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Abstract: Macrophage polarization critically contributes to a multitude of human pathologies. Hence,
modulating macrophage polarization is a promising approach with enormous therapeutic poten-
tial. Macrophages are characterized by a remarkable functional and phenotypic plasticity, with
pro-inflammatory (M1) and anti-inflammatory (M2) states at the extremes of a multidimensional
polarization spectrum. Cell morphology is a major indicator for macrophage activation, describing
M1(-like) (rounded) and M2(-like) (elongated) states by different cell shapes. Here, we introduced
cell painting of macrophages to better reflect their multifaceted plasticity and associated phenotypes
beyond the rigid dichotomous M1/M2 classification. Using high-content imaging, we established
deep learning- and feature-based cell painting image analysis tools to elucidate cellular finger-
prints that inform about subtle phenotypes of human blood monocyte-derived and iPSC-derived
macrophages that are characterized as screening surrogate. Moreover, we show that cell painting
feature profiling is suitable for identifying inter-donor variance to describe the relevance of the
morphology feature ‘cell roundness’ and dissect distinct macrophage polarization signatures after
stimulation with known biological or small-molecule modulators of macrophage (re-)polarization.
Our novel established AI-fueled cell painting analysis tools provide a resource for high-content-based
drug screening and candidate profiling, which set the stage for identifying novel modulators for
macrophage (re-)polarization in health and disease.
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1. Introduction

Macrophages (MΦs) are innate immune cells characterized by high functional and
phenotypic plasticity with the classically activated pro-inflammatory (M1) and the alterna-
tively activated anti-inflammatory (M2) states at the extreme ends of a multidimensional
polarization spectrum [1–5]. Owing to their critical function in pathogen defense, immune
regulation, tissue homeostasis, and repair [6], MΦ polarization has been implicated in
critically contributing to many human diseases including cancer, fibrosis, and obesity, as
well as cardiovascular, inflammatory, and neurodegenerative diseases [7–10]. Hence, mod-
ulating MΦ polarization is a promising therapeutic approach to address the development
or progression of many diseases [9]. Accordingly, much effort in drug discovery is currently
devoted to the identification of small-molecule compounds (cpds) with MΦ-modulating,
-polarizing, and -reprogramming capacity.

Monocyte-derived MΦs (MDMs) generated from human blood monocytes have been
used as a versatile in vitro surrogate of tissue-resident MΦs for decades [11–15]. However,
the limited availability of monocytes obtained from blood donations as well as their func-
tional and phenotypic heterogeneity due to inter-donor variance [16] severely hampers
their utilization for large-scale high-throughput cpd screening and drug candidate profil-
ing [17]. We and others have recently shown that human-induced pluripotent stem cells
(iPSC) can be differentiated towards iPSC-derived MΦs (IDMs) that functionally resemble
MDMs [18–26].

With the aim to overcome the limitations associated with MDMs in drug discovery, we
refined two currently published 201B7 line-based IDM protocols that lead to the generation
of tissue-resident-like IDMs via the monocyte- (CD14+ progenitors) or the hematopoietic
stem cell-like (CD34+ progenitors) route [18,19]. Here, we characterize the IDMs compared
with MDMs isolated and purified from frozen PBMC stocks from several donors in terms
of their surface marker expression, their freezing–thawing recovery rate, as well as their
large-scale production suitable for screening and profiling purposes.

Due to the non-dichotomous plasticity of MΦs, efforts to characterize their polarization
by cell surface receptor markers (e.g., CD80, CD86, CD163, CD206), cytokines (e.g., IL-10),
chemokines (e.g., CCL17), and enzymes (e.g., arginase) have been challenged [3,27–29],
especially in human systems [17]. Based on the correlation between cell morphology and
MΦ activation, MΦ shape has been suggested as a promising indicator to describe the
polarization of human MDMs and murine bone marrow-derived MΦs (BMDMs) [30].
Specifically, M1(-like) MDMs and BMDMs were reported to appear round and flattened,
whereas M2(-like) cells are present with an elongated morphology [30–32]. In this context,
cell shape change has been implemented as a promising read-out in high-content imag-
ing combined with high-throughput screening for the identification of MDM-polarizing
cpds [30]. Here, we develop a semi-automated high-content imaged-based analysis tool to
evaluate the shape changes of IDMs in comparison with MDMs as a valid measurement of
MΦ polarization and reprogramming. We address the phenotypic spectrum of biological-
and cpd-stimulated IDMs and MDMs and underline the impact and relevance of the cell
roundness as screening read-out. To clearly state the MΦ polarization terminology, we
referred to M1- or M2-like for compound induction and M1 or M2 for biological stimulation.

Recently, cell painting [33–37] has gained increasing attention in drug discovery
as an image-based approach to perform phenotypic profiling of human cell lines for
describing disease-associated phenotypes [38,39], understanding disease mechanisms [40],
and predicting drug properties such as mode of action (MoA), cytotoxicity, off-target effects,
and bioactivity [38,41–45]. Cell painting is a cost-efficient morphological profiling assay
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that multiplexes six fluorescent dyes imaged in five channels to reveal eight organelles
or cell compartments (DNA, cytoplasmic RNA, nuclei, actin filaments, Golgi apparatus,
plasma membrane, ER, and mitochondria). Thereby, thousands of phenotypic features
are obtained that inform us about the cellular state [35]. Combining cell painting with
computational biology [46–50], the automated image data analysis pipeline can comprise
parallel multi-parameter clustering via the identification of single cells and the processing
of thousands of their individual features [33]. Consequently, cell painting is broadly
applicable across disease-relevant disorders and drug target modalities [51]: it opens a
new avenue in phenotypic drug discovery for the early safety and off-target assessment of
cpds [52,53], for boosting the lead identification rate and diversity of screening libraries [43],
as well as for the evaluation of cellular fingerprints across different cellular screening model
systems [54–57]. Therefore, we reasoned that cell painting can be adapted to generate
feature signatures reflecting the multidimensional plasticity of MΦs beyond the traditional
M1/M2 paradigm. Here, we establish cell painting of human IDMs (201B7 and ChiPSC12
line) and MDMs (several donors) and describe the high-content cell painting assay in
combination with our refined IDM protocol as a scalable and versatile approach to describe
MΦ-polarizing cpds and phenotypes. Moreover, we establish an artificial intelligence (AI)-
fueled image analysis platform, consisting of a deep learning (DL)- and a feature-based
analysis tool for drug screening purposes that enables the identification and quantification
of MΦ polarization and reprogramming effects modulated by known biological and cpd
stimuli, which can be used across both MΦ systems. In this context, we highlight the
relevance of morphological properties such as the ‘cell roundness feature’ to describe
MΦ (re-)polarization conditions. In summary, we present novel analysis tools for the
description of MΦ (re-)polarization effects by phenotypic cell painting feature fingerprints
using high-content imaging combined with deep learning and feature extraction.

2. Results
2.1. Frozen iPSC-Derived MΦs Are Suitable as a Screening Surrogate of Monocyte-Derived MΦs
Generated from Frozen PBMCs

The iPSC line 201B7 is generated by the retroviral transduction of human fibroblasts
and grows in a colony format [20]. Recent multi-omics and functional studies on effero-
cytosis, phagocytosis, and cytokine release [18,19,26] highlighted the potential of cell line
201B7 to investigate iPSC-derived MΦs. After confirming the pluripotency of the 201B7
cells (Figure S1A), we differentiated these iPSC colonies (size range of 400 to 750 µm) from
mesoderm towards hemogenic endothelium into hematopoietic progenitor cells that are
floating around the organoid (Figure 1A). At this stage, we decided to further elaborate on
two published 201B7-based differentiation protocols [18,19] that vary in the induction step
where CD14+ monocytes [18] or CD34+ progenitors [19] are derived from the hematopoi-
etic floaters at day 7 (Figure 1A). Specific surface marker expression (lymphocyte marker
CD45, monocytic lineage marker CD14, hematopoietic stem cell marker CD34, MΦ markers
CD206, CD163, and CD80) was tracked at the final stage of both progenitor types with
82.0% to 98.9% purity of CD34 or CD14 expression, respectively (Figure S1B).
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Figure 1. IDM generation from 201B7 via CD14+ or CD34+ progenitors. (A) Schematic of the
used differentiation protocols to generate CD34+- or CD14+-derived MΦs from the hiPSC line 201B7.
Representative brightfield images illustrate the differentiation stages over 22 days. (B) Flow cytometry
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analysis of CD14 expression of CD34+- versus CD14+-derived MΦs across harvest rounds 1–3 (in %;
n = 3; gating is based on a 1% isotype control). The surface marker expression of CD14 was tracked
to verify the differentiation of CD34+ progenitors and CD14+ progenitors towards MΦs. Yield
comparison of produced CD34+ and CD14+ progenitors from each harvest (n = 3). (C) Representative
brightfield images illustrate frozen CD34+-derived MΦ differentiation from day 7 (d7) to day 14
(d14). Schematic of the used differentiation protocol of frozen CD34+ progenitors towards IDMs.
Flow cytometry analysis of CD14 and CD34 expression of frozen CD34+-derived progenitors (in %;
n = 3; gating is based on a 1% isotype control).

During early ontogeny and throughout adult life, tissue-resident MΦs are generated
from different origins, starting from the yolk sac to the fetal liver, and after birth, from the
bone marrow [1,12,13,58]. Thereby, tissue-resident MΦs are not only continuously replaced
by monocytes (CD14+ progenitors) recruited from the peripheral blood but established by
hematopoietic precursor cells that seed the tissues during embryonic hematopoiesis and
complete their differentiation self-maintained across adulthood in the tissue-site [13,59,60].
To compare adult and tissue-resident-like MΦs derived from blood circulating monocytes
(CD14+ progenitors) with hematopoietic precursor cells (CD34+ progenitors) [61], we first
checked the yield and tracked the CD14+ marker expression of M-CSF-stimulated CD14+-
and CD34+-derived MΦs along culturing weeks (harvest rounds) from the progenitors
producing organoids (Figure 1B). Across harvest rounds, CD14+- and CD34+-derived
MΦs displayed a similar phenotype, as shown by brightfield microscopy (Figure 1B). We
achieved similar CD14 expression of CD14+- and CD34+-derived MΦs differentiated from
5 × 106 progenitors per T75 flask across harvest rounds (Figure 1B). However, the yield of
produced progenitors varied across harvest rounds between the used protocols (Figure 1B).
Across sequential harvests, the amount of produced CD14+ progenitors decreased by
1.7-fold. In contrast, the yield of CD34+ progenitors increased across harvest rounds to
2.7-fold (Figure 1B). In total, we were able to produce 68.5 × 106 million CD14+ progenitors
and 27 × 106 CD34+ progenitors from 1500 seeded 201B7 cells in three harvest rounds
(250 cells per well in a six-well plate). This reflects a 3-fold increase in CD14+ progenitor
numbers as compared with the Cui et al. protocol [18]. Furthermore, our CD34+ progenitor
production is in alignment with the investigated protocol by Bitzer et al. [19].

One advantage of the iPSC technology is the production of a potentially indefinite
numbers of cells for high-throughput screening or drug candidate profiling purposes [21].
To further enhance versatility, we compared the freezing–thawing process of CD14+ and
CD34+ progenitors of both differentiation protocols. Upon thawing, the CD34+ progenitors
showed high recovery rates (>90% of viability), while this was not achieved with the CD14+
progenitors. Therefore, we generated large frozen stocks of CD34+ progenitors, which after
thawing could be differentiated to MΦs in only one week of M-CSF stimulation (Figure 1C).
We observed that the CD14 expression was at a similar level to freshly produced CD34+
progenitors (Figures 1C and S1B) and that the cells still actively proliferated during the
final maturation step towards MΦs. We concluded that additional enhancement of the MΦ
production can be achieved by transferring remaining progenitors for an additional 7 days
in culture for an additional three harvest rounds (Figure 1C), which increased the yield of
CD34+-derived MΦs by up to 3-fold in alignment with Bitzer et al. [19]. In addition, MΦs
generated from frozen CD34+ progenitors showed no obvious difference in surface marker
expression (lymphocyte marker CD45, monocytic lineage marker CD14, hematopoietic
stem cell marker CD34, MΦ markers CD206, CD163, and CD80) compared with MΦs
differentiated from isolated and purified blood monocytes from frozen PBMCs from several
donors (Figure S1C), consistent with the published IDM protocol [19].

In summary, the described upscaling and freezing–thawing steps speed up the pro-
duction of a high-yield and viable IDM stock in a one-step procedure applicable to high-
throughput screenings or drug candidate profiling. This aspect and the herein described
characterization of the tissue-resident-like IDMs via the monocyte- (CD14+ progenitors) or
the hematopoietic stem cell-like (CD34+ progenitors) route highlight that IDMs are suitable
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as a surrogate compared with frozen PBMC-isolated and purified monocyte-derived MΦs
(MDMs), especially for screening purposes when large batches of MΦs without donor-to-
donor variations are wanted. Further studies herein will focus on CD34+-derived MΦs,
referred to as IDMs. Used MDMs generated from several donors are indicated by name.

2.2. The Compound-Induced Polarization of IDMs and MDMs Is Indicated by Cell Shape Changes

Previous reports highlighted that pro-inflammatory and anti-inflammatory human and
mouse MΦs have distinct morphologies manifested in different cell shapes, indicating their
polarization state [30–32]. Therefore, cell shape was suggested as a novel screening read-out
to identify MΦ-polarizing cpds [30]. Amongst others, two structurally and functionally
distinct cpds, namely thiostrepton (a thiopeptide antibiotic and FOXM1 inhibitor) and
bosutinib (an Src/Abl tyrosine kinase inhibitor), were identified in a respective phenotypic
cpd screen (2086 bioactive cpds, 760 FDA-approved drugs, and 1280 natural cpds) using
MDMs pooled from different donors [30]. The authors further validated the potential for
MΦ repolarization by these two cpds on the transcriptional level and demonstrated the
reprogramming of M2-like tumor-associated MΦs (TAMs) by thiostrepton in vivo, leading
to pronounced anti-tumor activity [30]. Based on their thorough functional characterization,
we decided to use these cpds as references in our study (Figure 2A). To initially verify MΦ
activation induced by bosutinib or thiostrepton treatment, we tracked CD80 (M1 marker)
and CD206 (M2 marker) expression by flow cytometry (Figure 2B). Consistently, MDMs and
IDMs exhibited an increase in CD80 expression when stimulated with thiostrepton or LPS,
with the latter serving as an internal biological control. CD206 marker expression changed
slightly upon bosutinib treatment or biological stimulation with IL4+IL13. We explain this
phenomenon by the initial high CD206 values seen herein and published elsewhere [19,25]
in unstimulated IDMs and MDMs, as verified across several donors (Figure S1C).

To further substantiate the versatility of IDMs in phenotypic screens for the identifica-
tion of MΦ-polarizing cpds, we assessed cell shape changes in IDMs compared with MDMs
by performing confocal high-content imaging of dual-colored MΦs after treatment with
reference cpds. In detail, we modified the algorithm described by Hu et al. [30] to first detect
a MΦ by its nucleus stain (Hoechst33352 channel) and defined the cell surrounding by the
cytoplasm/ER concanavalin A stain (Alexa488 channel). Normalized to the vehicle control
(DMSO), the calculated Z-score was determined by cell roundness quantified changes rang-
ing from more rounded (>0) towards more elongated shapes (<0) (Figure 2C). In alignment
with the MDM-based findings from Hu et al. [30], we saw a consistent rounded M1-like phe-
notypic change upon thiostrepton (2.5 µM) and an elongated M2-like phenotypic change
upon bosutinib (1 µM) treatment in both MΦ systems, with a high significance of p < 0.0001
after 24 h of stimulation (Figure 2C). This observation was further strengthened by the
additionally published and thoroughly characterized [30] M2-like cpd alsterpaullone (CDK
inhibitor; 1 µM; Figure 2A) and the additional M1-like cpd fenbendazole (microtubule
destabilizing agent; 1 µM; Figure 2A) that showed significant round or elongated morpho-
logical changes in IDMs and MDMs, respectively (Figure 2C). By visual inspection and
Z-score quantification, the range of shapes from round to elongated varied depending
on the cpd stimulation and the MΦ system (Figure 2C). The Z-score trend for M1- or
M2-like cpd-treated IDMs and MDMs was the same, even if the respective values were not
identical for both MΦ systems. This phenomenon can be explained by the different seeding
cell density because IDMs and MDMs differ in size and are thereby normalized to their
respective vehicle control (DMSO). We also noted that the dose-dependent cell toxicity
effects of the four cpds induced a shift in shape towards higher positive Z-scores, thereby
erroneously mimicking round cells. As an example, the change of a negative to a positive
Z-score by bosutinib treatment (1 to 10 µM) is indicated in Figure 2C.
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Figure 2. Polarizing compound-induced modulation of MΦ morphology. (A) Schematic of Hu et al.
2021 [30], who published M1- and M2-like cpds (created by BioRender.com and ChemDraw 23.1).
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(B) Flow cytometry analysis of CD80 and CD206 expression of cpd-treated (thiostrepton 2.5 µM
and bosutinib 1 µM) and biologically stimulated (LPS and IL4+IL13) MΦs (CD34+-derived IDMs
versus MDM donor CL119) (in %; n = 3; gating is based on a 1% isotype control). (C) Equation and
Z-score calculation for cell roundness analysis; data are depicted as the mean ± SD from 20× magni-
fication. Representative high-content Opera PhenixTM confocal images (40×; nucleus–Hoechst3342;
cytoplasm/ER concanavalin A-Alexa488; one field out of ten) of PhenoVue Kit-stained IDMs and the
MDM donor CL090 treated with illustrated conditions for 24 h. Each condition (12 wells; 5 fields per
well) was imaged in two replicate 384-well plates. Statistics: two-way ANOVA with significance ****
p < 0.0001. (D) Representative high-content Opera PhenixTM confocal images (40× one field out of
ten or 20× one field out of five; nucleus–Hoechst3342; cytoplasm/ER concanavalin A-Alexa488) of
PhenoVue Kit-stained IDMs and the MDM donor CL090 treated with illustrated conditions for 24 h.
Each condition (12 wells) was imaged in two replicate 384-well plates. Statistics: two-way ANOVA
with significance **** p < 0.0001. Z-score calculation for cell roundness analysis: data are depicted as
the mean ± SD at 20× or 40× magnification.

Considering IDMs as an applicable drug screening and profiling surrogate to MDMs, we
performed the experiments in a 384-well format in a semi-automated process (see Materials
and Methods 4.6). Due to the size difference of MDMs and IDMs, we also checked if the
magnification of our imaged cells (20×: 5 fields per well versus 40×: 10 fields per well)
influenced the outcome of our Z-score quantification. The results highlighted in Figure 2D
confirmed that Z-score calculation derived from images taken at 20× and 40× magnifications
leads to the same outcome in IDMs and MDMs enabling a cell roundness read-out already
with a small number of imaged cells or lower resolution capacity.

Taken together, the cell roundness analysis by Z-score calculation is a valuable pheno-
typic read-out to quantify morphological changes by cpd-induced M1- or M2-like polariza-
tion in IDMs and MDMs applicable at 20× and 40× magnification for cpd screening and
profiling purposes.

2.3. Heterogeneity of Morphological Changes Can Occur upon Compound Treatment and Biological
Stimulation of MΦ Polarization

Transcriptome profiling of the four reference cpds (bosutinib, thiostrepton, fenben-
dazole, and alsterpaullone [30]) in pooled MDM donors has demonstrated that many
new pathways distinct from the biological LPS and IL4+IL13 stimulation were induced,
revealing a remarkable plasticity of MΦ activation [30]. To unravel the spectrum of MΦ
polarization, we addressed cell shape changes induced by cpd treatment compared with
biological stimulation in both MΦ systems (Figure 3A,B). Regarding biological stimulation,
we observed a significant elongated effect upon IL4+IL13 stimulation in IDMs as well as
in MDMs (Figure 3A). However, we faced no significant strong round effect upon LPS
stimulation in the Z-score calculation, even if flow cytometry data confirmed high CD80
expression levels upon LPS treatment at 24 h to 48 h (Figures 2B and S2A). This result does
not align with the findings published by Hu et al. [30] in MDMs, which might be explained
by the difference between IDMs and MDMs. Therefore, we checked the phenotypic changes
in several different donors and included TNFα as another pro-inflammatory stimulus in
our study. Again, we detected variance in response across donors, resulting in minimal
non-significant changes for LPS and TNFα treatments in the roundness score (Figure 3A).
We argue that the cell culture medium composition of RPMI-1640 used in Hu et al. [30]
in contrast to the DMEM used in our study drives these differences. It is known that
non-essential amino acids (asparagine, aspartic acid, glutamic acid, and proline) impact
the phenotype of human MDMs that was supplemented in our study [62,63]. The most
abundant amino acid in human glutamine, or the more stable synthesized version L-alanyl-
glutamine (GlutaMAX), was the most prominent component that varied in the cell culture
medium composition. The impact of glutamine metabolism on metabolic reprogramming
in polarized MΦs for bioenergetic and biosynthetic demand was highlighted in several
studies [64–67].
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Figure 3. Heterogeneity of morphology changes upon compound treatment and biological stimuli. (A) Z-
score calculation for cell roundness analysis: data are depicted as the mean ± SD at 20× magnification.
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Representative high-content Opera PhenixTM confocal images (40×; nucleus–Hoechst3342; cyto-
plasm/ER concanavalin A-Alexa488; one field out of five) of PhenoVue Kit-stained IDMs and several
MDM donors (CL090, CL415, CL541, and CL091) treated with illustrated conditions for 24 h. Each
condition (12 wells; 5 fields per well) was imaged in two replicate 384-well plates. Statistics: two-way
ANOVA with significance **** p < 0.0001 and ** to p < 0.001. ns = non-significant. (B) Conditions as in
A with described cpd stimulation. Statistics: two-way ANOVA with significance **** p < 0.0001 and
* to p < 0.01. ns = non-significant. (C) Dose–Response analysis of Z-score calculated cell roundness.
Data are depicted as the mean ± SD. Representative high-content Opera PhenixTM confocal images
(20×; nucleus–Hoechst3342; cytoplasm/ER concanavalin-Alexa488; one field out of five) of IDMs
treated with illustrated conditions (alsterpaullone, bosutinib, thiostrepton, and fenbendazole) for
24 h. Each condition (4 wells; 5 fields per well) was imaged in one 384-well plate. IDMs were gener-
ated from different frozen CD34+-progenitor stocks (harvest) across different progenitor production
rounds (batch).

Regarding stimulation with cpds, we saw similar changes in cell shape at the same
concentrations for IDMs and MDMs (Figures 2C and 3B). However, thiostrepton induced a
somewhat heterogeneous shape change across MDMs from different donors at different
concentrations (1 µM and 2.5 µM), although these MDMs had similar expression of surface
markers. We argue that the pooling of donors [30] might level out individual Z-score
variations (Figures 3B and S1C).

Based on these observed donor variations, we questioned if the harvest rounds of
CD34+ progenitors and batches of generated IDMs would affect the Z-score calculation
as well. Strikingly, we verified in a dose–response assay consistent morphological effects
independent of harvest and batch usage (Figures 3C and S2B). This aspect emphasizes the
IDMs as an appropriate cell model to unravel cpd-induced morphological changes for drug
screening or profiling purposes (Figures 3C and S2B).

In conclusion, using the Z-score calculation for cell roundness, the heterogeneity, and
thereby the spectrum of phenotypes across biological and cpd stimuli in a time- and dose-
dependent manner revealed that they vary primarily in several donors of MDMs. Therefore,
we aimed to unravel if cell roundness was the only determining morphological parameter
to indicate MΦ polarization by phenotypic profiling using the cell painting assay.

2.4. Cell Painting Features Describe the Phenotypic Spectrum of MΦ Polarization upon Compound
Treatment and Biological Stimulation

The cell painting technique has been rapidly adopted for phenotypic drug discovery,
combining cell and computational biology to describe the status of stimulated cells with
thousands of features generated during image and data analysis [46,51,55,68–72]. Therefore,
we reasoned if cell painting could be highly suitable to describe MΦ-polarizing cpds
using feature extraction and phenotypical profiling. Consequently, we established the
cell painting of MΦs by labeling them with the recommended dyes (PhenoVue Fluor 555-
WGA, PhenoVue Fluor 568-Phalloidin, PhenoVue 512 nucleic acid stain, PhenoVue Hoechst
33342 nuclear stain, PhenoVue Fluor 488-concanavalin A and PhenoVue 641-mitochondrial
stain) [33,34]. To generate a common cell painting protocol suitable for both IDMs and
MDMs, we optimized the published cell painting protocol, adjusting the instrumentation
and labeling conditions. Thereby, we titrated the labelling dyes to minimize spectral
overlap and to set up the assay for both MΦ systems at 20× and 40× magnification (see
Materials and Methods 4.6). In addition, we used the published control cpds (tetrandrine,
fenbendazole, etoposide, cytochalasin D, CA-047Me, and berberine chloride) that affect
the cellular compartments stained by the individual cell painting dyes [33,35,73,74]. In
Figure 4A, the expected giant multinucleated cells by fenbendazole, the abundant ER
by tetrandrine, the large nucleoli by etoposide, the modulated Golgi abundance by CA-
074Me, the redistribution of mitochondria by berberine chloride, and the disrupted actin
cytoskeleton by cytochalasin D treatment could be detected in both MΦ systems.
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Figure 4. Cell painting features for the description of the phenotypic spectrum of MΦ polarization.
(A) Representative high-content Opera PhenixTM confocal images of cell-painted (PhenoVue Kit:
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PhenoVue 641 mitochondrial stain, PhenoVue Hoechst 33342 nuclear stain, PhenoVue Fluor
488-concanavalin A, PhenoVue 512 nucleic acid stain, PhenoVue Fluor 555-WGA and PhenoVue
Fluor 568-Phalloidin) IDMs and an MDM donor CL090 with indicated cell painting controls (berber-
ine chloride, fenbendazole, etoposide, cytochalasin D, CA-074Me and tetrandrine; 12 wells per
condition; 10 fields per well; from two independent replicate 384-well plates) after 24 h of stimulation.
The effect of the cpds on the respective cellular compartment and organelles is indicated by the white
arrows. (B) Schematic of the established feature-based analysis using SImA: ‘preset cell painting
building block’ and ‘custom-made cell painting building block combined with linear classifier’.
bosutinib-treated IDM Opera PhenixTM confocal imagery is shown as a representative example. The
whole analysis pipeline is described in Materials and Methods 4.8. (C) Principal component analysis
of ‘Preset cell painting building block’ and ’Custom-made cell painting building block’ features
indicated cpd- and biologically stimulated IDMs and an MDM donor CL961 for 24 h. Each datapoint
indicates the mean of 4 replicate wells (5 fields per well; 20× magnification) per condition. ‘Preset
cell painting building block’ is based on 4710 used features. ’Custom-made cell painting building
block’ is based on 1279 features.

For image and data analysis, we used the Signals Image Artist software (SImA1.3)
that includes a building block for the analysis of cell painting assays. First, we decided
to process the recommended cell painting data analysis pipeline calculating the intensity,
the morphology and the texture properties from each channel across defined regions (see
Materials and Methods 4.8; Figure 4B; ‘preset cell painting building block’). In total, the
‘preset cell painting building block’ allows for the extraction of 4710 different features.
However, a classification of subpopulations like M0, M1(-like) and M2(-like) cannot be
combined with the ‘preset cell painting building block’ in the PhenoLOGIC™ technol-
ogy [75] included in SImA. Therefore, we manually set up an analysis pipeline of building
blocks calculating 1279 cell painting features based on intensity, morphology, and texture
properties (Figure 4B; ‘custom-made cell painting building block’).

First, we performed a principal component analysis (PCA) to compare the MΦ polar-
ization projections generated by the ‘custom-made cell painting building block’ versus the
‘preset cell painting building block’. We observed that the intrinsic patterns of M1(-like) versus
M2(-like) stimulation were similar in both analysis pipelines for 201B7 IDMs and MDM donor
CL961 (Figure 4C). This finding indicated that the reduced number of features present in the
‘custom-made cell painting building block’ is already sufficient to describe MΦ polarization
patterns. Moreover, we detected that the distribution of patterns was more similar within
IDMs (201B7 and ChiPSC12 line) in contrast to MDMs (donor CL414 and CL961) systems
(Figures S3A and 4C). In addition, different treatment groups (biologicals versus cpds) clearly
separated from each other in the PCA, highlighting the multidimensional plasticity of MΦs
beyond the traditional M1/M2 paradigm manifested by biological stimulation. Within the
groups of M1- and M2-like cpds, distinct patterns were observed as well, which emphasize
the potential of cell painting to discriminate different MoA and pathways to induce the
polarization of MΦs. In addition, cell toxicity-inducing conditions (e.g., bosutinib 10 µM
and thiostrepton 10 µM) are readily identified by the decreased cell number in the PCA
plot (Figures S3A and 4C). Of note, biological 384-well replicates clustered tightly for each
condition, indicating the reproducibility of the system (Figure S3B).

In summary, cell painting feature profiling enables the description of MΦ polarization
combined with the parallel detection of cytotoxic-inducing conditions. Therefore, the
evaluation of cell painting feature fingerprints is a novel tool for deciphering the phenotypic
spectrum of MΦ polarization modulated by biologicals and cpds. The comparison between
the 4710-feature set from the SImA ‘preset cell painting building block’ to the ‘custom-made
cell painting building block’ highlights that 1279 features are already sufficient to separate
different M1- and M2(-like) conditions with a reduced feature set.
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2.5. Compound-Induced MΦ Polarization Effects Are Identified and Quantified by Feature-Based
Cell Painting Analysis

Next, we extended the analysis pipeline for not only discriminating M1- and M2(-
like) conditions, but also to quantify the modulation into pro- or anti-inflammatory states.
Therefore, we combined the ‘custom-made cell painting building block’ (1279 features)
with the ‘linear classifier’ method from the PhenoLOGIC™ technology [75] included in
SImA (Figure 4B). This ‘linear classifier’ allows for the classification of subpopulations,
which we trained on the M0, M1(-like), and M2(-like) states by selecting an internal control
set. To that end, we randomly selected 100 cells per population across different wells,
fields, replicates, and 384-well plates, which were used to train individual conditions (see
Materials and Methods 4.8). Due to the distinct pattern describing biological versus cpd
treatment illustrated in the PCAs (Figures 4C and S3), we considered training models based
on biological stimulation, cpd stimulation, or a combination of both. Moreover, we used
IDMs for the training based on their great robustness and homogeneity, as demonstrated
within this study (Figures 2D, 3C and 4C).

In the first model (model 1), only biological stimuli (LPS and IL4 + IL13), non-treated
IDMs, and the vehicle control (DMSO) were used for training (Figure 5A). To train the
second model (model 2), cpd stimuli inducing M1-like (thiostrepton 2.5 µM and fenben-
dazole 1 µM), M2-like (bosutinib 1 µM and alsterpaullone 1 µM), and M0 (non-treated
and DMSO) were used. We decided to use all four cpds to enable the identification of a
spectrum of several MoAs and MΦ activation states. In the third model (model 3), we
combined biological and cpd stimulation.

In Figure 5A, the outcome of models 1–3 are illustrated in IDMs showing consistent
results across the two replicate 384 well-plates (replicate 1 and 2). Cell toxicity-inducing
compound concentrations are indicated by the smaller circles containing the information
about the cell number. The strongest polarizing effects represented by the shift on the y-axis
were detected with models 2 and 3. Comparing the DMSO-normalized %M2(-like)—%M1(-
like) values, we did not see drastic differences using model 2 or model 3 in contrast to
model 1 (Table S1). Importantly, model 2 enabled the identification of biological stimuli,
although these conditions were not trained in this model (Figure 5A). Considering that
biological stimuli such as LPS could be detected with model 2, even if the cell roundness
analysis did not provide a strong Z-score (Figure 3A), we decided to further progress with
model 2.

To design one ‘linear classifier’ as an analysis tool applicable for IDMs and MDMs, we
applied the IDM-trained model 2 for cpd and biological stimulation on images from several
different donors (Figure 5B), which were already evaluated in here by surface marker
expression and cell roundness analysis (Figures 2–5). This step was highly relevant to
determine, quantify, and compare MΦ-polarizing cpd effects within both MΦ systems—a
benefit over the cell roundness analysis. Strikingly, across several replicate 384-well plates,
we found that our model 2 is suitable to classify M1- and M2-like cpds also in several MDM
donors (Figure 5B). Most importantly, thiostrepton that did not induce a significant rounded
phenotype by the cell roundness analysis in donors CL091 and CL541 was clearly identified
as M1-like stimulus by the ‘linear classifier’ analysis (Figure 5B versus Figure 3B; Table S2).
Moreover, a hierarchy of the best responding donor can be determined by comparing the
DMSO-normalized %M2(-like)—%M1(-like) values for each condition (Table S2).

Taken together, the ‘linear classifier’ model 2 benefits over the cell roundness analysis
because it enables the identification of MΦ-polarizing cpds and the quantification of their
effect size in MDMs as well as in IDMs.
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Figure 5. ‘Linear classifier’ analysis for the quantification of M1 and M2(-like) compound states.
(A) Schematic of SImA ‘linear classifier’ IDM-trained models 1-3 (created by BioRender.com). Quantification
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of the indicated 24 h of cpd- and biologically stimulated IDMs from two 384-replicate plates.
DMSO 0.1%-normalized values %M2(-like)—%M1(-like) correspond to a mean of 4 wells imaged at
20× magnification (replicate 1 and 2; 5 fields per well). DMSO-normalized %M2(-like)—%M1(-like)
values are listed in Table S1. (B) SImA ‘linear classifier’ analysis of the indicated 24 h of cpd-stimulated
IDMs and several MDM donors (CL090, CL091, CL541, and CL415) from two to four 384-well repli-
cate plates by model 2 from A trained on IDMs. DMSO-normalized %M2(-like)—%M1(-like) values
correspond to a mean of 12 wells imaged at 20× magnification (5 fields per well). DMSO-normalized
%M2(-like)—%M1(-like) values are listed in Table S2. The four used reference cpds from [30] are
indicated abbreviated in the figure.

2.6. Compound-Induced MΦ Reprogramming Effects Are Identified and Quantified by
Feature-Based Cell Painting Analysis

In many therapeutic settings, the reprogramming of polarized MΦs, e.g., repolarization
of M2-like TAMs towards M1-like MΦs with anti-tumor capabilities, is warranted [76–78].
Therefore, we tested whether our ‘linear classifier’ is also capable of identifying cpds with
repolarization potential and quantifying their effects.

Experimentally, MΦ reprogramming was induced by 24 h of stimulation with LPS
or IL4 + IL13 followed by the 24 h cpd treatment with the initial stimuli still present (no
wash-out), as recommended by [30]. First, we tracked the morphological changes in a time
course live cell image analysis in IDMs, indicating MΦ reprogramming induced by cpd
stimulation (Figure S4A). This finding underlines that IDMs can be reprogrammed in the
same manner as MDMs, as described in [30]. Next, we performed an LDH assay to prove
that no cell toxicity effects are happening across the described reprogramming procedure
in our IDM system (Figure S4B). While 24 h of LPS treatment induced a round phenotype,
subsequent treatment with bosutinib or alsterpaullone for 24 h in the presence of LPS
led to a more elongated phenotype (Figure 6A). Similarly, thiostrepton and fenbendazole
were confirmed to reprogram IDMs that were initially polarized by IL4 + IL13 (Figure 6A).
Therefore, the results of the Z-score analysis at 24 h and 48 h corroborated the shape
changes seen already in the time course analysis in Figure S4A. Using the reference cpds
for repolarization, the ‘linear classifier’ analysis was tested on the described dataset to
quantify reprogramming effects (Figure 6B; Table S3). Strikingly, for all four cpds (bosutinib,
thiostrepton, alsterpaullone, and fenbendazole), the reprogramming could be quantified
with our model 2. The effect sizes of repolarization differed quantitatively from those
achieved by the polarizing cpds alone, potentially due to the persisting presence of the
initial biological stimulus. Importantly, the outcome was not impacted by normalizing the
data to DMSO at 24 h or 48 h (Figure S4C; Table S3).

Next, we aimed to evaluate our generated ‘linear classifier’ model 2 by testing a
larger cpd set of published and functionally characterized MΦ-polarizing cpds [30]. These
additional cpds include a broader spectrum of chemical classes with different MoAs:
SCH-79797, evodiamine, MGCD-265, arcyriaflavin A, purmorphamine, NVP-231, FTY720,
and taxol. To illustrate the robustness of our experimental setup, we included our M2-
control bosutinib from different stocks across the 384 well-plates (named bosutinib and
bosutinib#2).

As mentioned by Hu et al. [30], the additional M1- or M2-like cpds induced respective
consistent concentration-dependent shape changes in MDMs from several donors (donor
CL414 and donor CL961) as well as in IDMs generated from two different cell lines (201B7
and ChiPSC12 line) (Figures 6C and S4D). These concentration-dependent shape changing
effects were quantified using the ‘linear classifier’ (Figure S4E). As an example, the drastic
shape change towards a more rounded phenotype induced by NVP-231 from 1 µM to 10
µM can be quantified in the DMSO-normalized %M2(-like)—%M1(-like)values for both
MΦ systems (Figure S4D,E; Table S4).
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Figure 6. Identification and quantification of compound-induced MΦ reprogramming effects. (A) Rep-
resentative high-content Opera PhenixTM confocal images of cell-painted (PhenoVue Kit: PhenoVue
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641 mitochondrial stain, PhenoVue Hoechst 33342 nuclear stain, PhenoVue Fluor 488-concanavalin A,
PhenoVue 512 nucleic acid stain, PhenoVue Fluor 555-WGA, and PhenoVue Fluor 568-Phalloidin)
IDMs with indicated M1- and M2-like cpds single-treated or combined with biological stimuli (4 wells
per condition; 5 fields per well; 20× magnification) for 24 h or 48 h. Z-score calculation for cell round-
ness analysis: data are depicted as the mean ± SD at 20× magnification (from one 384-well plate).
Statistics: two-way ANOVA with significance **** p < 0.0001. ns = non-significant. (B) SImA ‘linear
classifier’ quantification of IDMs trained on IDM model 2 from Figure 5A. DMSO-normalized %M2(-
like)—%M1(-like) values correspond to a mean of 4 wells imaged at 20× magnification (5 fields per
well). DMSO-normalized %M2(-like)—%M1(-like) values are listed in Table S3. Treatment conditions
used from A. Normalization was performed for the duration of the treatment. (C) Z-score calcula-
tion for cell roundness analysis of cell-painted (PhenoVue Kit: PhenoVue 641 mitochondrial stain,
PhenoVue Hoechst 33342 nuclear stain, PhenoVue Fluor 488-concanavalin A, PhenoVue 512 nucleic
acid stain, PhenoVue Fluor 555-WGA, and PhenoVue Fluor 568-Phalloidin) IDMs (ChiPSC12 and
201B7) and two MDM donors (CL961 and CL414) with indicated M1- and M2-like cpds, single-treated
or combined with biological stimuli (4 wells per condition; 5 fields per well; 20× magnification)
for 24 h or 48 h. Data are depicted as the mean ± SD at 20× magnification (from two indepen-
dent 384-well plates). Statistics: two-way ANOVA with significance **** p < 0.0001 and ** p < 0.01.
ns = non-significant. (D) SImA ‘linear classifier’ analysis of indicated 24 h cpd- and biologically
stimulated IDMs (201B7 and ChiPSC12) and two MDM donors (CL414 and CL961) from one 384-well
plate trained on IDM model 2 from Figure 5A. DMSO-normalized %M2(-like)—%M1(-like)values
correspond to a mean of 4 wells imaged at 20× magnification (5 fields per well). DMSO-normalized
%M2(-like)—%M1(-like)values are listed in Table S4.

Next, we addressed the reprogramming capacity of the M1- or M2-like cpds using their
effective concentration to induce MΦ polarization, indicated by cell shape and confirmed by
the ‘linear classifier’ analysis. Interestingly, not all tested MΦ-polarizing cpds had the ability to
induce a reprogramming phenotype indicated by the reversed Z-score (Figures 6C and S4F).
In detail, M1-like cpds SCH-79797 and taxol were able to reverse the shape changes when pre-
treated with IL4 + IL13 across the MΦ systems (Figures 6C and S4F). In line with this, all tested
M2-like cpds were able to reprogram the MΦs when combined with LPS stimulation (Figures
6C and S4F). This finding was confirmed with the DMSO-normalized %M2(-like)—%M1(-like)
values determined by the ‘linear classifier’ (Figure 6D). In this context, the combination of cell
roundness and ‘linear classifier’ analyses also informs us about donor-specific repolarization
effects (e.g., IL4 + IL13 + evodiamine in MDM donor 961 and IL4 + IL13 + NVP-231 in MDM
donor 414) (Figure 6C,D). Moreover, as indicated by the range of the Z-score, the classification
of the strongest polarization effects within the specific modulator class could be determined
in the ‘linear classifier’ analysis across the MΦ systems (Table S4, Figure 6D). Because this
classification refers to the 201B7 IDMs, we decided to generate a model trained on MDM
donor CL414 and compare its classification with the classification obtained by the IDM-trained
model. Importantly, we found that the normalized %M2(-like)—%M1(-like) values change;
however, the trend of the polarization effects are similar (Figure S4E; Table S5).

In conclusion, the herein developed IDM ‘linear classifier’ model 2 is suitable not only
for identifying and quantifying MΦ polarizing but also reprogramming changes induced
by cpds across both MΦ systems. This finding is underlined by the testing of a larger
spectrum of structural and functionally distinct published MΦ (re-)polarizing cpds.

2.7. Cell Roundness Is Not Scored as the Relevant Morphological Feature to Discriminate
Compound-Induced M1(-like) from M2(-like) Polarization

Our next aim was to understand what impact and relevance the morphological prop-
erties, such as the cell roundness, have for describing MΦ polarization and reprogramming
and enabling a discrimination of the cpd-induced M1-like from M2-like effects illustrated
in Figure 6D. Consequently, we modified the ‘linear classifier’ by training the IDM model
without the cell roundness feature or without the standard morphology features (area,
roundness, width, length, and ratio of width to length). Importantly, we observed no drastic
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changes in the MΦ polarization outcome in all three different ‘linear classifiers’ (Figure 7A;
Table S6). Of note, we detected that cytotoxicity conditions (e.g., 10 µM bosutinib or 10 µM
thiostrepton) varied in the ‘linear classifier model 2′ towards without standard morphology
or cell roundness features (Figure 7A; Table S6). Thus, we compared the list of the relevant
features in the three ‘linear classifiers’. Strikingly, we figured out that the cell roundness fea-
ture is only scored as relevant when distinguishing unpolarized M0 to M1(-like) (Figure 7B).
Importantly, the relevant features to distinguish M1(-like) versus M2(-like) only partially
overlap in all three different ‘linear classifiers’, without impacting the cpd classification
in the ‘linear classifiers’ without standard morphology or cell roundness features at all
(Figure 7C).

In conclusion, the ‘linear classifier’ analysis revealed that the cell roundness feature is
not scored as relevant parameter to distinguish M1(-like) or M2(-like) polarized effects in
MΦs. Cell roundness plays a determining role to distinguish M0 from M1(-like) states. This
initial finding illustrates the impact that morphological feature profiling has in describing
the cellular state of MΦ (re-)polarization.

2.8. Deep Learning-Based Cell Painting Analysis Confirms Feature-Based Identified MΦ
(Re-)Polarization Effects

In phenotypic profiling, DL can be coupled with cell painting approaches to extract
biologically meaningful representations from the image-based feature profiles [46–50].
Together with ScreeningHub ValueData, we aimed to establish a DL-based cell painting
analysis tool to verify the MΦ (re-)polarization effects identified by the feature-based ‘linear
classifier’. In alignment with the ‘linear classifier model 2′, we used a DL algorithm for
training 201B7 IDM images that were randomly selected across imaged fields per wells
of 384-well plates treated with the conditions of model 2 (see Materials and Methods 4.9;
named: DL-model 2). In detail, we extended the training set by incorporating conditions of
cell toxicity next to polarization induction, thereby informing about M0, M1-like, M2-like,
and dead states (Table S7).

First, we determined if the DL-model 2 describes the MΦ (re-)polarization effects in
IDMs (ChiPSC12 and 201B7) as well as MDMs (donors CL414 and CL961). The DL-model 2
identified the same M1- and M2-like cpds as determined by the ‘linear classifier’ model 2. As
expected, the highest correlation coefficients were observed for both IDM systems (correlation
coefficient > 0.9) but also reached a correlation coefficient >0.6 for both tested MDM donors
(Figure 8A). This aspect highlights that the IDM-trained DL-based analysis tool is suitable for
identifying and quantifying MΦ (re-)polarization effects across both MΦ systems—a finding
that confirms the effects seen with the feature-based ‘linear classifier’ tool.

Because the ‘linear classifier’ model 2 was developed using 20× magnified images for
training in contrast to the 40× images used for the DL-model 2, we tested whether both
magnifications would be sufficient for a reliable determination of MΦ (re-)polarizing cpds.
Thus, we tested the conditions in Figure 8A using either the 20× or the 40× images from
two replicate IDM plates. We observed high correlation coefficients of >0.8 values for both
magnifications (Figure S5A). This indicates that potent MΦ-polarizing and reprogramming
cpds can be found when testing 20× magnified images on a 40× trained DL-model 2, which
is highly useful for high-content imaging.

Following, we incorporated the DMSO-normalized %M2(-like)—%M1(-like) values
derived from the DL-model 2 and the ‘linear classifier’ model 2, showing that both analysis
tools describe the MΦ polarization effects of IDMs (ChiPSC12 and 201B7) and MDMs
(donors CL414 and CL961) with correlation scores ranging from 0.89 to 0.98 (Figure 8B;
Table S7).

In conclusion, the DL-based analysis of cell painting images confirmed the identifi-
cation of cpds with MΦ-polarizing capacity and also enabled the quantification of their
polarization effects in both MΦ systems. Thus, our established AI-fueled analysis tools are
suitable for high-throughput and high-content screening applications.
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 Figure 7. Relevance of standard morphological properties and cell roundness feature for compound-

induced MΦ (re-)polarization. (A) SImA ‘linear classifier’ analysis of indicated 24 h treated cpd- and
biologically stimulated IDMs from one 384-well plate trained on IDM model 2 from Figure 5A. Model
2 differs in the usage of all or no standard morphology (area, roundness, width, length, and ratio of
width to length) or no cell roundness features. DMSO-normalized %M2(-like)—%M1(-like) values
correspond to a mean of 4 wells imaged at 20× magnification (5 fields per well). DMSO-normalized
%M2(-like)—%M1(-like) values are listed in Table S6. (B,C) List of relevant features for M0, M1-like,
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and M2-like classification and their corresponding linear coefficient value based on the three models
in A. The cell roundness feature is highlighted in orange. The common relevant features of all three
‘linear classifiers’ are illustrated in bold.
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Figure 8. DL-fueled cell painting analyses for MΦ (re-)polarization effects. (A) Scatter plot correlating
the cell ratios (% M1(-like) and M2(-like) proportion) of the DL-fueled analysis of 24 h cpd- and
biologically stimulated IDMs (201B7 and ChIPSC12) and MDMs (CL414 and CL961) from one 384-well
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plate trained on the IDM DL-model 2 (40× magnification). DMSO 0.1%-normalized values correspond
to a mean of 4 wells imaged at 40× magnification (10 fields per well). The correlation coefficient was
calculated by the Pearson correlation. (B) Scatter plot correlating the cell ratios (DMSO normalized
%M2(-like)—%M1(-like); Table S7) of the DL-based and ‘linear classifier’ analyses of conditions
in A using 20× magnification (5 fields per well). The correlation coefficient was calculated by the
Pearson correlation.

3. Discussion

In the current study, we evaluated and refined methods [18,19] for the in vitro gen-
eration of MΦs derived from the iPSC cell line 201B7, because in the past, large-scale
phenotypic screens and other in vitro studies on human MΦs had been hampered by the
limited availability of suitable cells. While cell lines like THP-1 (a human acute monocytic
leukemia cell line) or U937 (a cell line derived from a patient with histiocytic lymphoma)
can be used to generate high numbers of uniform macrophage-like cells [25,79], they incom-
pletely recapitulate the biology of tissue-resident MΦs [11–15]. Primary MΦs generated
by differentiation from isolated blood monocytes are widely used as in vitro surrogates
of tissue-resident MΦs, but their numbers are limited due to the restricted availability of
blood donations and the inter-donor variance [16,17]. Herein, we described how frozen
stocks of 201B7-derived progenitors can be generated in potentially unlimited numbers
and can be thawed with a high recovery rate for subsequent final differentiation towards
IDMs in a one-step procedure (Figure 1C). Importantly, IDMs generated from frozen CD34+
progenitors showed no obvious difference regarding surface marker expression compared
with CD14+ progenitors and MDMs from several donors differentiated from blood mono-
cytes that were purified from frozen PBMCs (Figures S1C and 1B). Thus, we further refined
the generation of highly uniform IDMs that function as a suitable screening surrogate of
MDMs applicable in phenotypic screens, as demonstrated by recent studies of our group
and others [19,21].

Modulating MΦ polarization is a promising approach with enormous therapeutic
potential, because MΦ polarization is critically involved in a plethora of human patholo-
gies [7–10]. For example, the emerging role of MΦs as critical regulators of tumor immunity
led to an interest in targeting MΦs in cancer, and preclinical studies have demonstrated
efficacy across therapeutic modalities and tumor types [77,78]. TAMs represent one of
the most abundant immune cell types in tumors and mainly originate from peripheral
blood monocytes and tissue-resident MΦs [76]. TAMs can promote the initiation and
metastasis of tumor cells, inhibit antitumor immune responses, promote resistance against
radiotherapy and chemotherapy, and stimulate tumor angiogenesis and, subsequently,
tumor progression. A number of strategies have been developed to address the tumor-
promoting role of TAMs. These can be broadly divided into two groups: reducing the
number of TAMs within the TME or altering their functionality [80,81]. Reducing the
recruitment of monocytes into the TME by blocking CCL2-CCR2 signaling or decreasing
the differentiation of monocytes into TAMs and reducing their survival in the TME by the
inhibition of CSF1-CSF1R signaling showed efficacy as monotherapies in a limited number
of tumors in clinical trials [76]. Of note, CSF-1R inhibition induced MΦ repolarization to an
anti-tumor phenotype and blocked tumor progression in a mouse glioma model [82]. Based
on efficacy in preclinical models, several combination therapies are currently investigated
in clinical trials [78]. An intrinsic downside of depleting TAMs is the loss of their latent
immune stimulatory role as a primary phagocyte and antigen-presenting cell type within
tumors. Therefore, repolarizing TAMs towards an anti-tumor phenotype is regarded as an
attractive approach for augmenting other forms of immunotherapy [78]. CD47 is regarded
as a ‘do not eat me’ signal overexpressed by tumor cells to avoid being phagocytosed by
MΦs. Therefore, blocking the CD47/SIRP-alpha axis can enhance the phagocytic properties
of MΦs. In addition to enhanced direct tumor cell killing, anti-CD47 treatments have been
shown to repolarize TAMs to an anti-tumor phenotype in preclinical models [81,83]. In
preclinical tumor models, intratumoral injection of a TLR2 agonist or targeted delivery
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of nanoparticles loaded with a TLR7/8 agonist have also been demonstrated to induce
repolarization of TAMs towards an anti-tumor phenotype [84,85]. The activating receptor
CD40 on the MΦ surface has been targeted with agonistic anti-CD40 antibodies, which
mimic the ligand CD40L, expressed by activated T cells. In preclinical studies, anti-CD40
antibodies were effective in repolarizing TAMs into tumor-suppressing MΦs. This pre-
clinical evidence stimulated clinical studies of numerous anti-CD40 agonistic antibodies
in combination with checkpoint immunotherapy, chemotherapy, or targeted therapies in
patients with advanced solid tumors [86]. These non-exhaustive examples from oncology
underscore the potential translational relevance of identifying cpds and targets for the
(re-)polarization of MΦs. This is further substantiated by the identification of thiostrepton
in a phenotypic screen for MΦ modulators by [30], an antibiotic capable of repolarizing
TAMs into a tumor-suppressive MΦ phenotype that exhibited potent anti-tumor activity in
mice and was consequently used as a reference cpd in this study [30].

Therefore, better understanding of MΦ plasticity and the identification of MΦ-polarizing
cpds [30] is of utmost importance for basic research as well as for the pharmaceutical industry.
Morphology as one phenotypic property was found as an indicator for the MΦ polarization
state, where mouse and human MΦs induced similar morphological cell shape changes in
response to intrinsic and extrinsic cues [30–32]. However, whether cell roundness is a universal
and relevant phenotypic parameter to describe MΦ activation state remains elusive. Until
now, only the extreme states of the MΦ polarization spectrum, pro- and anti-inflammatory,
were characterized by defined morphological changes: M1(-like) are rather rounded, while
M2(-like) are more elongated [30–32]. While these shape changes have been described for
mouse (BMDMs) and human (MDMs) systems, a potential association of polarization state
and cellular shape of IDMs had yet to be addressed. To assess cell shape changes by high-
content imaging, we developed a cell roundness analysis tool (Z-score calculation) that reliably
revealed polarization and reprogramming of IDMs treated with cpds and/or biological stimuli
(Figures 2C,D, 3, 6A,C and S2B). In addition, we showed that primarily MDMs from several
donors treated with biological or cpd stimuli have inter-donor variance in their heterogeneous
cell shape response (Figure 3A,B). Moreover, cytotoxic cpd concentrations were reflected
by a high Z-score, thereby erroneously pretending M1-like effects (Figure 2C). Therefore, in
a potential phenotypic screening approach with cell roundness analysis as a read-out for
MΦ-polarizing cpds, a parallel or sequential cytotoxicity assay would be warranted for the
early exclusion of false-positive hits. Moreover, IDMs are suitable as a screening surrogate to
MDMs with no heterogenous cpd-inducing cell shape response.

Consequently, we established an AI-fueled cell painting of human MDMs and IDMs
to enable the early detection of cytotoxic effects in parallel with assessing the phenotypic
polarization patterns of both MΦ systems. The principal component analyses of cell paint-
ing properties highlighted, for the first time, a feature-based comprehensive comparison of
the phenotypic profiles of cpd- and biologically stimulated IDMs as well as the profiles of
MDMs. Thus, feature-based profiling enables a description of different polarization fin-
gerprints that potentially more realistically reflects the multidimensional spectrum of MΦ
plasticity beyond the traditional dichotomous M1/M2 categorization (Figures S3A and 4C).
In this context, we established a ‘custom-made cell painting building block’ based on 1279
features that is already sufficient to describe the mentioned categorization (Figure 4C).
Overall, the cell painting feature analysis is suitable for finding the inter-donor variance
of MDMs and for dissecting the distinct MΦ polarization patterns when stimulated with
known biological or chemical M1/M2 modulators (Figures S3A and 4C). Thus, cell painting
feature profiles broaden our existing framework about MΦ polarization, which is known
to be induced by the modulation of several different pathways [30].

To identify and quantify MΦ (re-)polarization effects, we extended the feature-based
cell painting analysis tool by training a ‘linear classifier’ that informs us about the polariza-
tion states across MΦ systems (IDMs and MDMs): M0, M1-like, and M2-like (Figure 4B).
Importantly, the ‘linear classifier’ analysis enabled the identification of MΦ polarizing
effects that were not found by the cell roundness analysis due to morphological hetero-



Int. J. Mol. Sci. 2024, 25, 12330 23 of 34

geneity (e.g., LPS or thiostrepton; Figures 5 and 3A,B). Thus, cell types with no defined
round or elongated cell shape can be studied based on their phenotypic profile by adapting
our feature-based analysis tool. Moreover, by performing a potential high-throughput
compound screen for MΦ-polarizing compounds, our analysis pipeline would inform us
about a potential hit candidate, not only across different IDM lines but more importantly
across the wide spectrum of donated MDMs. Additionally, a potential hit candidate can be
characterized by comparing with fingerprints of cpds with known MoA, off-target activity,
cytotoxicity, or bioactivity.

Using the trained ‘linear classifier’, we were able to address the relevance of standard
morphology properties (area, roundness, width, length, and ratio of width to length) to
indicate and discriminate different MΦ (re-)polarization states. In this context, we revealed
that cell roundness is a relevant feature for the discrimination of M0 and M1(-like) states
(Figure 7B). Surprisingly, neither cell roundness nor other standard morphological features
are scored as relevant parameters to distinguish M1(-like) or M2(-like) states (Figure 7C).
This is consistent for both MΦ systems and underlines the impact of morphological feature
profiles to describe a cellular state.

To evaluate the established cell painting feature-based analysis tool and to test if the
successful characterization of MΦ (re-)polarization would be restricted to this specific
evaluation tool, we applied an orthogonal method by image-based DL. DL algorithms are
powerful tools through their impact on drug discovery by accelerating the identification
of effective drugs and their MoAs [87]. Therefore, we designed and developed together
with ScreeningHub ValueData a DL-based cell painting analysis tool aligning in part
with the training environment of the ‘linear classifier’: M0, M1-like, M2-like, and dead
state. Identified by the ‘linear classifier’, the DL-based analysis tool confirmed the MΦ (re-
)polarizing effects in MDMs and IDMs with high correlation scores (Figure 8B). In contrast
to the cell roundness analysis, the DL-based analysis tool enables a quantification of the
MΦ activation state effects and the identification of cytotoxicity-inducing cpd conditions.
Thus, we designed and established two novel analysis tools, DL-fueled and feature-based,
to generate an AI-fueled cell painting platform applicable for high-content and high-
throughput screenings.

A future aim will be to implement our analysis tools as a novel and universal plat-
form for the phenotypic screening of large cpd libraries to phenotypically characterize
disease-relevant MΦ phenotypes (e.g., TAMs or profibrotic MΦs), study MΦ stimuli (e.g.,
profibrotic cocktails [88] or secreted cytokines), evaluate compound modulators (e.g., senes-
cence or cell death inducers [89]), or compare cell painting signatures from MΦs of different
origin (e.g., reprogrammed MΦs). In the long run, we aim to combine our analysis tools
with multi-omics analyses [26] and functional read-outs like efferocytosis or phagocytosis
capacity [19] to achieve the identification of an MΦ-polarizing compound in parallel with
the transcriptional, efferocytotic, or proteomic changes that it induces. Moreover, IDMs are
highly susceptible to genetic engineering [21], opening the potential of comparing chemical
and genetic perturbations to support target deconvolution. Interestingly, a phenotypic
signature, demonstrated by a predictive feature profile, can be a first novel indicator for
the functional modulation of the cell system of choice. Therefore, combining high-content
imaging with high-throughput screening opens a new avenue into unraveling complex
biological processes by identifying potential modulators of the cellular state (e.g., shown for
intestinal fibrosis [38]). Furthermore, we expect that our analysis tools find their utilization
in early toxicology and safety assessment during hit finding and lead optimization. We
speculate that the established cell painting analysis tools could accelerate hit triaging of
selective MΦ-polarizing compounds, as demonstrated in other studies [43,90].

Overall, the increasing availability of image datasets from different cell systems (e.g.,
represented by a large publicly available reference dataset from the JUMP-CP (Joint Undertak-
ing for Morphological Profiling-Cell Painting) consortium [91,92]) paired with information
about chemical and genetical perturbation in a biological context will drive the development
of more powerful DL models and feature extraction tools for drug discovery purposes.
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4. Materials and Methods
4.1. Isolation of Human Monocytes from Leukapheresis Products and Differentiation Towards MΦs

Anonymized leukapheresis products from healthy human volunteers (donors) were
obtained from Deutsches Rotes Kreuz (Ulm, Germany) in accordance with ethical standards
and local regulations. Human peripheral blood mononuclear cells (PBMCs) were isolated
using density gradient centrifugation using Ficoll-Paque Plus (GE Healthcare, Düsseldorf,
Germany) and LeucosepTM (Greiner Bio-One, Frickenhausen, Germany). In this study,
human monocytes were purified from frozen PBMC stocks using the EasySepTM Human
Monocyte Isolation Kit (19359RF, StemCell Technologies, Köln, Germany) according to
the manufacturer’s RoboSepTM protocol. In vitro differentiation of 1 × 106 monocytes
per well into human MΦs were cultured in 3 mL of complete DMEM GlutaMAX (31966-
021, Gibco Thermo Fisher Scientific, Karlsruhe, Germany) supplemented with 10% heat-
inactivated fetal calf serum (FCS; 10500064, Thermo Fisher Scientific, Karlsruhe, Germany;
LOT10500-064) and 1% NEAA (11140050, Thermo Fisher Scientific, Karlsruhe, Germany)
in the presence of 100 ng/mL recombinant human M-CSF (216-MC-500, R&D Systems,
Wiesbaden, Germany) in Upcell 6-well plates (140685, Thermo Fisher Scientific, Karlsruhe,
Germany) for 7 days. The quality control of RoboSep-isolated and purified monocytes and
MΦs were performed by flow cytometry. The following donors were used in this study:
CL119, CL090, CL091, CL4541, CL415, CL961, and CL414.

4.2. Differentiation of Human 201B7 iPSC Line CD14+- or CD34+-Derived Progenitors Towards MΦs

Cellartis human iPSC line 12 (ChiPSC12; cat. Y00285, Takara Bio Europe AB; Saint-
Germain-en-Laye; France) and 201B7 [20] were cultured according to the manufacturer’s
instructions in a feeder-free environment as a monolayer. The pluripotency of the 201B7
line was checked by flow cytometry. The maintenance and differentiation of the ChiPSC12
line towards MΦs is described in [19]. The ChiPSC12 line was used as a reference line to
201B7 and was therefore not primarily used in this study.

The differentiation protocol of human iPSCs from 201B7 into monocytes (CD14+-
progenitors) towards MΦs was adapted from [18] and adjusted in the following steps
of cytokine concentrations, progenitor expansion, medium usage, and cell density: Un-
til the start of the mesodermal differentiation, the hiPSC (2500 cells/well/1.5 mL) were
maintained in StemFit Medium Basic 03 (SFB-503, AmsBio, BH Alkmaar, Netherlands)
supplemented with 100 ng/mL FGF (233-FB-025, R&D Systems, Wiesbaden, Germany)
and 10 µM Y-27632 (10-2301, FOCUS Biomolecules, Plymouth Meeting, PA 19462, US) in a
6-well 1 h laminin iMatrix-511 (892012, Amsbio, BH Alkmaar, Netherlands) precoated plate
(140675, Thermo Fisher Scientific, Karlsruhe, Germany) for 48 h. Every second day, the
medium supplemented with FGF was refreshed for one week to reach 80% cell confluency.
In total, 250 cells/well/1.5 mL were either seeded to start the mesodermal differentiation
process or cryopreserved for long-term storage at −150 ◦C (50,000 cells/1vial/1 mL CryoS-
tore (C2874, Sigma Aldrich, Schnelldorf, Germany)). To induce hematopoietic progenitors
from day 7 in culture, the StemPro34TM medium (10639011, Gibco Thermo Fisher Scientific,
Karlsruhe, Germany) was used and supplemented with cytokines as described in [18].
Thereby, the concentration of M-CSF (rhM-CSF216-MC-500, R&D Systems, Wiesbaden,
Germany) was increased to 100 ng/mL. In total, across three harvest rounds (one harvest
round corresponds to one week), the monocytes were collected (harvested) through a 30 µM
strainer (130-098-458, Miltenyi Biotec, Bergisch Gladbach, Germany) and differentiated
into MΦs in complete DMEM GlutaMAX (31966-021, Gibco Thermo Fisher Scientific, Karl-
sruhe, Germany) supplemented with 10% heat-inactivated FCS (10500064, Gibco Thermo
Fisher Scientific, Karlsruhe, Germany, LOT10500-064) and 1% NEAA (11140050, Gibco
Thermo Fisher Scientific, Karlsruhe, Germany) in the presence of 100 ng/mL recombi-
nant human M-CSF (216-MC-500, R&D Systems, Wiesbaden, Germany) in T75 flasks
(5 × 106 monocytes per T75 flask; 10537161, Falcon Corning, Kaiserslautern, Germany)
for 7 days. The hematopoietic progenitors were kept to produce monocytes across the
three harvest rounds being cultivated and expanded in StemPro34TM medium (10639011,
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Gibco Thermo Fisher Scientific, Karlsruhe, Germany) supplemented with 1× GlutaMAX
(A1286001, GibcoThermo Fisher Scientific, Karlsruhe, Germany), 100 ng/mL rh M-CSF
(216-MC-500, R&D Systems, Wiesbaden, Germany), 50 ng/mL rh SCF (255-SC-050, R&D
Systems, Wiesbaden, Germany), 10 ng/mL rh TPO (288-TPN-025, R&D Systems, Wies-
baden, Germany), 50 ng/mL rh IL3 (203-IL-050, R&D Systems, Wiesbaden, Germany), and
50 ng/mL rh FLT3L (308-FK-100, R&D Systems, Wiesbaden, Germany). The quality control
of monocytes and MΦs were performed by flow cytometry analysis. Cellular imaging of
the differentiation stages was conducted with an EVOS M5000 Imaging System (AMF5000,
Thermo Fisher Scientific, Karlsruhe, Germany).

The differentiation protocol of human iPSCs from 201B7 into CD34+-progenitors was
adapted from [19]. Details of the differentiation towards MΦs are described as follows:
Across three harvest rounds, 10 × 106 of CD34+-progenitors were frozen in 1 vial of 1
mL of CryoStore (C2874, Sigma Aldrich, Schnelldorf, Germany) for long-term storage
at −150 ◦C. After thawing in a warm water bath, the CD34+-progenitors were washed
once in complete DMEM GlutaMAX (31966-021, Gibco Thermo Fisher Scientific, Karlsruhe,
Germany) supplemented with 10% heat-inactivated FCS (10500064, Gibco Thermo Fisher
Scientific, Karlsruhe, Germany, LOT10500-064) and 1% NEAA (11140050, Gibco Thermo
Fisher Scientific, Karlsruhe, Germany) in the presence of 100 ng/mL recombinant human
M-CSF (216-MC-500, R&D), seeded at a density of 5 × 106 per T75 flask (10537161, Falcon
Corning, Kaiserslautern, Germany) in the respective medium and stored at 37 ◦C and 5%
CO2. Every second day, fresh medium (5 mL per T75) and 100 ng/mL M-CSF (216-MC-500,
R&D Systems, Wiesbaden, Germany) was added to the cells across two weeks. After one
week in culture, the supernatant was collected and reseeded in 5 × 106 of cells in a new
T75 flask. The procedure of collecting and reseeding floating progenitors can be performed
for two harvest rounds. The quality control of monocytes and MΦs was performed by flow
cytometry. Cellular imaging of the differentiation stages was conducted using an EVOS
M5000 Imaging System (AMF5000, Thermo Fisher Scientific, Karlsruhe, Germany).

4.3. Flow Cytometry

In total, 1 × 106 cells/well were seeded in a 96-well cell repellent v bottom plate
(651970, Greiner, Frickenhausen, Germany) in 200 µL of cold FACS blocking buffer (1× PBS,
100100056, Gibco Thermo Fisher Scientific, Karlsruhe, Germany) supplemented with 2%
FCS (10500064, Gibco Thermo Fisher Scientific, Karlsruhe, Germany) and 2 mM EDTA
(UltraPure™ 0.5 M EDTA, pH 8.0; 15575020, Thermo Fisher Scientific, Karlsruhe, Ger-
many) to determine a specific quality control panel of surface receptor markers using flow
cytometry processing. After centrifugation for 5 min at 300× g, the cell pellet was resus-
pended in 50 µL of Fc blocking reagent (human, 130-059-901, Milentyi Biotech, Bergisch
Gladbach, Germany) containing FACS blocking buffer (1:10 dilution) and incubated at
4 ◦C for 10 min in the dark. Based on the manufacturer’s instructions, 2.5 µL or 5 µL of
the specific mouse anti-human antibody was prepared in a master mix reaction with its
isotype as an additional control: CD14-Alexa488 (367129, Biolegend, Koblenz, Germany),
CD206-APC (550889, BD, Heidelberg, Germany). CD34-PE (550761,BD, Heidelberg, Ger-
many), CD163-BV786 (741003, BD, Heidelberg, Germany), CD80-BUV395 (565210, BD,
Heidelberg, Germany), CD45-BV421 (563879, BD, Heidelberg, Germany), IgG1-Alexa488
(557782, Biolegend, Koblenz, Germany), IgG1-BV786 (563330, Biolegend, Koblenz, Ger-
many), IgG1-BUV395 (563547, Biolegend, Koblenz, Germany), IgG1-BUV395 (563547, Biole-
gend, Koblenz, Germany), IgG1-BV421 (562438, Biolegend, Koblenz, Germany), IgG1-PE
(555749, BD, Heidelberg, Germany), IgG1-APC (555751, BD, Heidelberg, Germany), TRA-1-
81-PE (330708, Biolegend, Koblenz, Germany), SSEA-5-APC (355210, Biolegend, Koblenz,
Germany), SSEA-1-BV789 (562277, BD, Heidelberg, Germany), SSEA-3-Alexa488 (560236,
BD, Heidelberg, Germany), SSEA-4-BUV395 (563817, BD, Heidelberg, Germany), IgM k
-PE (401611, Biolegend, Koblenz, Germany), IgG1 k -APC (400122, Biolegend, Koblenz,
Germany), IgM k -BV786 (563837, Biolegend, Koblenz, Germany), IgG3k-BUV395 (563814,
BD, Heidelberg, Germany), IgMk-Alexa488 (400811, Biolegend, Koblenz, Germany), and
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IgM k -BV421 (562704, BD, Heidelberg, Germany). An unstained control was prepared
as well. Afterwards, 50 µL of antibody mix or FMO control was added to the 96-well
plate, live–dead staining was enabled by the addition of 10 µL of FVS780/well (56388, BD,
Heidelberg, Germany; 1:5000 dilution in FACS blocking buffer), and the plate was stored
for 15 min at 4 ◦C. After washing 3 times with cold FACS blocking buffer, the samples were
measured at the LSR Fortessa X-20 (BD, Heidelberg, Germany) and the expression levels
were analyzed by FlowJo V10.5.3.

4.4. LDH Assay

The LDH assay was performed based on the manufacturer’s instructions of the LDH-
Glo™ cytotoxicity assay (J2381, Promega, Walldorf, Germany) and adjusted in the follow-
ing steps: The frozen supernatants from 0.2 × 106 cells/well in a white opaque 96-well
plate (353296, Falcon Corning, Kaiserslautern, Germany) were diluted 1:20 in LDH buffer
(200 mM Tris-HCl (pH 7.3), 10% Glycerol, 1% BSA). No-cell, only-cell, and maximum LDH
release (10% triton) conditions were used as internal controls and measured in triplicates.

4.5. Compound Treatment and Biological Stimulation

MDMs were harvested from 6-well Upcell plates (140685, Thermo Fisher Scientific,
Karlsruhe, Germany) through the detachment of cells at room temperature for 1–2 h. In con-
trast, IDMs were harvested from the T75 flask (10537161, Falcon Corning, Kaiserslautern,
Germany) by gentle scraping (Cell scraper, 83.3932, Sarsteadt, Nümbrecht, Germany)
in 1× PBS (10010056, Gibco Thermo Fisher Scientific, Karlsruhe, Germany). MΦs were
seeded in black 384-well Phenoplates (6057300302, Revvity, Hamburg, Germany) using
a MultidropTM Combi Reagent Dispenser (5840300, Thermo Fisher Scientific, Karlsruhe,
Germany) at a specific density (IDM: 9000 cells/well; MDM: 5000 cells/well) in 45 µL of
complete DMEM GlutaMAX (31966-021, Gibco Thermo Fisher Scientific, Karlsruhe, Ger-
many) supplemented with 10% FCS (10500064, Gibco Thermo Fisher Scientific, Karlsruhe,
Germany, LOT10500-064) and 1% NEAA (11140050, Gibco Thermo Fisher Scientific, Karl-
sruhe, Germany) in the presence of 100 ng/mL recombinant human M-CSF (216-MC-500,
R&D Systems, Wiesbaden, Germany). The seeded cells were stored overnight at 37 ◦C
and 5% CO2. The cpd and biological stimuli (50 µL per condition/well) were prepared in
complete DMEM in a stock concentration 10 times higher than the final one and transferred
manually in at least quadruplicates into a Microplate deep well 384-storage plate (784201,
Greiner, Frickenhausen, Germany). DMSO (final 0.1%; 12611S, CST, Frankfurt am Main,
Germany) served as an internal negative control and was added to the biological stimuli
as well if not otherwise indicated. The transfer of cpd or biological stimulation (5 µL per
condition) from the Microplate deep well 384-storage plate (784201, Greiner, Frickenhausen,
Germany) on the black 384-well Phenoplate (6057300302, Revvity, Hamburg, Germany) was
performed semi-automatically with the CyBi-Well CyBio Automated Simultaneous Pipettor
(69917-2, ARTISAN, Champaign, IL 61822, US). Lastly, the cell plate was stored for 24 h at
37 ◦C and 5% CO2. In case MΦ reprogramming was performed, the cells were stimulated
with the biological stimuli during seeding, and after 24 h, the cpds were added for an
additional 24 h. The following control biological stimuli were used alone or in combination
in their indicated final concentration: 20 ng/mL rh IL4 (201-IL/CF 10 µg, R&D Systems,
Wiesbaden, Germany), 20 ng/mL rh IL13 (213-IL/CF 25 µg, R&D Systems, Wiesbaden,
Germany), 5 ng/mL LPS (L6143 Salmonella Sigma Aldrich, Schnelldorf, Germany), and
50 ng/mL TNFα (210-Ta-020/CF R&D Systems, Wiesbaden, Germany). The following
cpds were used at different concentrations mentioned in the respective figure legend and
serve as reference compounds [30]: thiostrepton (598226, Sigma Aldrich, Schnelldorf, Ger-
many), bosutinib (PZ0192, Sigma Aldrich, Schnelldorf, Germany), fenbendazole (1269403,
USP, Basel, Switzerland), alsterpaullone (A4847, Sigma Aldrich, Schnelldorf, Germany),
etoposide (D1225, Selleckchem, Berlin, Germany), CA-074Me (205531, Millipore, Vienna,
Austria), cytochalasin D (C8273, Sigma Aldrich, Schnelldorf, Germany), berberine chloride
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(PHR1502, Sigma Aldrich, Schnelldorf, Germany) and tetrandrine (S2403, Selleckchem,
Berlin, Germany).

4.6. Cell Painting and High-Content Imaging

The cell painting assay was adapted by the manufacturer’s instructions from the
PhenoVue Cell Painting Kit containing 6 multiplexing cellular dyes (PING12, Revvity,
Hamburg, Germany) and adjusted in the workflow in the final concentration of the staining
reagents and the image acquisition parameters in the confocal Opera PhenixTM high-content
screening device (HH14000000, Revvity, Hamburg, Germany). The dyes were diluted in
2× PhenoVue Dye Dilutent (0.22 µM filtered) as follows: PhenoVue 641 Mitochondrial
stain 1mM (1:16,000), PhenoVue Hoechst 33342 nuclear stain 1 mg/mL (1:1600), PhenoVue
Fluor 488-concanavalin A 2 mg/mL (1:800), PhenoVue 512 nucleic acid stain 5 mM (1:1500),
PhenoVue Fluor 555-WGA 0.15 mg/mL (1:200), and PhenoVue Fluor 568-Phalloidin 6.6 µM
(1:400). Specifically, the PhenoVue Fluor 488-concanavalin A dye was titrated to reduce
the spectral overlap with the PhenoVue 512 nucleic acid stain that was acquired in one
channel due to no separate emission filter (used emission filters: 435–480 nm; 435–550 nm;
500–550 nm; 570–630 nm; 650–760 nm) capacity. The procedure of fixing, permeabilizing,
staining, and washing the MΦs was performed semi-automatically using the MultidropTM

Combi Reagent Dispenser (5840300, Thermo Fisher Scientific, Karlsruhe, Germany) and
BioTek® 50TM TS Microplate Washer (Millipore, Vienna, Austria): First, the medium from
pretreated MΦs in the 384-black Phenoplates was removed up to 20 µL/well and 50 µL/well
of PhenoVue 641 mitochondrial stain solution was added. After 30 min of incubation at
37 ◦C and 5% CO2, the cells were fixed with 2.0% PFA (16% stock; 20 µL/well) and stored in
the dark at room temperature for 30 min. After removing PFA by washing three times with
1× PBS, the cells were permeabilized with 0.1% tritonX-100 (20 µL/well) and incubated in
the dark at room temperature for an additional 20 min followed by a three times 1× PBS
wash. Then, the cells were stained with the remaining 5 dyes (20 µL/well) and incubated in
the dark at room temperature for 30 min. Finally, the cells were washed again three times
with 1× PBS, and 20 µL/well of 1× PBS was added to the cells, followed by sealing the
plate. Images were acquired at binning mode 2 at 40× (minimum of 10 fields per imaged
well) and 20× magnification (minimum of 5 fields per imaged well) in water immersion in
the confocal Opera PhenixTM high-content screening device using Harmony software5.2
(Revvity, Hamburg, Germany). Further imaging parameters were used: Autofocus: two
peak defaults; objective: 20× water; NA 1.0 or 40× water NA 1.1; confocal optimal mode
and camera ROI: 2160 × 2160 px. To increase the fluorescence intensity and preferably
decrease the spectral crosstalk, the emission and excitation parameters were set as follows
based on the used magnification for IDMs and MDMs systems: 1. For 20× magnification:
Hoechst 33342 (excitation: 405 nm; emission: 435–480 nm; time: 700 ms, power: 100%,
height: −5.0 µM), Alexa 488 (excitation: 488 nm; emission: 500–550 nm; time: 40 ms,
power: 20%, height: −6.0 µM), Alexa 647 (excitation: 640 nm; emission: 650–760 nm;
time: 40 ms, power: 50%, height: −5.0 µM), Alexa 568 (excitation: 561 nm; emission:
570–630 nm ; time: 60 ms, power: 100%, height: −6.0 µM); 2. For 40× magnification:
Hoechst 33342 (time: 700 ms, power: 100%, height: 1.0 µM), Alexa 488 (time: 40 ms, power:
20%, height: 0 µM), Alexa 647 (40 ms, power: 50%, height: 0 µM), Alexa 568 (time: 60 ms,
power: 100%, height: 0 µM). These described settings were tested in single and multiplexed
dye assays across days because 384-well plates were imaged immediately or after 3 days
of being stored at 4 ◦C. The images acquired in Harmony software of Opera PhenixTM

were processed for data analysis in Signals Image Artist (SImA1.3) software from Revvity
(Hamburg, Germany).

4.7. Cell Roundness Analysis

The image acquisition parameters are indicated in 5.6. For image data analysis,
we used Signals Image Artist software (SImA1.3) purchased from Revvity (Hamburg,
Germany). Each ’Input Image’ (Channel group:1; Sequences: ALL) was flatfield-corrected
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(advanced). Each population was predefined by ‘Find Nuclei’ (Channel: Hoechst33352;
Method: B; ROI: none) and ‘Find Cytoplasm’ (Channel: Alexa488; Method: B). Border
objects were not considered. To determine the cell roundness, the ‘Calculate morphology
properties’ building block was selected (Population: Nuclei; Method: standard; Region:
Cell). The processed cell roundness values were normalized to the vehicle control DMSO
by using the following Z-score equation: Z-score = cell roundness (condition)- mean cell
roundness (DMSO)/standard deviation cell roundness (DMSO). A value of >0 was used as
an indicator for a more rounded cell (M1(-like)), whereby a value of <0 was an indicator
of an elongated morphology (M2(-like)). To exclude compound-induced cell cytotoxicity,
the cell number was determined as ‘Nuclei-Number of Objects’, informing us about the
DAPI-stained nuclei.

4.8. Feature-Based Cell Painting Analysis

For image data analysis, we used Signals Image Artist software (SImA1.3) purchased
from Revvity (Hamburg, Germany). The following channels were used in the feature-
based analysis: Alexa488, Alexa568, Alexa647, and Hoechst33342. The image acquisition
parameters are indicated in 5.6. Each ’Input Image’ (Channel group:1; Sequences: ALL) was
flatfield-corrected (advanced). Each population was predefined by ‘Find Nuclei’ (Channel:
Hoechst33352; Method: B; ROI: none) and ‘Find Cytoplasm’ (Channel: Alexa488; Method:
B). Border objects were not considered. For using the ‘preset cell painting building block’
(4710 features), we followed the instructions (Harmony Software Manual—Opera Phenix)
from the Revvity (Hamburg, Germany): Method: default regions; channels: Alexa488,
Alexa568, Alexa647, Hoechst33342; SER scale: 2; property set: extensive; regions: nucleus
(inner border: 100%; outer border: 50%), membrane (inner border: 10%; outer border:
0%), cytoplasm (inner border: 50%; outer boarder: 0%), ring (inner border: 50%; outer
border: 30%), cell (inner border: 100%; outer border: 0%). To phenocopy the ‘preset cell
painting building block’, we calculated the texture, intensity, and morphology properties
in all four channels (Alexa488, Alexa568, Alexa647, and Hoechst33342) over three regions
(cytoplasm, nucleus, and full cell), reaching 1279 features in total (‘custom-made cell
painting building block’). All three properties were defined by the following feature
selections: texture properties (SER and Gabor features normalized by kernel), intensity
properties (standard features), and morphology properties (standard features and STAR
features with sliding parabola combined with SER features normalized by kernel). We
extracted the properties per single object and used the mean of each property per well for
further processing. We combined the ‘custom-made cell painting building block’ with the
method for object classification using the PhenoLOGIC™ linear classifier algorithm ([75],
named in the study as ‘linear classifier’) from Revvity (Hamburg, Germany). In detail,
the method ’linear classifier’ was used for ‘Select Population’ and trained on 100 cells
per output population (M0, M1-like, and M2-like) from randomly selected 20× magnified
fields of wells from images of 384-well plates based on the instructions in ‘Harmony
Software Manual—Opera Phenix’ and ‘Image Analysis Guide’ from Revvity (Hamburg,
Germany). The definition of the output population was dependent on the generated model
as indicated by Figure 5A. The information about cytotoxic effects was incorporated by
the cell numbers. To address the impact of morphology properties in the trained model
2 ‘linear classifier’ (Figure 7A), we removed in the ‘Select Population’ building block all
‘standard morphology properties’ (area, cell roundness, width, length, and ratio of width
to length) or only the ‘Cell Roundness’ feature. Mean per well %M2(-like) values and
%M1(-like) values were normalized by subtraction of the average mean per well %M2(-
like) or %M1(-like) values of the respective DMSO control on the same plate and then
the normalized mean %M2(-like)—%M1(-like) values calculated for each treatment. For
the PCAs, the ‘preset cell painting building block’ features and the ‘custom-made cell
painting building block’ features were centered by the subtraction of the mean and scaled
by dividing by each features’ standard deviation before calculating the first two principal
components accounting for the highest amount of variance in the dataset. Figures were
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generated using R-Project4.2.2 and RStudio 2022.12.05+353 ‘Elsebeth Geranium’ using the
ggplot2 and ggrepel packages and edited using Adobe Illustrator2022 version 26.4.

4.9. Deep Learning-Based Cell Painting Analysis

ScreeningHub provided by ValueData GmbH is an AI-based screening platform using
deep learning for cell-based phenotypic drug discovery to, inter alia, automate the detection
and classification of MΦs into four distinct categories: M0, M1-like, M2-like, and dead
cells. The 40× cell painting images of 201B7 IDMs from several 384-well plates treated
with the same treatment conditions as ‘linear classifier model 2′ were processed through
the model, which utilized convolutional neural networks (CNNs) for object detection. In
contrast to the feature-based analysis, a dead category was trained using images treated
with staurosporine 1 µM (Sigma Aldrich, Schnelldorf, Germany). The CNN-based model
was designed to accurately locate individual cells and classify them according to their
specific phenotype. The input images underwent a series of preprocessing steps to enhance
the quality and consistency of the data before being analyzed by the AI model. These steps
were designed to optimize the images for accurate detection and classification, ensuring
that the relevant features of each cell were emphasized for the DL algorithm. For each
detected cell, the model assigned a label corresponding to one of the four cell types:
M0, M1-like, M2-like, or dead. Additionally, the model generated a confidence score
for each classification, which indicated the probability associated with the predicted cell
type. Cells with a confidence score below a threshold of 40% were excluded from further
analysis. The classified cells for each experimental condition were aggregated to analyze
the distribution of cell types, providing a detailed examination of how various treatments
affected macrophage polarization. For every well, the total number of cells detected, the
ratio of M0, M1-like, M2-like, and dead cells, and the average confidence score for each
class were calculated. Results across replicate wells for the same condition were averaged
to ensure consistency and to minimize the impact of potential experimental variability. The
analysis results (Figures 8 and S5A) were automatically plotted using ScreeningHub and
edited using AdobeIllustrator2022 version 26.4.

4.10. Statistical Analysis

Statistics were performed with GraphPad Prismv10.1.2 (GraphPad Software, San Diego,
CA, USA). The data are reported as the means of at least three independent experiments
(specific number of replicates mentioned in the figure legends). Statistically significant dif-
ferences were calculated using a two-way ANOVA with Tukey’s multiple comparisons test
or Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001). The data from
flow cytometry are depicted as percentages. Biological replicates (individual experiments or
MΦ donors) were measured independently, and technical replicates were generated out of
biological ones. Correlation coefficients were defined by a Pearson correlation.

5. Conclusions

In this study, we established the AI-fueled cell painting of human IDMs and MDMs and
demonstrated that the magnitude of cpd-induced MΦ (re-)polarization can be identified
and quantified by feature- or DL-based analyses with the parallel detection of toxic effects
with a high correlation score. The PCA of the respective cell painting fingerprints informed
us about subtle phenotypes of IDMs and MDMs induced by different biological or chemical
stimuli and impressively reflected the compelling spectrum of MΦ plasticity compared with
the traditional and rather simplistic M1/M2 dichotomy. Surprisingly, using feature-based
cell painting analysis, we found that the cell roundness feature or standard morphology
properties (area, roundness, width, length, and ratio of width to length) were not scored as
relevant ones to discriminate between M1(-like) and M2(-like) polarization states. However,
cell roundness as a morphology feature is relevant for distinguishing between unpolarized
and pro-inflammatory MΦs. In addition, we highlighted the potential of IDMs as a versatile
screening surrogate for the phenotypically more heterogeneous MDMs. We expect that
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our novel deep learning and feature extraction analysis tools to generate and analyze
cell painting imaging data will enhance hit identification and triaging in high-content
phenotypic screens to identify modulators of disease-relevant phenotypes in MΦ biology
and will open new avenues for a better understanding of MΦ (re-)polarization.
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