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Abstract: The enthusiastic adoption of make-on-demand chemical libraries for virtual screening has
highlighted the need for methods that deliver improved hit-finding discovery rates. Traditional virtual
screening methods are often inaccurate, with most compounds nominated in a virtual screen not
engaging the intended target protein to any detectable extent. Emerging machine learning approaches
have made significant progress in this regard, including our previously described tool vScreenML.
The broad adoption of vScreenML was hindered by its challenging usability and dependencies on
certain obsolete or proprietary software packages. Here, we introduce vScreenML 2.0 to address each
of these limitations with a streamlined Python implementation. Through careful benchmarks, we
show that vScreenML 2.0 outperforms other widely used tools for virtual screening hit discovery.
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1. Introduction

Starting points for drug discovery often arise from screening small-molecule libraries.
Hits from such collections are typically recognized either by explicitly evaluating each com-
pound in a relevant functional assay (e.g., biochemical screening), by pulling out binders
from a pool of barcoded compounds (e.g., DNA-encoded libraries), or by computationally
selecting compounds that fit with the desired site on the target protein surface. Although
traditional biochemical screening affords the most directly relevant readout, its application
is typically limited to collections of about 2 million compounds. By contrast, pooled DNA-
encoded libraries can comprise 1 billion compounds; however, many apparent hits do not
show activity when re-synthesized without the fused DNA (for reasons that include the
misidentification of the screening hit, binding that relies on the linked DNA, and “silent”
binders that do not confer any effect on protein function).

In recent years, chemical vendors significantly increased the size of their catalogs of
compounds by enumerating specific building blocks that can be combined using robust
chemical transformations. This approach can lead to enormous libraries of new com-
pounds that are readily synthetically tractable; for example, Enamine compiled offerings
of ~29 billion “make-on-demand” compounds for purchase [1]. Even the most ambitious
HTS campaigns cannot explicitly access these enormous “virtual” compound collections;
however, this has amplified the importance of using computational screening methods.

Several studies have employed molecular docking to screen multi-million compound
libraries, in some cases yielding advanceable hits. The fraction of computational hits that
show activity is often dependent on the target class, with GPCR ligands often yielding high
hit rates (and initial hits that can also be quite potent). Among GPCR targets, for instance,
the screening of a virtual library of 75 million tetrahydropyridines against the serotonin
5-HT2A receptor prioritized 17 compounds for experimental validation: 4 of these (24%)
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proved to be active, with binding affinities in the low-micromolar range (0.67–3.9 µM) [2].
A study targeting the MT1 and MT2 receptors screened 150 million compounds and found
that 15 of 38 compounds tested (39%) were active in the nano- to micromolar range (from
1 nM to 15 µM) [3]. In another study, screening 138 million compounds against the D4
dopamine receptor found that 122 hits from among 549 tested (22%) with more than a
50% inhibition at 10 µM [4]. A screen of 490 million compounds against the σ2 receptor
found that 124 of 484 compounds tested (26%) were active in the nano- to micromolar
range [5]. Screening over 300 million diverse molecules targeting the α2A-adrenergic
receptor led to the selection of 48 compounds, of which 30 compounds (63%) showed
activities ranging from 1.7 nM to 9.4 µM [6]. Screening 115 million compounds against
the CysLT receptor subtypes yielded 10 of 71 (14%) for CysLT1R and 25 of 68 (37%) for
CysLT2R [7]. A focused screen of 140 million triazoles and isoxazoles against CB2 provided
11 hits, of which 6 compounds (55%) showed activity below 10 µM [8].

For non-GPCR targets, though, hit rates are typically lower. For example, the screen-
ing of 99 million compounds against AmpC β-lactamase yielded five active compounds
(1.3–400 µM) from 44 tested (11%) [4]. A large-scale screen of 235 million compounds
against the SARS-CoV-2 main protease (Mpro) provided 3 hits from 100 compounds tested
in an enzyme activity assay (3%), with affinities between 23 and 61 µM [9]. A screen
of 400 million lead-like molecules against Mac1 produced 13 hits from 124 selected com-
pounds (10%), with IC50 values ranging from 42 to 504 µM [10]. Finally, screening 1.3 billion
compounds against KEAP1 identified 69 hits with submicromolar binding affinity from
590 tested compounds (12%) [11].

Hit-finding discovery rates were also notably low in the Critical Assessment of Compu-
tational Hit-finding Experiments (CACHE) challenges [12]. In the first of these benchmark-
ing initiatives, for example, 23 participants were offered the opportunity to each choose up
to 100 compounds for testing against a target selected by the organizers (the WDR domain
of LRRK2). When tested in a primary SPR assay, only 73 compounds (3.2%) showed any
hint of activity, and many of these hits did not replicate in secondary assays. Subsequent
(ongoing) benchmarks have also shown similar outcomes. It is worth noting that the
organizers intentionally select challenging/unprecedented targets for these benchmarks,
which likely contribute to the low hit rates.

As highlighted above then, most compounds selected in ultra-large virtual screening
campaigns turn out to be false positives. While vendors such as Enamine have dramatically
reduced the expense associated with procuring compounds prioritized by the computa-
tional screen, the cost of testing these candidates is still significant and scales with the
number of compounds to be tested. Whereas false negatives in screening simply represent
missed opportunities for alternate hits, false positives represent a very real expense because
they consume wet-lab time and reagents. Even in the highly successful screens cited above,
the vast majority of virtual screening hits are not active when characterized in biochemical
assays (i.e., hit rates that are typically far below 50%).

To address this, we recently developed a machine learning classifier dubbed
“vScreenML” [13]. This model was trained to distinguish structures of active complexes
from carefully curated decoys that would otherwise represent likely false positives. After
validating the model with a series of retrospective benchmarks, we applied vScreenML to
select hits from an Enamine library docked against human acetylcholinesterase (AChE).
The top 23 compounds were purchased and characterized in a biochemical assay: this
experiment revealed that most of the compounds prioritized by vScreenML were indeed
AChE inhibitors, with more than half showing IC50 lower than 50 µM and the best hit
yielding a KI value of 175 nM. Importantly, none of these hits bore any resemblance to
known AChE inhibitors (and AChE had not been used in training), confirming that the
model had not simply memorized interactions from training.

Despite the dramatic performance of vScreenML relative to standard approaches,
certain hurdles slowed its widespread adoption. Specifically, it required the complicated
manual compilation of certain programs needed calculating features that describe each
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docked model, including multiple outdated or expensive dependencies that proved to be
prohibitive for many users. Here, we therefore report an updated version called vScreenML
2.0 (https://github.com/gandrianov/vScreenML2, accessed on 1 September 2024). This
update is far easier to install and use, and also avoids the dependencies that previously
proved cumbersome. At the same time, we also updated the model by including newly
released structures from PDB and incorporating several additional features for enhanced
discriminative power.

2. Results

The overall approach for training vScreenML 2.0 was conceptually similar to that of
its predecessor (Figure 1), with key differences described in the Materials and Methods
section. As noted above, vScreenML 2.0 reduces inconvenient software dependencies and
also includes new features not present in the original implementation. These include ligand
potential energy, buried unsatisfied atoms for select polar groups in ligand, additional
2D structural features of ligands, the complete characterization of interface interactions in
protein–ligand complexes and pocket-shape features (Table S2). To ensure model general-
ization (and avoid potential overtraining), we identified the 49 most important features to
include in the model, rather than allow all 165 features (Figure 1C).

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 13 
 

 

Despite the dramatic performance of vScreenML relative to standard approaches, 
certain hurdles slowed its widespread adoption. Specifically, it required the complicated 
manual compilation of certain programs needed calculating features that describe each 
docked model, including multiple outdated or expensive dependencies that proved to be 
prohibitive for many users. Here, we therefore report an updated version called 
vScreenML 2.0 (https://github.com/gandrianov/vScreenML2, accessed on 1 September 
2024). This update is far easier to install and use, and also avoids the dependencies that 
previously proved cumbersome. At the same time, we also updated the model by includ-
ing newly released structures from PDB and incorporating several additional features for 
enhanced discriminative power. 

2. Results 
The overall approach for training vScreenML 2.0 was conceptually similar to that of 

its predecessor (Figure 1), with key differences described in the Materials and Methods 
section. As noted above, vScreenML 2.0 reduces inconvenient software dependencies and 
also includes new features not present in the original implementation. These include lig-
and potential energy, buried unsatisfied atoms for select polar groups in ligand, addi-
tional 2D structural features of ligands, the complete characterization of interface interac-
tions in protein–ligand complexes and pocket-shape features (Table S2). To ensure model 
generalization (and avoid potential overtraining), we identified the 49 most important 
features to include in the model, rather than allow all 165 features (Figure 1C).  
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active complexes. Actives were drawn from the Protein Data Bank (PDB), refined using Protoss, and 
then minimized using PyRosetta. Three decoy complexes (blue sticks) were built from each active 
complex, using ROCS to identify conformations of compounds from DUD-E that can adopt similar 
3D structures as the active compound. Decoy complexes were refined the same way as the active 
complexes. (B) The structure of each active and decoy complex (green sticks) was used to calculate 
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label 1 and decoys were assigned label 0, so vScreenML 2.0’s output scores range between 0 and 1. 
(C) To enhance robustness and avoid potential overtraining, feature reduction was applied. The 
final vScreenML 2.0 model includes only 49 (red dot and arrow) of the original 166 features, since 
this model maximizes the Matthews correlation coefficient (MCC). 

Figure 1. Dataset and training for vScreenML 2.0. (A) The dataset for training and testing comprises
a set of active complexes (green sticks), along with compelling decoy complexes built to match the
active complexes. Actives were drawn from the Protein Data Bank (PDB), refined using Protoss, and
then minimized using PyRosetta. Three decoy complexes (blue sticks) were built from each active
complex, using ROCS to identify conformations of compounds from DUD-E that can adopt similar
3D structures as the active compound. Decoy complexes were refined the same way as the active
complexes. (B) The structure of each active and decoy complex (green sticks) was used to calculate
166 numerical features: these were used to train the vScreenML 2.0 classifier. Actives were assigned
label 1 and decoys were assigned label 0, so vScreenML 2.0’s output scores range between 0 and 1.
(C) To enhance robustness and avoid potential overtraining, feature reduction was applied. The final
vScreenML 2.0 model includes only 49 (red dot and arrow) of the original 166 features, since this
model maximizes the Matthews correlation coefficient (MCC).

As a first evaluation of vScreenML 2.0, we compared its performance to that of the
original version of vScreenML [13]. A direct comparison is complicated by the fact that
the models were trained on different datasets. Each model should only be characterized
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using a held-out test set, and there is not a defined set common to either model that was not
used in training. Nonetheless, when both models are applied to data from their respective
datasets that were not used in training, the performance of vScreenML 2.0 far exceeds that
of the original version (Figure 2).

In each case, each of the models was applied to score protein–ligand complexes not
used in training, involving exclusively protein targets dissimilar to those in the training set.
Both versions of vScreenML recognized the active complexes with high scores (close to 1),
and the decoy complexes with low scores (close to 0) (Figure 2A). The primary distinction
that is evident between the two distributions is that vScreenML 2.0 miscategorized fewer of
the active complexes with low scores, compared to the original: this is reflected numerically
in the higher recall value for vScreenML 2.0 (from 0.67 in the original to 0.89 in the new
model). The improved recall, coupled with improved precision, leads to a dramatic
improvement in the Matthews correlation coefficient (MCC) for the new model (from 0.69
in the original to 0.89 in vScreenML 2.0). The improved performance is also dramatically
evident when the same results are plotted as a receiver operating characteristic (ROC) curve
(Figure 2B), demonstrating the enhanced performance of vScreenML 2.0 when applied to
the classification of held-out protein–ligand complexes.
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Figure 2. Performance of vScreenML on a test dataset. (A) Discriminating the performance of the
original vScreenML model (left) versus the new vScreenML 2.0 (right). The vScreenML score for
each data point was calculated using cross-validation, where each fold was prepared by clustering
protein sequences using MMSeq2. Active complexes (true class label is 1) are represented by blue
data points and decoy complexes (true class label is 0) are represented by red data points. The orange
dashed line indicates an equal likelihood of being classified as active or decoy. (B) Receiver operator
characteristic plots showing performance of vScreenML 2.0 relative to the original model.

Next, we compared the performance of vScreenML 2.0 in comparison with other
widely used tools for virtual screening hit discovery. As a representative empirical scoring
function, AA-Score was selected, a model that combines a broad variety of energetic
components into a single score and showed impressive performance relative to a broad
slate of other common scoring functions [14]. As a classic scoring function, we used the
GNINA (v1.1) [15] package’s implementation of AutoDock Vina [16], historically one
of the most widely used tools for virtual screening. Finally, as a representative of the
deep learning models that have recently been described in the literature, we selected the
GNINA’s CNNaffinity score [17]. This scoring method was shown to outperform AutoDock
Vina scoring in a standard benchmark [18], though the authors acknowledge that some
lingering bias (favoring GNINA’s CNNaffinity score) may come from recognizing property
distributions rather than the details of molecular interactions.

We evaluated each of these methods using the DEKOIS2 dataset [19,20]. This bench-
mark comprises 81 protein targets, with the 2D chemical structures of 30–40 actives and
800–1200 property-matched decoys for each target. Each of these ligands was docked
to the corresponding protein target using Schrödinger Glide in the context of a separate
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study [21,22], and so we re-used these starting poses. Each starting pose was minimized
using PyRosetta to make them energetically consistent with the vScreenML 2.0 features.

While additional deep learning-based docking tools have also been developed for
virtual screening hit discovery, such as KarmaDock [22] and RTMScore [23], they have seen
most of the DEKOIS2 targets in the course of training: this makes it impossible to determine
the extent to which their performance on this test set reflects the true performance that
should be expected in a prospective application. This point is reinforced through the
behavior of KarmaDock on PYGL ligands (Table S3). Structures of this target in the “in”
conformation but not the “out” conformation were included in the KarmaDock training
set, and we found that KarmaDock yields far superior performance for DEKOIS2 ligands
in the “in” conformation. While GNINA’s CNNaffinity score was indeed trained on some
of the DEKOIS2 targets, it saw fewer of these in training than KarmaDock or RTMScore
(Table S3).

To avoid any potential for vScreenML 2.0 recognizing features of the DEKOIS2 targets,
we used a model for each target that excluded the corresponding protein cluster from
training (i.e., all data from any sequence-related proteins were left out of training).

To evaluate te performance of the four selected scoring methods (vScreenML 2.0,
AA-Score, AutoDock Vina, and GNINA CNNaffinity), we used each method to rank each
of the pre-built DEKOIS2 models for each target and calculated the enrichment factor of
actives in the top 1%. For a typical target with 30 actives and 970 decoys (1000 models),
one would expect to find, by random chance, 0.3 actives in the top-scoring 10 models; a
scoring tool that finds 3 actives within the top-scoring 10 models would therefore have an
enrichment factor of 10.

The distribution of EF1% values for the 81 protein targets was first compared for
vScreenML 2.0 and for AA-Score (Figure 3A, top). It is evident from the superposed his-
tograms that AA-Score had more targets with very low EF1% values (0 to 7), whereas
vScreenML 2.0 had more targets with higher EF1% values (10 and above). Extending the
analysis to compare individual targets (Figure 3A, bottom), there were a few individual
targets for which both methods perform well. For the most part, however, the clearest
observation is that there are many more points above the diagonal than below, representing
examples in which vScreenML 2.0 provides superior performance to AA-Score. Analysis us-
ing the binomial test confirms the statistical significance of the observation that vScreenML
2.0 is better for more targets than AA-Score (p < 9 × 10−6). The performance of AutoDock
Vina was similarly surpassed by vScreenML 2.0 (p < 2 × 10−9) (Figure 3B).

Comparing vScreenML 2.0 to GNINA CNNaffinity showed another similar perfor-
mance in this experiment. The superposition of the EF1% distributions shows slightly
more low values for GNINA CNNaffinity, and slightly more high values for vScreenML
2.0 (Figure 3C, top). Comparing the 81 individual targets, both methods yielded a similar
performance for 35 targets (absolute difference in EF1%, less than 3). Of the other 46 targets,
vScreenML 2.0 was superior for 28 targets, and GNINA CNNaffinity was superior for the
other 18; per the binomial test, this difference is indeed statistically significant (p = 0.021)
(Figure 3C, bottom). We also cannot fully rule out the possibility that GNINA CNNaffinity’s
performance was bolstered by “recognizing” some interactions from its own training, which
includes proteins from many of the target classes included in the DEKOIS2 benchmark.
Nonetheless, there appears to be little agreement between which targets are “easiest” for
these two methods: this may imply that the methods are recognizing different features in
the active complexes, and that a consensus scoring approach may prove superior to either
method alone.



Int. J. Mol. Sci. 2024, 25, 12350 6 of 12
Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. Comparison of vScreenML 2.0 to other modern scoring methods, using the pre-docked 
models from the DEKOIS2 benchmark. The test set consists of 81 target proteins, each of which is 
associated with 30–40 active compounds and 800–1200 decoy compounds. The performance of 
vScreenML 2.0 is compared with that of (A) AA-Score, (B) AutoDock Vina, and (C) GNINA 
CNNaffinity. In each case, performance is characterized via the enrichment factor of actives in the 
top 1% (EF1%). Top: distribution of EF1% values across the set of 81 targets (orange is for vScreenML 
2.0 and blue is for AA-Score, AutoDock Vina and GNINA). Bottom: comparison of performance 
(green points) for specific targets. In all three cases, there are more points above the diagonal band 
than below the diagonal band, indicating that vScreenML 2.0 has superior performance on more 
targets. p-values were calculated using the binomial test (excluding points within the light-green 
band, for which the absolute difference in EF1% was less than 3). Black dash lines represents 10% of 
EF1%. 

Comparing vScreenML 2.0 to GNINA CNNaffinity showed another similar perfor-
mance in this experiment. The superposition of the EF1% distributions shows slightly 
more low values for GNINA CNNaffinity, and slightly more high values for vScreenML 
2.0 (Figure 3C, top). Comparing the 81 individual targets, both methods yielded a similar 
performance for 35 targets (absolute difference in EF1%, less than 3). Of the other 46 tar-
gets, vScreenML 2.0 was superior for 28 targets, and GNINA CNNaffinity was superior 
for the other 18; per the binomial test, this difference is indeed statistically significant (p = 
0.021) (Figure 3C, bottom). We also cannot fully rule out the possibility that GNINA 
CNNaffinity’s performance was bolstered by “recognizing” some interactions from its 
own training, which includes proteins from many of the target classes included in the 
DEKOIS2 benchmark. Nonetheless, there appears to be little agreement between which 
targets are “easiest” for these two methods: this may imply that the methods are recog-
nizing different features in the active complexes, and that a consensus scoring approach 
may prove superior to either method alone. 

3. Discussion 

Figure 3. Comparison of vScreenML 2.0 to other modern scoring methods, using the pre-docked
models from the DEKOIS2 benchmark. The test set consists of 81 target proteins, each of which
is associated with 30–40 active compounds and 800–1200 decoy compounds. The performance
of vScreenML 2.0 is compared with that of (A) AA-Score, (B) AutoDock Vina, and (C) GNINA
CNNaffinity. In each case, performance is characterized via the enrichment factor of actives in the top
1% (EF1%). Top: distribution of EF1% values across the set of 81 targets (orange is for vScreenML 2.0
and blue is for AA-Score, AutoDock Vina and GNINA). Bottom: comparison of performance (green
points) for specific targets. In all three cases, there are more points above the diagonal band than
below the diagonal band, indicating that vScreenML 2.0 has superior performance on more targets.
p-values were calculated using the binomial test (excluding points within the light-green band, for
which the absolute difference in EF1% was less than 3). Black dash lines represents 10% of EF1%.

3. Discussion

Structure-based drug design (SBDD) transformed drug discovery utilizing the struc-
tural data of target proteins to guide the development of therapeutic agents. By focusing
on the atomic-level details of protein binding sites, SBDD enables the design of compounds
with considerations of optimal fit in the binding site; this can enable the optimization of
binding affinity, efficacy, and selectivity. Unlike traditional HTS methods, which test large
numbers of compounds without structural insight, virtual screening takes a more rational
approach, increasing the likelihood of identifying promising starting points early in the
development process. Notable examples of SBDD’s successes include carbonic anhydrase
inhibitor dorzolamide [24], kinase inhibitors vemurafenib [25], and ponatinib [26], and
protease inhibitors dabigatran [27] and boceprevir [28].

vScreenML 2.0 addresses a key challenge in virtual screening, the high rate of false
positives generated by traditional computational methods of SBDD. The initial version
of vScreenML proved extremely successful in prospective applications but had strong
drawbacks with respect to usability. These included a complex installation process, a
complicated pipeline requiring manual intervention, and the inclusion of multiple outdated,
complex, or paid dependencies.

Through this update, we addressed each of these issues by rewriting the entire frame-
work in a more accessible programming language (Python); this both promotes ease of
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use and installation, while also enabling a straightforward integration of vScreenML 2.0
into existing virtual screening pipelines. These changes thus open the door for a broader
user base, including non-experts who may have been previously deterred by the technical
complexities of the earlier version. By improving the calculation pipeline and removing
dependencies on obsolete or proprietary software, we also made the tool more user-friendly
and compatible with modern computational environments.

Finally, we updated the training set for the machine learning model by incorporating
the latest crystal structures from the PDB, applying stringent new selection criteria to
improve data quality, and introducing several new features that capture more nuanced
aspects of protein-ligand interactions. Though we could not directly compare vScreenML
2.0 against the original version using the same test set, the performance of the newer
version appears superior. Nonetheless, the new model still remains to be validated in future
prospective experiments to evaluate how these enhancements translate to meaningful gains
in real-world applications.

Relative to standard empirical scoring functions such as AA-Score and AutoDock
Vina, vScreenML 2.0 shows clear superiority for virtual screening hit discovery. While deep
learning methods such as KarmaDock, RTMScore, and GNINA use CNN-based scoring
functions that seem to provide similar or superior accuracy to vScreenML 2.0 in some
respects, their ability to generalize to new targets remains unclear. Rigorous benchmarking
can be difficult because these methods often incorporate all available public data in training,
such that there is no single held-out test set that can be used to compare different methods.
A key benefit of vScreenML is that the simplicity of the model and rigorous splitting
between the training and test sets ensures generalizability to new protein target classes. As
noted in the context of the DEKOIS2 benchmark, the vScreenML 2.0 performance presented
above included no related proteins for each test set target, confirming the generalization of
the underlying models.

Looking ahead, we note that the size of ultra-large chemical libraries has grown much
faster than the ability to explicitly dock all compounds in a modern library. To address this
issue, new strategies have been employed to reduce the computational burden. One such
approach entails using active learning together with docking results [29,30]. After explicitly
docking a subset of the library against the target, ML models can be trained to rapidly
identify compounds likely to yield good docking scores, without explicitly docking them.
In using this model, a small subset of compounds can be prioritized for explicit docking
from the vast chemical space available in the library. These top-ranked predictions are
validated through explicit docking, and the model can be retrained using these additional
data and the process repeated. Within these active learning frameworks, vScreenML 2.0
may provide added value by steering the search for compounds worth explicitly docking,
in addition to guiding the final selection of compounds for experimental characterization.

4. Materials and Methods

As with the original vScreenML approach [13], our new model is intended to dis-
tinguish active compounds from inactive compounds. In a virtual screening workflow,
vScreenML 2.0 is thus intended to be used after the contents of a library have been docked
to the target protein, for selecting candidate compounds that should be advanced for ex-
plicit testing in biochemical or cellular assays—without bringing forward an abundance of
false positives (Figure 4).

As described below, this updated version of vScreenML is more user-friendly for broad
audiences, avoids using software with potentially costly licenses, and also adds flexibility
that facilitates incorporation into complex virtual screening pipelines. To achieve these
objectives, we replaced the C++-based Rosetta bundle with the Python-based PyRosetta
package (https://www.pyrosetta.org, accessed on 1 September 2024) [31], we replaced
MGLTools (v.1.5.7, La Jolla, CA, USA) [32] with ODDT (https://github.com/oddt/oddt,
accessed on 1 September 2024) [33], we replaced ChemAxon cxcalc (v.20.17.0, Budapest,
Hungary) with the open source RDKit (https://www.rdkit.org) equivalent [34], and we

https://www.pyrosetta.org
https://github.com/oddt/oddt
https://www.rdkit.org
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removed the dependency on OpenEye’s SZYBKI (v1.9.0.3, Sante Fe, NM, USA) [35]. When
training the new model, we also took this opportunity to incorporate newly released
structures in the PDB and apply updated rules for defining which structures to include.
Finally, we also incorporated new features to better capture several structural measures
that were not well described in the original model: buried unsatisfied polar groups, 2D
structure properties of the ligand, and shape-based information from the protein pocket.
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complexes can be generated by receptor-based methods (i.e., docking or pharmacophoric alignment
to one or more known ligands). Scoring each of the resulting complexes with vScreenML 2.0 involves
extracting “features” from each model using the PyRosetta (v. 2023.14+release.7132bdc), Binana
(v.2.1), RF-Score (v1), RDKit (v.2023.9.5), LUNA (v.0.13.0), and PocketDruggability (v.0.98.1) packages.
These features are used as input to vScreenML 2.0, which uses an XGBoost-based model to produce a
single score reflecting the prioritization of the compounds in the screening collection.

4.1. Preparation of Dataset (Actives and Decoys)

The original vScreenML approach [13] started from a set of (active) protein-ligand
complexes from the RCSB Protein Data Bank (PDB) [36,37]. Each active compound was
used to generate three property-matched “decoys” by selecting compounds with high 3D
similarity to the corresponding active, from a set of physicochemically matched candidates
provided by the “Directory of Useful Decoys, Enhanced” (DUD-E) server [38]. The activity
of these decoys has not explicitly been tested for the corresponding protein target, but
the decoys are presumed to be inactive. Actives and decoys were refined using the same
protocol, to avoid any clues from how the structures were prepared that could lead to
artifactual performance by the classification model. The overall approach for training
vScreenML 2.0 was conceptually similar, as summarized below (Figure 1).

For vScreenML 2.0, we began with the updated contents of the PDB. We compiled a list
of structures from the RCSB Protein Data Bank (PDB) that met the criteria: (A) experimental
method “X-Ray diffraction”, (B) refinement resolution “<2.5 Å”, (C) and polymer entity
type “Protein”. There were 132,146 PDB entries meeting these criteria. These structures
were then filtered by physicochemical and structural features of ligand and protein–ligand
complex presented in Table S1; specifically, these filters were primarily intended to restrict
the training set actives to “drug-like” ligands (the intended domain of application for
vScreenML 2.0) by removing the numerous non-drug-like biological ligands in the PDB
(e.g., ATP, sugars, lipids, etc.). Structures were also removed if the model quality was low,
if it was incompletely resolved, or if it did not fit with the electron density.

The filtered dataset comprised 1407 PDB entries. For this collection, protonation
states were assigned (along with placement of hydrogen atoms) using Protoss; how-
ever, 86 structures could not be refined, and were therefore excluded, leaving a total
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of 1321 unique PDB entries. Among these, some had multiple copies of the complex in
the asymmetric unit. These copies have slight differences in the coordinates relative to
one another, and thus differences in the calculated features as well. As a form of data
augmentation, we retained these multiple copies of the same complex: we expected that
this would help make vScreenML 2.0 resistant to noise in the training set. Thus, our set
of actives comprised 1806 instances, of which 1321 are unique protein–ligand complexes.
Each structure was minimized using PyRosetta prior to calculating vScreenML 2.0 features.

From each of the 1806 actives, 3 property-matched decoys were also generated. To
do so, the DUD-E server was first applied to each ligand in the collection of actives,
leading to 50 candidate decoy ligands. These were then filtered based on 2D structural
considerations used for the active ligands (Table S1) to ensure that there would be no
systematic differences between active versus decoy ligands that could lead to spurious
model performance. For each of the candidate decoys that passed the filters, 500 low-energy
conformers were generated using OpenEye OMEGA (v. 5.0.0.3, Santa Fe, NM, USA) [39],
and these were aligned to the corresponding active structure using ROCS (v. 3.6.1.3, Santa
Fe, NM, USA) [40]. The three best-matched decoys (evaluated using the TanimotoCombo
score) were selected, because these would be most likely to fit with the protein pocket
in a compelling manner. For certain actives, there were not three candidate decoys from
DUD-E that passed these filters; in those cases, fewer than three decoys were generated.
The alignment from ROCS was used to place the decoy ligands into the protein structure
from the active ligand, and then the model was refined using Protoss [41,42] and minimized
with PyRosetta. Ultimately, this procedure led to a total of 4475 decoys, reflecting the fact
that some of the 1806 actives produced fewer than three decoys.

4.1.1. Model Training and Feature Selection

As with the original vScreenML approach [13], numeric descriptors (features) were
calculated from the structure of each protein–ligand complex. These were used in training
the XGBoost (v.1.7.6) [43] machine learning (ML) model and when applying the model
in practice. As noted earlier, some elements of the original vScreenML features were not
particularly user-friendly: these dependencies were eliminated in vScreenML 2.0, and a
completely new Python-based framework was developed for vScreenML 2.0. Additionally,
several new features are also included in this new implementation. A total of 166 features
are calculated for each protein–ligand complex: these are reported in Table S2.

To prevent potential information leakage during training and testing, the dataset was
divided into distinct groups by clustering protein sequences with MMSeq2 [44]. By ensuring
that related proteins are always placed together in either the training set or the test set, we
avoid potential overtraining in which the model sees a very similar complex in both training
and testing. It is important to avoid this scenario, because it can lead to artificially inflated
performance of the model and disappointing results in future prospective applications [45].

Clustering on protein sequences yielded 269 clusters that were used for cross-validation
by splitting the data into multiple sets for training and testing across several iterations. In
each iteration, proteins from all clusters except one were used to train the model, while
the remaining cluster was used for testing. This process was repeated until each cluster
had been used as a test set. The final performance score of the model was obtained by
averaging the performance metrics from all iterations, providing a more robust and reliable
assessment of the model’s ability to generalize to unseen data.

To promote model generalization and avoid potential overfitting associated with using
166 features, we sought to eliminate features not contributing to model performance. We
applied sequential backward floating feature selection, as implemented in the mlxtend [46]
package in combination with cross-validation on the 269 protein sequence clusters. We
found that the model which maximized the Matthews correlation coefficient required
49 features (Figure 1C): the features included in the final model are indicated in Table S2.

As with the original vScreenML implementation, we used the binary Extreme Gradient
Boosting (XGB) framework [43] for our model. In model training, hyper-parameters of the
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XGB model (“n_estimators”, “max_depth”, and “learning_rate”) were optimized using Op-
tuna [47] to find the set of parameters that gave the best AUC upon 10-fold cross-validation.

4.1.2. Benchmarking with DEKOIS2

The performance of vScreenML 2.0 was evaluated using DEKOIS2 [19,20], a collection
of active and decoy compounds for 81 protein targets. Models for the actives and the decoys
in complex with their cognate target proteins were obtained from a docked set created
to evaluate the docking tool KarmaDock [21,22]. The structures were minimized using
PyRosetta to make them more energetically consistent with the vScreenML 2.0 features.

To prevent any potential information leakage from the training set, we clustered the
protein targets from DEKOIS2 along with our training set, and excluded from the training
set any targets with high sequence similarity to the DEKOIS2 protein targets.

The performance of vScreenML 2.0 was compared with other virtual screening tools
that allow scoring in place of pre-generated poses, specifically AA-Score [14] and GN-
INA [15]. As a performance metric, we used the enrichment factor of actives in the top
1% (EF1%) of predicted scores. A statistical comparison of methods was carried out by
removing “near ties” (absolute difference in EF1% less than 3) and then using the binomial
test implemented in the SciPy package [48].

4.2. Data Availability

Minimized 3D structures of proteins in complex with actives and decoys, along with
calculated features, are available from Zenodo (https://doi.org/10.5281/zenodo.10819385).
The vScreenML 2.0 package and source code are located on GitHub (https://github.com/
gandrianov/vScreenML2 , accessed on 1 September 2024).

5. Conclusions

vScreenML 2.0 represents a significant advancement in machine learning-based virtual
screening, specifically aimed at reducing the number of false positive predictions. By
overcoming the usability challenges of the previous version, vScreenML 2.0 provides a
more streamlined and accessible implementation, capable of functioning both as a stan-
dalone application and as part of a complex virtual screening pipeline. Training on a newly
compiled dataset with carefully selected features improved the tool’s accuracy and general-
izability across various targets. In benchmark experiments, we found that vScreenML 2.0
outperformed tools such as AA-Score and AutoDock Vina; we expect these improvements
to translate into enhanced effectiveness in real-world applications as well.
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