfere with the RAAS. It is not easy to
speculate whether these drugs produce a good or a bad effect on the sleep of CKD patients.
In fact, RAAS-based therapy could improve or worsen sleep quality due to its effect on
aldosterone levels or MR function. In the case of MRAs, the classical steroidal components
cross the blood–brain barrier, producing CNS effects. It has been seen that a blockade of the
central MR can lead to an increased risk of depression and sleep disturbances. However,
modern non-steroidal MRAs do not reach the central MR. On the other hand, a discrepancy
between central MR activation and peripheral MR activation could occur, leading to an
increased risk of sleep disturbances and insomnia [124,126].

Therefore, these drugs may not be the best choice either. Perhaps a partial agonist
could be the best option, leading to antagonism of the natural ligands but preserving a part
of the function of the receptor. Another aspect to consider is that, since the circadian clock
is involved, the intervention is as important as the timing of the intervention, so perhaps
chronotherapy should be considered to treat CKD patients, not only in KRT, but also in
drug administration. For example, preventing MR activation at night could preserve the
nighttime blood pressure dipping, which is important to maintain the functioning of the
circadian clock.

Importantly, sleep disorder observational studies should be performed in clinical
trials with CKD patients, annotating the quality of the sleep and the effect of the treatment
administered on these disturbances. The timing of the doses and co-factors such as the
use of stimulants or previous occurrences of insomnia, anxiety, or depression should
be considered.

6. Conclusions

It is demonstrated that the MR plays an important role in the physiology and patho-
physiology of sleep, especially in the SWS phase and associated functions such as memory
consolidation and immune system boosting. Partial occupancy of the MR and low occu-
pancy of the GR by cortisol appears to be important for sleep maintenance, so the GR/MR
ratio should be considered. Finally, the discrepancy between central and peripheral MR
function as well as low peripheral MR function could be responsible for poor sleep quality.

Further Research

Sleep disorders are a major problem in the quality of life of patients with CKD, so
more attention should be paid to this symptom.

On the one hand, more preclinical research is needed to elucidate the possible role
of the MR in CKD-related sleep disorders. Although there are several animal models for
insomnia, such as caffeine- or stress-induced insomnia in rodents [187,188], probably none
of them would be a good choice, since the target is CKD-related insomnia. Therefore, the
spontaneously hypertensive rat model described here, which exhibits sleep disturbances,
may be a better choice [189]. Nevertheless, all of these preclinical models may be useful to
demonstrate whether sleep disturbances further deteriorate the kidney by accelerating the
progression of CKD and whether MRA could prevent this kidney deterioration. To conduct
a rapid study of CKD-related sleep disorders, it would be necessary to monitor CKD
animals by high-definition video recording with artificial intelligence support [190,191].

On the other hand, studies are needed to analyze the incidence of sleep disorders in
CKD patients treated or not with drugs that interfere with the RAAS. This would allow
a more detailed analysis of the role of the MR in these CKD-associated sleep disorders.
Another interesting scenario would be to separate patients receiving steroid MRAs from
those receiving non-steroidal MRAs, which would provide a great perspective on the
appropriateness of these treatments.

In short, advances in the knowledge of this comorbidity could have a very positive
impact on the quality of life of patients with CKD and perhaps on the progression of
kidney disease.
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102. Ashbrook, L.H.; Krystal, A.D.; Fu, Y.-H.; Ptáček, L.J. Genetics of the human circadian clock and sleep homeostat. Neuropsychophar-

macology 2020, 45, 45–54. [CrossRef]
103. Takahashi, J.S.; Hong, H.-K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications

for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [CrossRef]
104. Welsh, D.K.; Logothetis, D.E.; Meister, M.; Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express

independently phased circadian firing rhythms. Neuron 1995, 14, 697–706. [CrossRef]
105. Wu, T.; Ni, Y.; Dong, Y.; Xu, J.; Song, X.; Kato, H.; Fu, Z. Regulation of circadian gene expression in the kidney by light and food

cues in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R635–R641. [CrossRef]
106. Ayyar, V.S.; Sukumaran, S. Circadian rhythms: Influence on physiology, pharmacology, and therapeutic interventions. J.

Pharmacokinet. Pharmacodyn. 2021, 48, 321–338. [CrossRef] [PubMed]
107. Yuan, Y.; Chen, Q.; Brovkina, M.; Clowney, E.J.; Yadlapalli, S. Clock-dependent chromatin accessibility rhythms regulate circadian

transcription. PLoS Genet. 2024, 20, e1011278. [CrossRef]
108. Badura, L.; Swanson, T.; Adamowicz, W.; Adams, J.; Cianfrogna, J.; Fisher, K.; Holland, J.; Kleiman, R.; Nelson, F.; Reynolds,

L.; et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free-running and entrained
conditions. J. Pharmacol. Exp. Ther. 2007, 322, 730–738. [CrossRef]

109. Solocinski, K.; Gumz, M.L. The circadian clock in the regulation of renal rhythms. J. Biol. Rhythms 2015, 30, 470–486. [CrossRef]
[PubMed]

110. González-Suárez, M.; Aguilar-Arnal, L. Histone methylation: At the crossroad between circadian rhythms in transcription and
metabolism. Front. Genet. 2024, 15, 1343030. [CrossRef] [PubMed]

111. Doi, M.; Hirayama, J.; Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 2006, 125, 497–508.
[CrossRef]

112. Spiga, F.; Walker, J.J.; Terry, J.R.; Lightman, S.L. HPA axis-rhythms. Compr. Physiol. 2014, 4, 1273–1298. [CrossRef] [PubMed]
113. Czeisler, C.A.; Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans. Recent. Prog. Horm. Res.

1999, 54, 97–130; discussion 130–132.

https://doi.org/10.1038/nrn1683
https://doi.org/10.1016/j.arr.2005.03.003
https://www.ncbi.nlm.nih.gov/pubmed/15996533
https://doi.org/10.1196/annals.1314.006
https://www.ncbi.nlm.nih.gov/pubmed/15677396
https://doi.org/10.1038/s41583-018-0098-9
https://www.ncbi.nlm.nih.gov/pubmed/30573905
https://doi.org/10.1371/journal.pbio.0060216
https://www.ncbi.nlm.nih.gov/pubmed/18752355
https://doi.org/10.1038/nature04285
https://doi.org/10.1146/annurev-psych-010419-050815
https://doi.org/10.1111/j.1749-6632.2009.05300.x
https://doi.org/10.4049/jimmunol.1100015
https://doi.org/10.1155/2010/270832
https://doi.org/10.1097/00019442-200505000-00002
https://www.nhlbi.nih.gov/health/sleep/stages-of-sleep
https://doi.org/10.3892/etm.2021.9703
https://doi.org/10.1007/s00424-011-1014-6
https://doi.org/10.1016/j.conb.2017.03.020
https://www.ncbi.nlm.nih.gov/pubmed/28427008
https://www.ncbi.nlm.nih.gov/pubmed/7185792
https://doi.org/10.1111/j.1365-2869.2009.00750.x
https://www.ncbi.nlm.nih.gov/pubmed/19250170
https://doi.org/10.1007/BF00338939
https://doi.org/10.1073/pnas.68.9.2112
https://doi.org/10.1080/1040841X.2023.2220789
https://doi.org/10.1038/s41386-019-0476-7
https://doi.org/10.1038/nrg2430
https://doi.org/10.1016/0896-6273(95)90214-7
https://doi.org/10.1152/ajpregu.00578.2009
https://doi.org/10.1007/s10928-021-09751-2
https://www.ncbi.nlm.nih.gov/pubmed/33797011
https://doi.org/10.1371/journal.pgen.1011278
https://doi.org/10.1124/jpet.107.122846
https://doi.org/10.1177/0748730415610879
https://www.ncbi.nlm.nih.gov/pubmed/26527094
https://doi.org/10.3389/fgene.2024.1343030
https://www.ncbi.nlm.nih.gov/pubmed/38818037
https://doi.org/10.1016/j.cell.2006.03.033
https://doi.org/10.1002/cphy.c140003
https://www.ncbi.nlm.nih.gov/pubmed/24944037


Int. J. Mol. Sci. 2024, 25, 12320 21 of 24

114. Charloux, A.; Gronfier, C.; Lonsdorfer-Wolf, E.; Piquard, F.; Brandenberger, G. Aldosterone release during the sleep-wake cycle in
humans. Am. J. Physiol. 1999, 276, E43–E49. [CrossRef]

115. Scheuermaier, K.; Chang, A.-M.; Duffy, J.F. Sleep-independent circadian rhythm of aldosterone secretion in healthy young adults.
Sleep Health 2024, 10, S103–S107. [CrossRef] [PubMed]

116. Lack, L.C.; Micic, G.; Lovato, N. Circadian aspects in the aetiology and pathophysiology of insomnia. J. Sleep Res. 2023, 32, e13976.
[CrossRef] [PubMed]

117. Groch, S.; Wilhelm, I.; Lange, T.; Born, J. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory
formation during sleep. Psychoneuroendocrinology 2013, 38, 2962–2972. [CrossRef] [PubMed]

118. Rimmele, U.; Besedovsky, L.; Lange, T.; Born, J. Blocking mineralocorticoid receptors impairs, blocking glucocorticoid receptors
enhances memory retrieval in humans. Neuropsychopharmacology 2013, 38, 884–894. [CrossRef] [PubMed]

119. Besedovsky, L.; Born, J.; Lange, T. Blockade of mineralocorticoid receptors enhances naïve T-helper cell counts during early sleep
in humans. Brain Behav. Immun. 2012, 26, 1116–1121. [CrossRef]

120. Born, J.; Steinbach, D.; Dodt, C.; Fehm, H.L. Blocking of central nervous mineralocorticoid receptors counteracts inhibition of
pituitary-adrenal activity in human sleep. J. Clin. Endocrinol. Metab. 1997, 82, 1106–1110. [CrossRef]

121. Warris, L.T.; van den Heuvel-Eibrink, M.M.; Aarsen, F.K.; Pluijm, S.M.F.; Bierings, M.B.; van den Bos, C.; Zwaan, C.M.; Thygesen,
H.H.; Tissing, W.J.; Veening, M.A.; et al. Hydrocortisone as an intervention for dexamethasone-induced adverse effects in
pediatric patients with acute lymphoblastic leukemia: Results of a double-blind, randomized controlled trial. J. Clin. Oncol. 2016,
34, 2287–2293. [CrossRef]

122. Morgan, B.; Nageye, F.; Masi, G.; Cortese, S. Sleep in adults with Autism Spectrum Disorder: A systematic review and meta-
analysis of subjective and objective studies. Sleep Med. 2020, 65, 113–120. [CrossRef]

123. Ruzzo, E.K.; Pérez-Cano, L.; Jung, J.Y.; Wang, L.K.; Kashef-Haghighi, D.; Hartl, C.; Singh, C.; Xu, J.; Hoekstra, J.N.; Leventhal, O.;
et al. Inherited and DE Novo genetic risk for autism impacts shared networks. Cell 2019, 178, 850–866.e26. [CrossRef] [PubMed]

124. Hlavacova, N.; Jezova, D. Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like
behavior. Horm. Behav. 2008, 54, 90–97. [CrossRef] [PubMed]

125. Murck, H.; Adolf, C.; Schneider, A.; Schlageter, L.; Heinrich, D.; Ritzel, K.; Sturm, L.; Quinkler, M.; Beuschlein, F.; Reincke, M.;
et al. Differential effects of reduced mineralocorticoid receptor activation by unilateral adrenalectomy vs mineralocorticoid
antagonist treatment in patients with primary aldosteronism—Implications for depression and anxiety. J. Psychiatr. Res. 2021, 137,
376–382. [CrossRef] [PubMed]

126. Murck, H.; Lehr, L.; Hahn, J.; Braunisch, M.C.; Jezova, D.; Zavorotnyy, M. Adjunct therapy with Glycyrrhiza glabra rapidly
improves outcome in depression-A pilot study to support 11-beta-hydroxysteroid dehydrogenase type 2 inhibition as a new
target. Front. Psychiatry 2020, 11, 605949. [CrossRef]

127. Adolf, C.; Murck, H.; Sarkis, A.-L.; Schneider, H.; Heinrich, D.A.; Williams, T.A.; Reincke, M.; Künzel, H. Differential central
regulatory mineralocorticoidreceptor systems for anxiety and depression—Could KCNJ5 be an interesting target for further
investigations in major depression? J Psychiatr Res 2022, 156, 69–77. [CrossRef]

128. Murck, H.; Schüssler, P.; Steiger, A. Renin-angiotensin-aldosterone system: The forgotten stress hormone system: Relationship to
depression and sleep. Pharmacopsychiatry 2012, 45, 83–95. [CrossRef]

129. Morin, C.M.; Jarrin, D.C. Epidemiology of insomnia: Prevalence, course, risk factors, and public health burden. Sleep Med. Clin.
2022, 17, 173–191. [CrossRef] [PubMed]

130. Benz, F.; Meneo, D.; Baglioni, C.; Hertenstein, E. Insomnia symptoms as risk factor for somatic disorders: An umbrella review of
systematic reviews and meta-analyses. J. Sleep Res. 2023, 32, e13984. [CrossRef]

131. Uehli, K.; Mehta, A.J.; Miedinger, D.; Hug, K.; Schindler, C.; Holsboer-Trachsler, E.; Leuppi, J.D.; Künzli, N. Sleep problems and
work injuries: A systematic review and meta-analysis. Sleep Med. Rev. 2014, 18, 61–73. [CrossRef]

132. Chen, Y.; Tan, F.; Wei, L.; Li, X.; Lyu, Z.; Feng, X.; Wen, Y.; Guo, L.; He, J.; Dai, M.; et al. Sleep duration and the risk of cancer: A
systematic review and meta-analysis including dose-response relationship. BMC Cancer 2018, 18, 1149. [CrossRef]

133. Yin, J.; Jin, X.; Shan, Z.; Shuzhen, H.L.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration
with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort
studies. J. Am. Heart Assoc. 2017, 6. [CrossRef]

134. Chen, Y.; Kartsonaki, C.; Clarke, R.; Guo, Y.; Du, H.; Yu, C.; Yang, L.; Pei, P.; Stevens, R.; Burgess, S.; et al. Sleep duration and risk
of stroke and coronary heart disease: A 9-year community-based prospective study of 0.5 million Chinese adults. BMC Neurol.
2023, 23, 327. [CrossRef]

135. He, Q.; Sun, H.; Wu, X.; Zhang, P.; Dai, H.; Ai, C.; Shi, J. Sleep duration and risk of stroke: A dose-response meta-analysis of
prospective cohort studies. Sleep Med. 2017, 32, 66–74. [CrossRef]

136. Sofi, F.; Cesari, F.; Casini, A.; Macchi, C.; Abbate, R.; Gensini, G.F. Insomnia and risk of cardiovascular disease: A meta-analysis.
Eur J Prev Cardiol 2014, 21, 57–64. [CrossRef] [PubMed]

137. Li, L.; Wu, C.; Gan, Y.; Qu, X.; Lu, Z. Insomnia and the risk of depression: A meta-analysis of prospective cohort studies. BMC
Psychiatry 2016, 16, 375. [CrossRef] [PubMed]

138. Bubu, O.M.; Brannick, M.; Mortimer, J.; Umasabor-Bubu, O.; Sebastião, Y.V.; Wen, Y.; Schwartz, S.; Borenstein, A.R.; Wu, Y.;
Morgan, D.; et al. Sleep, Cognitive impairment, and Alzheimer’s disease: A Systematic Review and Meta-Analysis. Sleep 2017, 40,
zsw032. [CrossRef] [PubMed]

https://doi.org/10.1152/ajpendo.1999.276.1.E43
https://doi.org/10.1016/j.sleh.2023.10.019
https://www.ncbi.nlm.nih.gov/pubmed/38065818
https://doi.org/10.1111/jsr.13976
https://www.ncbi.nlm.nih.gov/pubmed/37537965
https://doi.org/10.1016/j.psyneuen.2013.08.006
https://www.ncbi.nlm.nih.gov/pubmed/24035099
https://doi.org/10.1038/npp.2012.254
https://www.ncbi.nlm.nih.gov/pubmed/23303058
https://doi.org/10.1016/j.bbi.2012.07.016
https://doi.org/10.1210/jcem.82.4.3856
https://doi.org/10.1200/JCO.2015.66.0761
https://doi.org/10.1016/j.sleep.2019.07.019
https://doi.org/10.1016/j.cell.2019.07.015
https://www.ncbi.nlm.nih.gov/pubmed/31398340
https://doi.org/10.1016/j.yhbeh.2008.02.004
https://www.ncbi.nlm.nih.gov/pubmed/18377905
https://doi.org/10.1016/j.jpsychires.2021.02.064
https://www.ncbi.nlm.nih.gov/pubmed/33761426
https://doi.org/10.3389/fpsyt.2020.605949
https://doi.org/10.1016/j.jpsychires.2022.09.008
https://doi.org/10.1055/s-0031-1291346
https://doi.org/10.1016/j.jsmc.2022.03.003
https://www.ncbi.nlm.nih.gov/pubmed/35659072
https://doi.org/10.1111/jsr.13984
https://doi.org/10.1016/j.smrv.2013.01.004
https://doi.org/10.1186/s12885-018-5025-y
https://doi.org/10.1161/JAHA.117.005947
https://doi.org/10.1186/s12883-023-03367-4
https://doi.org/10.1016/j.sleep.2016.12.012
https://doi.org/10.1177/2047487312460020
https://www.ncbi.nlm.nih.gov/pubmed/22942213
https://doi.org/10.1186/s12888-016-1075-3
https://www.ncbi.nlm.nih.gov/pubmed/27816065
https://doi.org/10.1093/sleep/zsw032
https://www.ncbi.nlm.nih.gov/pubmed/28364458


Int. J. Mol. Sci. 2024, 25, 12320 22 of 24

139. Luyster, F.S.; Boudreaux-Kelly, M.Y.; Bon, J.M. Insomnia in chronic obstructive pulmonary disease and associations with healthcare
utilization and costs. Respir. Res. 2023, 24, 93. [CrossRef] [PubMed]

140. Mahmood, A.; Ray, M.; Ward, K.D.; Dobalian, A.; Ahn, S. Longitudinal associations between insomnia symptoms and all-cause
mortality among middle-aged and older adults: A population-based cohort study. Sleep 2022, 45, zsac019. [CrossRef]

141. Beaudin, A.E.; Raneri, J.K.; Ahmed, S.; Allen, A.J.H.; Nocon, A.; Gomes, T.; Gakwaya, S.; Sériès, F.; Kimoff, J.R.; Skomro, R.; et al.
Association of insomnia and short sleep duration, alone or with comorbid obstructive sleep apnea, and the risk of chronic kidney
disease. Sleep 2022, 45, zsac088. [CrossRef]

142. Pizarro, A.; Hayer, K.; Lahens, N.F.; Hogenesch, J.B. CircaDB: A database of mammalian circadian gene expression profiles.
Nucleic Acids Res. 2013, 41, D1009–D1013. [CrossRef]

143. Gumz, M.L.; Rabinowitz, L. Role of circadian rhythms in potassium homeostasis. Semin. Nephrol. 2013, 33, 229–236. [CrossRef]
[PubMed]

144. Saifur Rohman, M.; Emoto, N.; Nonaka, H.; Okura, R.; Nishimura, M.; Yagita, K.; van der Horst, G.T.; Matsuo, M.; Okamura, H.;
Yokoyama, M. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int.
2005, 67, 1410–1419. [CrossRef]

145. Solocinski, K.; Richards, J.; All, S.; Cheng, K.-Y.; Khundmiri, S.J.; Gumz, M.L. Transcriptional regulation of NHE3 and SGLT1 by
the circadian clock protein Per1 in proximal tubule cells. Am. J. Physiol. Ren. Physiol. 2015, 309, F933–F942. [CrossRef]

146. Richards, J.; Greenlee, M.M.; Jeffers, L.A.; Cheng, K.-Y.; Guo, L.; Eaton, D.C.; Gumz, M.L. Inhibition of αENaC expression and
ENaC activity following blockade of the circadian clock-regulatory kinases CK1δ/ε. Am. J. Physiol. Ren. Physiol. 2012, 303,
F918–F927. [CrossRef]

147. Richards, J.; Ko, B.; All, S.; Cheng, K.Y.; Hoover, R.S.; Gumz, M.L. A role for the circadian clock protein Per1 in the regulation of
the NaCl co-transporter (NCC) and the with-no-lysine kinase (WNK) cascade in mouse distal convoluted tubule cells. J. Biol.
Chem. 2014, 289, 11791–11806. [CrossRef]

148. Doi, M.; Takahashi, Y.; Komatsu, R.; Yamazaki, F.; Yamada, H.; Haraguchi, S.; Emoto, N.; Okuno, Y.; Tsujimoto, G.; Kanematsu, A.;
et al. Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat. Med.
2010, 16, 67–74. [CrossRef] [PubMed]

149. Ede, M.C.M.; Brennan, M.F.; Ball, M.R. Circadian variation of intercompartmental potassium fluxes in man. J. Appl. Physiol. 1975,
38, 163–170. [CrossRef]

150. Salhi, A.; Centeno, G.; Firsov, D.; Crambert, G. Circadian expression of H,K-ATPase type 2 contributes to the stability of plasma
K+ levels. FASEB J. 2012, 26, 2859–2867. [CrossRef]

151. Firsov, D.; Tokonami, N.; Bonny, O. Role of the renal circadian timing system in maintaining water and electrolytes homeostasis.
Mol. Cell. Endocrinol. 2012, 349, 51–55. [CrossRef]

152. Zuber, A.M.; Centeno, G.; Pradervand, S.; Nikolaeva, S.; Maquelin, L.; Cardinaux, L.; Bonny, O.; Firsov, D. Molecular clock is
involved in predictive circadian adjustment of renal function. Proc. Natl. Acad. Sci. USA 2009, 106, 16523–16528. [CrossRef]

153. Büttner-Teleagă, A.; Kim, Y.-T.; Osel, T.; Richter, K. Sleep disorders in cancer-A systematic review. Int. J. Env. Res. Public. Health
2021, 18, 11696. [CrossRef] [PubMed]

154. Palmer, S.; Vecchio, M.; Craig, J.C.; Tonelli, M.; Johnson, D.W.; Nicolucci, A.; Pellegrini, F.; Saglimbene, V.; Logroscino, G.;
Fishbane, S.; et al. Prevalence of depression in chronic kidney disease: Systematic review and meta-analysis of observational
studies. Kidney Int. 2013, 84, 179–191. [CrossRef] [PubMed]

155. Huang, C.W.; Wee, P.H.; Low, L.L.; Koong, Y.L.A.; Htay, H.; Fan, Q.; Foo, W.Y.M.; Seng, J.J.B. Prevalence and risk factors for
elevated anxiety symptoms and anxiety disorders in chronic kidney disease: A systematic review and meta-analysis. Gen. Hosp.
Psychiatry 2021, 69, 27–40. [CrossRef] [PubMed]

156. Nigam, G.; Camacho, M.; Chang, E.T.; Riaz, M. Exploring sleep disorders in patients with chronic kidney disease. Nat. Sci. Sleep
2018, 10, 35–43. [CrossRef] [PubMed]

157. Hanly, P.J.; Pierratos, A. Improvement of sleep apnea in patients with chronic renal failure who undergo nocturnal hemodialysis.
N. Engl. J. Med. 2001, 344, 102–107. [CrossRef] [PubMed]

158. Molnar, M.Z.; Novak, M.; Szeifert, L.; Ambrus, C.; Keszei, A.; Koczy, A.; Lindner, A.; Barotfi, S.; Szentkiralyi, A.; Remport, A.; et al.
Restless legs syndrome, insomnia, and quality of life after renal transplantation. J. Psychosom. Res. 2007, 63, 591–597. [CrossRef]

159. Elder, S.J.; Pisoni, R.L.; Akizawa, T.; Fissell, R.; Andreucci, V.E.; Shunichi, K.F.; Fukuhara, S.; Kurokawa, K.; Rayner, H.C.; Furniss,
A.L.; et al. Sleep quality predicts quality of life and mortality risk in haemodialysis patients: Results from the Dialysis Outcomes
and Practice Patterns Study (DOPPS). Nephrol. Dial. Transpl. 2008, 23, 998–1004. [CrossRef]

160. Kim, H.W.; Heo, G.Y.; Kim, H.J.; Kang, S.-W.; Park, J.T.; Lee, E. Insomnia in patients on incident maintenance dialysis and the risk
of major acute cardio-cerebrovascular events and all-cause mortality. Nephrol. Dial. Transpl. 2024, 39, 830–837. [CrossRef]

161. Hsu, C.Y.; Lee, C.T.; Lee, Y.J.; Huang, T.L.; Yu, C.Y.; Lee, L.C.; Lam, K.K.; Chien, Y.S.; Chuang, F.R.; Hsu, K.T. Better sleep quality
and less daytime symptoms in patients on evening hemodialysis: A questionnaire-based study. Artif. Organs 2008, 32, 711–716.
[CrossRef]

162. Brekke, F.B.; Waldum-Grevbo, B.; von der Lippe, N. Os, I. The effect of renal transplantation on quality of sleep in former dialysis
patients. Transpl. Int. Off. J. Eur. Soc. Organ. Transplant. 2017, 30, 49–56. [CrossRef]

https://doi.org/10.1186/s12931-023-02401-w
https://www.ncbi.nlm.nih.gov/pubmed/36964552
https://doi.org/10.1093/sleep/zsac019
https://doi.org/10.1093/sleep/zsac088
https://doi.org/10.1093/nar/gks1161
https://doi.org/10.1016/j.semnephrol.2013.04.003
https://www.ncbi.nlm.nih.gov/pubmed/23953800
https://doi.org/10.1111/j.1523-1755.2005.00218.x
https://doi.org/10.1152/ajprenal.00197.2014
https://doi.org/10.1152/ajprenal.00678.2011
https://doi.org/10.1074/jbc.M113.531095
https://doi.org/10.1038/nm.2061
https://www.ncbi.nlm.nih.gov/pubmed/20023637
https://doi.org/10.1152/JAPPL.1975.38.1.163
https://doi.org/10.1096/fj.11-199711
https://doi.org/10.1016/j.mce.2011.06.037
https://doi.org/10.1073/pnas.0904890106
https://doi.org/10.3390/ijerph182111696
https://www.ncbi.nlm.nih.gov/pubmed/34770209
https://doi.org/10.1038/ki.2013.77
https://www.ncbi.nlm.nih.gov/pubmed/23486521
https://doi.org/10.1016/j.genhosppsych.2020.12.003
https://www.ncbi.nlm.nih.gov/pubmed/33516963
https://doi.org/10.2147/NSS.S125839
https://www.ncbi.nlm.nih.gov/pubmed/29430200
https://doi.org/10.1056/NEJM200101113440204
https://www.ncbi.nlm.nih.gov/pubmed/11150360
https://doi.org/10.1016/j.jpsychores.2007.06.007
https://doi.org/10.1093/ndt/gfm630
https://doi.org/10.1093/ndt/gfad231
https://doi.org/10.1111/j.1525-1594.2008.00593.x
https://doi.org/10.1111/TRI.12866


Int. J. Mol. Sci. 2024, 25, 12320 23 of 24

163. Russcher, M.; Nagtegaal, J.E.; Nurmohamed, S.A.; Koch, B.C.P.; van der Westerlaken, M.M.L.; van Someren, E.J.W.; Bakker, S.J.;
Ter Wee, P.M.; Gaillard, C.A. The effects of kidney transplantation on sleep, melatonin, circadian rhythm and quality of life in
kidney transplant recipients and living donors. Nephron 2015, 129, 6–15. [CrossRef]

164. Knobbe, T.J.; Kremer, D.; Eisenga, M.F.; Londen, M.V.; Annema, C.; Bültmann, U.; Kema, I.P.; Navis, G.J.; Berger, S.P.; Bakker, S.J.L.
Sleep quality, fatigue, societal participation and health-related quality of life in kidney transplant recipients: A cross-sectional and
longitudinal cohort study. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2023, 39, 74–83. [CrossRef]

165. Rodrigue, J.R.; Mandelbrot, D.A.; Hanto, D.W.; Johnson, S.R.; Karp, S.J.; Pavlakis, M. A cross-sectional study of fatigue and sleep
quality before and after kidney transplantation. Clin. Transplant. 2011, 25, E13–E21. [CrossRef]

166. Natale, P.; Ruospo, M.; Saglimbene, V.M.; Palmer, S.C.; Strippoli, G.F.M. Interventions for improving sleep quality in people with
chronic kidney disease. Cochrane Database Syst. Rev. 2019, 5, CD012625. [CrossRef]

167. Delyani, J.A. Mineralocorticoid receptor antagonists: The evolution of utility and pharmacology. Kidney Int. 2000, 57, 1408–1411.
[CrossRef]

168. Bianchi, S.; Bigazzi, R.; Campese, V.M. Long-term effects of spironolactone on proteinuria and kidney function in patients with
chronic kidney disease. Kidney Int. 2006, 70, 2116–2123. [CrossRef] [PubMed]

169. Hammer, F.; Buehling, S.S.; Masyout, J.; Malzahn, U.; Hauser, T.; Auer, T.; Grebe, S.; Feger, M.; Tuffaha, R.; Degenhart, G.; et al.
Protective effects of spironolactone on vascular calcification in chronic kidney disease. Biochem. Biophys. Res. Commun. 2021, 582,
28–34. [CrossRef] [PubMed]

170. Hosoya, K.; Minakuchi, H.; Wakino, S.; Fujimura, K.; Hasegawa, K.; Komatsu, M.; Yoshifuji, A.; Futatsugi, K.; Shinozuka, K.;
Washida, N.; et al. Insulin resistance in chronic kidney disease is ameliorated by spironolactone in rats and humans. Kidney Int.
2015, 87, 749–760. [CrossRef] [PubMed]

171. Edwards, N.C.; Ferro, C.J.; Kirkwood, H.; Chue, C.D.; Young, A.A.; Stewart, P.M.; Steeds, R.P.; Townend, J.N. Effect of
spironolactone on left ventricular systolic and diastolic function in patients with early stage chronic kidney disease. Am. J. Cardiol.
2010, 106, 1505–1511. [CrossRef] [PubMed]

172. Rossignol, P.; Williams, B.; Mayo, M.R.; Warren, S.; Arthur, S.; Ackourey, G.; White, W.B.; Agarwal, R. Patiromer versus
placebo to enable spironolactone use in patients with resistant hypertension and chronic kidney disease (AMBER): Results in the
pre-specified subgroup with heart failure. Eur. J. Heart Fail. 2020, 22, 1462–1471. [CrossRef]

173. Palacios-Ramirez, R.; Lima-Posada, I.; Bonnard, B.; Genty, M.; Fernandez-Celis, A.; Hartleib-Geschwindner, J.; Foufelle, F.;
Lopez-Andres, N.; Bamberg, K.; Jaisser, F. Mineralocorticoid Receptor Antagonism Prevents the Synergistic Effect of Metabolic
Challenge and Chronic Kidney Disease on Renal Fibrosis and Inflammation in Mice. Front. Physiol. 2022, 13, 859812. [CrossRef]
[PubMed]

174. Lima Posada, I.; Soulié, M.; Stephan, Y.; Palacios Ramirez, R.; Bonnard, B.; Nicol, L.; Pitt, B.; Kolkhof, P.; Mulder, P.; Jaisser, F.
Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Improves Diastolic Dysfunction in Preclinical Nondiabetic
Chronic Kidney Disease. J. Am. Heart Assoc. 2024, 13, e032971. [CrossRef]

175. Palacios-Ramirez, R.; Soulié, M.; Fernandez-Celis, A.; Nakamura, T.; Boujardine, N.; Bonnard, B.; Bamberg, K.; Lopez-Andres, N.;
Jaisser, F. Mineralocorticoid receptor (MR) antagonist eplerenone and MR modulator balcinrenone prevent renal extracellular
matrix remodeling and inflammation via the MR/proteoglycan/TLR4 pathway. Clin. Sci. 2024, 138, 1025–1038. [CrossRef]
[PubMed]

176. Oike, H.; Nagai, K.; Fukushima, T.; Ishida, N.; Kobori, M. High-salt diet advances molecular circadian rhythms in mouse
peripheral tissues. Biochem. Biophys. Res. Commun. 2010, 402, 7–13. [CrossRef] [PubMed]

177. Speed, J.S.; Hyndman, K.A.; Roth, K.; Heimlich, J.B.; Kasztan, M.; Fox, B.M.; Fox, B.M.; Johnston, J.G.; Becker, B.K.; Jin, C.; et al.
High dietary sodium causes dyssynchrony of the renal molecular clock in rats. Am. J. Physiol. Renal Physiol. 2018, 314, F89–F98.
[CrossRef] [PubMed]

178. Liu, L.; Lin, L.; Ke, J.; Chen, B.; Xia, Y.; Wang, C. Higher Nocturnal Blood Pressure and Blunted Nocturnal Dipping Are Associated
With Decreased Daytime Urinary Sodium and Potassium Excretion in Patients With CKD. Kidney Int. Rep. 2023, 9, 73–86.
[CrossRef]

179. Lu, Y.; Ku, E.; Campese, V.M. Aldosterone in the pathogenesis of chronic kidney disease and proteinuria. Curr. Hypertens. Rep.
2010, 12, 303–306. [CrossRef]

180. Sagmeister, M.S.; Harper, L.; Hardy, R.S. Cortisol excess in chronic kidney disease—A review of changes and impact on mortality.
Front. Endocrinol. 2023, 13, 1075809. [CrossRef]

181. Uslar, T.; Newman, A.J.; Tapia-Castillo, A.; Carvajal, C.A.; Fardella, C.E.; Allende, F.; Solari, S.; Tsai, L.C.; Milks, J.; Cherney, M.;
et al. Progressive 11β-Hydroxysteroid Dehydrogenase Type 2 Insufficiency as Kidney Function Declines. J. Clin. Endocrinol.
Metab. 2024, dgae663. [CrossRef]

182. Hostetter, T.H.; Ibrahim, H.N. Aldosterone in chronic kidney and cardiac disease. J. Am. Soc. Nephrol. JASN 2003, 14, 2395–2401.
[CrossRef]

183. Arendt, J.; Aulinas, A.; Feingold, K.R.; Anawalt, B.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.;
Dhatariya, K.; et al. Physiology of the Pineal Gland and Melatonin. Eds.; Endotext: Dartmouth, MA, USA, 2000.

184. Cao, X.L.; Peng, X.M.; Li, G.B.; Ding, W.S.; Wang, K.Z.; Wang, X.L.; Xiong, Y.Y.; Xiong, W.J.; Li, F.; Song, M. Chaihu-Longgu-Muli
decoction improves sleep disorders by restoring orexin-A function in CKD mice. Front. Endocrinol. 2023, 14, 1206353. [CrossRef]
[PubMed]

https://doi.org/10.1159/000369308
https://doi.org/10.1093/ndt/gfad148
https://doi.org/10.1111/j.1399-0012.2010.01326.x
https://doi.org/10.1002/14651858.CD012625.pub2
https://doi.org/10.1046/j.1523-1755.2000.00983.x
https://doi.org/10.1038/sj.ki.5001854
https://www.ncbi.nlm.nih.gov/pubmed/17035949
https://doi.org/10.1016/j.bbrc.2021.10.023
https://www.ncbi.nlm.nih.gov/pubmed/34678593
https://doi.org/10.1038/ki.2014.348
https://www.ncbi.nlm.nih.gov/pubmed/25337775
https://doi.org/10.1016/j.amjcard.2010.07.018
https://www.ncbi.nlm.nih.gov/pubmed/21059444
https://doi.org/10.1002/ejhf.1860
https://doi.org/10.3389/fphys.2022.859812
https://www.ncbi.nlm.nih.gov/pubmed/35464084
https://doi.org/10.1161/JAHA.123.032971
https://doi.org/10.1042/CS20240302
https://www.ncbi.nlm.nih.gov/pubmed/39092535
https://doi.org/10.1016/j.bbrc.2010.09.072
https://www.ncbi.nlm.nih.gov/pubmed/20888322
https://doi.org/10.1152/ajprenal.00028.2017
https://www.ncbi.nlm.nih.gov/pubmed/28971988
https://doi.org/10.1016/j.ekir.2023.10.017
https://doi.org/10.1007/s11906-010-0116-4
https://doi.org/10.3389/fendo.2022.1075809
https://doi.org/10.1210/clinem/dgae663
https://doi.org/10.1097/01.ASN.0000086472.65806.73
https://doi.org/10.3389/fendo.2023.1206353
https://www.ncbi.nlm.nih.gov/pubmed/37441503


Int. J. Mol. Sci. 2024, 25, 12320 24 of 24

185. Pizza, F.; Barateau, L.; Dauvilliers, Y.; Plazzi, G. The orexin story, sleep and sleep disturbances. J. Sleep Res. 2022, 31, e13665.
[CrossRef] [PubMed]

186. Ventzke, K.; Oster, H.; Jöhren, O. Diurnal Regulation of the Orexin/Hypocretin System in Mice. Neuroscience 2019, 421, 59–68.
[CrossRef] [PubMed]

187. Davis, C.J.; Schmidt, M.A.; Hemmer, K.; Krömmelbein, N.; Seilheimer, B. Multicomponent drug Neurexan mitigates acute
stress-induced insomnia in rats. J. Sleep Res. 2022, 31, e13550. [CrossRef]

188. Ota, M.; Maki, Y.; Xu, L.-Y.; Makino, T. Prolonging effects of Valeriana fauriei root extract on pentobarbital-induced sleep in
caffeine-induced insomnia model mice and the pharmacokinetics of its active ingredients under conditions of glycerol fatty acid
ester as emulsifiers. J. Ethnopharmacol. 2022, 298, 115625. [CrossRef]

189. Revel, F.G.; Gottowik, J.; Gatti, S.; Wettstein, J.G.; Moreau, J.L. Rodent models of insomnia: A review of experimental procedures
that induce sleep disturbances. Neurosci. Biobehav. Rev. 2009, 33, 874–899. [CrossRef]

190. Geuther, B.; Chen, M.; Galante, R.J.; Han, O.; Lian, J.; George, J.; Pack, A.I.; Kumar, V. High-throughput visual assessment of sleep
stages in mice using machine learning. Sleep 2022, 45, zsab260. [CrossRef]

191. Fisher, S.P.; Godinho, S.I.H.; Pothecary, C.A.; Hankins, M.W.; Foster, R.G.; Peirson, S.N. Rapid assessment of sleep-wake behavior
in mice. J. Biol. Rhythms 2012, 27, 48–58. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/jsr.13665
https://www.ncbi.nlm.nih.gov/pubmed/35698789
https://doi.org/10.1016/j.neuroscience.2019.10.002
https://www.ncbi.nlm.nih.gov/pubmed/31678347
https://doi.org/10.1111/jsr.13550
https://doi.org/10.1016/j.jep.2022.115625
https://doi.org/10.1016/j.neubiorev.2009.03.002
https://doi.org/10.1093/sleep/zsab260
https://doi.org/10.1177/0748730411431550

	Introduction 
	Mineralocorticoid Receptor 
	Mineralocorticoid Receptor Ligands 
	Canonical Function of the Mineralocorticoid Receptor 
	Non-Canonical Functions of the Mineralocorticoid Receptor 
	The Mineralocorticoid Receptor in the Central Nervous System 

	Sleep 
	The Circadian Clock 
	Role of the Mineralocorticoid Receptor in Sleep 
	Sleep Quality in Human Diseases 

	Sleep and Kidney Function 
	The Circadian Clock Controls Kidney Function 
	Sleep Quality in Chronic Kidney Disease Patients 

	Role of the Mineralocorticoid Receptor in Sleep Disorders in CKD 
	MR-Related Mechanisms Able to Trigger Sleep Disturbances in CKD 
	Circadian Clock Disruption 
	High Levels of MR Agonist 

	Putative Therapeutic Interventions 
	Insomnia-Related Regulatory Protein-Based Therapeutic Intervention 
	RAAS-Based Therapeutic Interventions 


	Conclusions 
	References

