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Abstract: This study evaluates the potential of an AI-based computer-aided detection (AI-CAD)
system in digital mammography for predicting pathologic complete response (pCR) in breast cancer
patients after neoadjuvant chemotherapy (NAC). A retrospective analysis of 132 patients who under-
went NAC and surgery between January 2020 and December 2022 was performed. Pre- and post-NAC
mammograms were analyzed using conventional CAD and AI-CAD systems, with negative exams
defined by the absence of marked abnormalities. Two radiologists reviewed mammography, ultra-
sound, MRI, and diffusion-weighted imaging (DWI). Concordance rates between CAD and AI-CAD
were calculated, and the diagnostic performance, including the area under the receiver operating
characteristics curve (AUC), was assessed. The pre-NAC concordance rates were 90.9% for CAD and
97% for AI-CAD, while post-NAC rates were 88.6% for CAD and 89.4% for AI-CAD. The MRI had the
highest diagnostic performance for pCR prediction, with AI-CAD performing comparably to other
modalities. Univariate analysis identified significant predictors of pCR, including AI-CAD, mam-
mography, ultrasound, MRI, histologic grade, ER, PR, HER2, and Ki-67. In multivariable analysis,
negative MRI, histologic grade 3, and HER2 positivity remained significant predictors. In conclusion,
this study demonstrates that AI-CAD in digital mammography shows the potential to examine the
pCR of breast cancer patients following NAC.

Keywords: breast cancer; artificial intelligence; computer-aided diagnosis; mammography;
neoadjuvant chemotherapy

1. Introduction

Neoadjuvant chemotherapy (NAC) is a well-established management method for
breast cancers, significantly reducing the need for mastectomy and axillary lymph node
dissection without increasing the risk of loco-regional recurrence [1]. Moreover, achieving
a pathologic complete response (pCR) serves as a surrogate marker for improved survival
outcomes [1–3]. Accurate assessment of residual tumors after NAC is imperative for
determining the requisite extent of surgery and for monitoring the effectiveness of the
treatment [4]. Numerous studies have confirmed that an MRI is the most accurate imaging
modality for predicting residual tumors after NAC, outperforming conventional methods
such as clinical breast examination, mammography, and ultrasound [5–7]. Additionally,
the effectiveness of MRI post-NAC has been demonstrated to vary depending on tumor
subtype, histologic grade, and morphologic patterns observed on an MRI [8–11].

Mammography remains a widely used tool for breast cancer screening worldwide
and has contributed effectively to reducing mortality among breast cancer patients [12,13].
Despite its widespread use, mammography’s inherent limitations result in sensitivity rates
ranging from 70 to 90%. Traditional computer-aided detection (CAD) systems, designed
to aid mammographic interpretation and mitigate these limitations, have historically
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displayed low specificity and a high recall rate due to numerous false positives, leading to
minimal improvements in performance or cost-effectiveness [14–16].

With advancements in deep learning and artificial intelligence (AI), a new generation
of computer-assisted image analysis tools has emerged. Various AI-based CAD systems
for mammography are now commercially available to assist in breast cancer detection
and diagnosis. While diagnostic performance varies across studies, AI-CAD has shown
non-inferior or even superior performance compared to radiologists, establishing its ef-
fectiveness as a reliable decision-support tool [17–24]. It has demonstrated a reasonable
detection rate even in dense breasts, a well-known factor that reduces the sensitivity of
mammography [20,25]. There are also studies that have utilized mammography AI-CAD
in diverse ways. Some have explored replacing one of the radiologists in double reading
systems with AI-CAD [26,27], while others have aimed to reduce the workload by triaging
cases, thus improving the workflow for mammography interpretation [19,28]. Recently,
studies have even shown that AI-CAD can be utilized to predict future breast cancer
based on its abnormality score [29]. Additional research has used AI-CAD to reduce recall
rates [30,31] and to analyze calcifications on mammography [32,33].

In our readings of mammograms for breast cancer patients undergoing neoadjuvant
chemotherapy, we observed significant differences in AI-CAD results based on treatment
response. Building on this observation, this study aims to evaluate AI-CAD’s performance
in predicting pCR and to compare it with other imaging modalities including conventional
CAD, ultrasound, MRI, and DWI.

2. Materials and Methods
2.1. Study Population

This study received approval from the Institutional Review Board (IRB). Due to the
retrospective nature of the study, the requirement for patient consent was waived. Between
January 2020 and December 2022, 175 patients diagnosed with invasive breast cancer, who
completed neoadjuvant chemotherapy (NAC) and underwent surgery, were included in
this study. These patients had both their initial (pre-NAC) and preoperative (post-NAC)
mammography analyzed using conventional CAD and AI-CAD. Patients with progressive
disease (n = 7), stage IV cancer (n = 5), those who did not undergo surgery at our institution
after neoadjuvant chemotherapy (n = 4), and those with bilateral malignancy (n = 3) were
excluded. Additionally, cases where either pre- or post-NAC mammography, ultrasound,
or MRI images were unavailable (n = 21), and cases where AI-CAD or conventional CAD
analysis failed (n = 3) were also excluded. In the end, 132 patients were included in
this study.

2.2. Image Interpretation

Image interpretation was retrospectively performed by two dedicated breast imaging
radiologists with 20 and 18 years of experience with consensus. Findings were evaluated
for mammography and categorized into mass, calcifications, and mass with calcifications.
For ultrasound and MRI, the categories were mass, nonmass enhancement, and mass with
nonmass enhancement. Lesion distribution for MRI was assessed as single, multifocal,
multicentric, diffuse/inflammatory, and bilateral. Lesion size for mammography, ultra-
sound, and MRI was measured as the maximal diameter for both pre- and post-NAC. For
multiple clearly separated tumors, the diameters were summed. If a uniquely high signal
lesion on a high b-value (1000 s/mm2) DWI was detected, the ADC value was measured by
drawing an ROI at the representative area. Negative exams were defined as follows, with
all other cases considered positive: a size measurement of 0 on mammography, ultrasound,
or MRI; no markings on CAD or AI-CAD; and an ADC measurement of 0 or greater than
1300 (×10−6 mm2/s) in DWI [34].
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2.3. Conventional CAD and AI-CAD Analysis

Two commercially available CAD systems were tested: the conventional R2 Im-
ageChecker Cenova (version 1.0, Hologic Inc., Bedford, MA, USA) and the AI-powered
Lunit INSIGHT for Mammography (v1.1.4.3, Lunit Inc., Seoul, Republic of Korea, available
at https://insight.lunit.io, accessed on 7 November 2024). These systems are designed for
the detection and diagnosis of breast cancer in digital mammography and are automatically
applied through post-processing after the mammography examination. Conventional CAD
presented three kinds of markers according to mammography findings on each view of
mammograms: a triangle (▲) for calcifications, an asterisk (*) for mass/asymmetry, and a
cross (+) for combined mass with calcifications.

The AI-CAD used in this study is a commercial software developed to assist in
breast cancer detection, with regulatory approval in Europe (Conformité Européenne (CE)
marked) and the US (cleared by the Food and Drug Administration). According to the
vendor, this AI-CAD was developed using deep convolutional neural networks (CNNs) and
was trained on approximately 170,000 mammograms from a multinational mammogram
dataset [20]. When detecting suspicious findings, the AI-CAD visually marks the area with
lines or colors and provides an abnormality score for the region. The abnormality score
is provided in a percentage range of 0–100%, with higher values indicating an increased
likelihood of cancer presence on the mammogram. This AI-CAD software (v1.1.4.3) presents
its results as separate grayscale images that include an overall per-breast abnormality score
for each CC (craniocaudal) and MLO (mediolateral oblique) image, making the AI-CAD
algorithm output more interpretable and transparent.

Mammographic breast density provided by AI-CAD is classified into four categories,
almost entirely fatty, scattered, heterogeneous, and extremely dense according to the Breast
Imaging Reporting and Data System (BI-RADS) 5th edition [35].

2.4. Medical Record and Histopathological Reviews

The patient’s age at the time of the mammogram and operation type were retrieved
from medical records. Pathological reports from biopsy specimens before NAC were
meticulously reviewed to ascertain various tumor characteristics, such as histological grade,
presence of lymph node involvement, estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor (HER)2, and Ki-67 status. A cut-off value of ≥1%
was used for ER and PR positivity. HER2 expression was semi-quantitatively assessed with
scores of 0, 1, 2, or 3; a score of 3 indicated HER2 positivity, while scores of 0 or 1 suggested
HER2 negativity. Tumors with a HER2 score of 2 required gene amplification testing to
determine HER2 status. Positive Ki-67 expression was recognized when ≥20% of cancer
cell nuclei were stained. IHC subtypes were formulated according to the 2013 St. Gallen
International Breast Cancer Conference guidelines, categorizing them as (1) luminal A (ER
or PR+, HER2-, and low Ki-67), (2) luminal B (ER or PR+, HER2+, and/or high Ki-67),
(3) HER2-enriched (ER-, PR-, and HER2+), and (4) triple-negative (ER-, PR-, and HER2-).
Final pathologic outcomes were based on surgical results and then divided into pCR and
non-pCR. In this study, pCR was defined as neither invasive cancer nor DCIS within the
breast. In addition, the size of the residual tumor (invasive cancer and ductal carcinoma in
situ (DCIS)) in surgical specimens was recorded.

2.5. Statistical Analysis

We compared pCR and non-pCR group differences for categorical variables using the
chi-squared test or Fisher’s exact test as appropriate, and for continuous variables, differ-
ences were compared using Student’s t-test or the Wilcoxon signed-rank test depending
on their distribution. The concordance rate (%) between mammography and AI-CAD,
and CAD in post-NAC, were evaluated. We evaluated the association between pCR and
imaging modalities in post-NAC such as CAD, AI-CAD, mammography, ultrasound, MRI,
and DWI. Then, we compared the diagnostic performance for each imaging modality
of pCR prediction using sensitivity, specificity, positive predictive value (PPV), negative
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predictive value (NPV), and area under the receiver operating characteristics curve (AUC).
We conducted univariate logistic regression analyses to explore the association between
potential predictors for pCR, selecting variables with p-values < 0.05. These variables were
then included in a multivariable logistic regression model using a stepwise selection pro-
cess. A p-value < 0.05 was designated as indicative of statistical significance. All statistical
analyses were conducted using SAS 9.4 (SAS Institute, Cary, NC, USA).

3. Results

Table 1 presents the baseline characteristics of the study population. The study in-
cluded 132 patients with an average age of 51.6 ± 10.2 years range (23–77 years), and
there was no significant age difference between the pCR and non-pCR groups. Image
findings, lesion size on pre-NAC mammography, ultrasound, MRI, and the mean ADC
values showed no significant differences between the pCR and non-pCR groups. Unlike
ultrasound and MRI, mammography did not show a significant size difference between
pre-NAC and post-NAC. Histologically, the pCR group exhibited a higher proportion of
grade 3 tumors (62.2% vs. 29.5%, p = 0.001) and lower lymph node involvement compared
to the non-pCR group (21.6% vs. 40.0%, p = 0.047). There were significant associations
between pCR and negative ER and PR status, as well as positive HER2 status and higher
Ki-67 levels. Additionally, significant variations were also observed in the distribution of
molecular subtypes and pCR rates, with the HER2-enriched subtype showing the highest
pCR rate (20/30, 66.7%) and the luminal A subtype showing the lowest (1/19, 5.3%). Most
patients (87.1%) underwent breast-conserving surgery.

Table 1. Clinical, imaging, and pathological characteristics of the study population.

Total
(n = 132)

pCR
(n = 37)

non-pCR
(n = 95) p-Value

Age (years) 51.6 ± 10.2 52.2 ± 9.0 51.3 ± 10.6 0.64
Breast density 0.64

Almost entirely fatty 6 (4.5) 2 (5.4) 4 (4.2)
Scattered 21 (15.9) 5 (13.5) 16 (16.8)
Heterogeneously dense 68 (51.5) 22 (59.5) 46 (48.4)
Extremely dense 37 (28.0) 8 (21.6) 29 (30.5)

Image findings, pre-NAC
Mammography 0.87

Mass 64 (48.5) 19 (51.4) 45 (47.4)
Calcification 3 (2.3) 1 (2.7) 2 (2.1)
Mass with calcification 65 (49.2) 17 (45.9) 48 (50.5)

Ultrasound 0.71
Mass 96 (72.7) 25 (67.6) 71 (74.7)
Nonmmass 24 (18.2) 8 (21.6) 16 (16.8)
Mass with nonmass 12 (9.1) 4 (10.8) 8 (8.4)

MRI 0.33
Mass 80 (60.6) 20 (54.1) 60 (63.2)
Nonmmass 27 (20.5) 7 (18.9) 20 (21.1)
Mass with nonmass 25 (18.9) 10 (27.0) 15 (15.8)

MRI distribution 0.15
Single 79 (59.8) 17 (45.9) 62 (65.3)
Multifocal 26 (19.7) 12 (32.4) 14 (14.7)
Multicentric 10 (7.6) 3 (8.1) 7 (7.4)
Diffuse, inflammatory 16 (12.1) 5 (13.5) 11 (11.6)
Bilateral 1 (0.8) 0 (0.0) 1 (1.1)

Image measurement
Mammography size (mm)

Pre-NAC 43.4 ± 21.1 44.1 ± 24.4 43.1 ± 19.9 0.96
Post-NAC 25.2 ± 24.8 23.2 ± 31.2 26.0 ± 22.0 0.07
Difference 18.1 ± 15.9 20.9 ± 16.4 17.0 ± 15.7 0.18



Life 2024, 14, 1449 5 of 14

Table 1. Cont.

Total
(n = 132)

pCR
(n = 37)

non-pCR
(n = 95) p-Value

Ultrasonography size (mm)
Pre-NAC 37.5 ± 15.8 36.4 ± 16.7 38.0 ± 15.5 0.45
Post-NAC 17.0 ± 16.1 12.7 ± 18.6 18.7 ± 14.8 0.006
Difference 20.5 ± 14.1 23.7 ± 12.6 19.3 ± 14.6 0.03

MRI size (mm)
Pre-NAC 48.6 ± 22.4 50.0 ± 24.8 48.1 ± 21.5 0.87
Post-NAC 17.7 ± 21.7 6.7 ± 18.3 22.0 ± 21.5 <0.001
Difference 30.9 ± 22.6 43.3 ± 25.6 26.0 ± 19.4 <0.001

DWI (×10−6/mm3)
Mean ADC value, pre-NAC 787 ± 150 821 ± 173 774 ± 139 0.18
Mean ADC value, post-NAC 985 ± 267 - 985 ± 267 N/A

Histologic grade 0.001
Grade 1 5 (3.8) 0 (0.0) 5 (5.3)
Grade 2 76 (57.6) 14 (37.8) 62 (65.3)
Grade 3 51 (38.6) 23 (62.2) 28 (29.5)

Lymph node involvement 0.047
Negative 86 (65.2) 29 (78.4) 57 (60.0)
Positive 46 (34.8) 8 (21.6) 38 (40.0)

Estrogen receptor 0.006
Negative 64 (48.5) 25 (67.6) 39 (41.1)
Positive 68 (51.5) 12 (32.4) 56 (58.9)

Progesterone receptor 0.01
Negative 81 (61.4) 29 (78.4) 52 (54.7)
Positive 51 (38.6) 8 (21.6) 43 (45.3)

HER2 <0.001
Negative 67 (50.8) 7 (18.9) 60 (63.2)
Positive 65 (49.2) 30 (81.1) 35 (36.8)

Ki-67 0.02
<20% 46 (34.8) 7 (18.9) 39 (41.1)
≥20% 86 (65.2) 30 (81.1) 56 (58.9)

IHC type <0.001
Luminal A 19 (14.4) 1 (2.7) 18 (18.9)
Luminal B 52 (39.4) 12 (32.4) 40 (42.1)
HER2-enriched 30 (22.7) 20 (54.1) 10 (10.5)
Triple-negative 31 (23.5) 4 (10.8) 27 (28.4)

Operation title 0.15
Breast-conserving surgery 115 (87.1) 35 (94.6) 80 (84.2)
Mastectomy 17 (12.9) 2 (5.4) 15 (15.8)

Residual tumor size (mm) 18.0 ± 21.9 - 25.0 ± 22.1 <0.001
Residual invasive cancer size
(mm) 11.6 ± 18.5 - 16.1 ± 20.0 <0.001

Residual DCIS size (mm) 12.2 ± 20.0 - 17.0 ± 21.9 <0.001
Continuous variables are displayed as the mean ± SD, and categorical variables are displayed as the number
(percentage). p-values were derived using the chi-square test, Fisher’s exact test, Wilcoxon rank-sum test,
or Student’s t-test. pCR: pathologic complete response; NAC: neoadjuvant chemotherapy; DWI: diffusion-
weighted imaging; ADC: apparent diffusion coefficient; HER2: human epidermal growth factor receptor 2; IHC:
immunohistochemical; DCIS: ductal carcinoma in situ; N/A: not applicable. Difference: difference between
pre-NAC and post-NAC.

Table 2 revealed the concordance between mammography, AI-CAD, and CAD accord-
ing to mammography findings. Overall, AI-CAD demonstrated slightly higher concordance
with mammography compared to CAD in both pre-NAC (97.0% vs. 90.9%) and post-NAC
mammography (89.4% vs. 88.6%). When analyzed by type, AI-CAD showed a higher con-
cordance rate than CAD in mass detection in pre-NAC mammography (96.9% vs. 81.3%),
while CAD displayed 100% concordance for mass with calcifications. Both CAD systems
showed 100% concordance in cases of calcifications. In post-NAC mammography, no dif-
ference was observed between the two systems in the detection of mass with calcifications
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or mass. However, AI-CAD achieved 100% concordance in negative cases, while CAD
maintained 100% concordance in calcifications. The median abnormality score for AI-CAD
significantly decreased from 96 [77.25, 99] in pre-NAC to 42.5 [0, 91] in post-NAC. Exclud-
ing negative findings, the abnormality score for mass-type lesions dropped markedly from
90 [62.75, 97] to 45.5 [14.5, 87.5].

Table 2. Concordance between mammography, AI-CAD, and CAD according to mammography
findings.

Mammography Findings
Concordance Rate % (95% CI) AI-CAD Abnormality Score

(Median, [Range])CAD AI-CAD

pre-NAC

Mass with calcifications (n = 65) 100.0 96.9 (92.7, 100) 98 [94, 99]
Mass (n = 64) 81.3 (71.7, 90.8) 96.9 (92.6, 100) 90 [62.75, 97]
Calcifications (n = 3) 100.0 100 99 [68, 99]
Total (n = 132) 90.9 (84.8, 94.7) 97.0 (94.1, 99.9) 96 [77.25. 99]

post-NAC

Mass with calcifications (n = 42) 95.2 (83.8, 99.4) 95.2 (83.8, 99.4) 91 [57.5, 96]
Negative (n = 33) 78.8 (61.1, 91.0) 100.0 0
Mass (n = 32) 81.3 (63.6, 92.8) 81.3 (63.6, 92.8) 45.5 [14.5, 87.5]
Calcifications (n = 25) 100.0 76.0 (54.9, 90.6) 81 [11, 95]
Total (n = 132) 88.6 (82.0, 93.5) 89.4 (82.8, 94.1) 42.5 [0, 91]

pCR: pathologic complete response; NAC: neoadjuvant chemotherapy; AI-CAD: artificial intelligence-based
computer-aided detection.

Table 3 presents the diagnostic performance of pCR prediction across imaging modali-
ties in post-NAC. CAD demonstrated a sensitivity of 77.9%, a specificity of 35.1%, a PPV
of 75.5%, and an NPV of 38.2% for pCR prediction. AI-CAD demonstrated a sensitivity
of 72.6%, a specificity of 56.8%, a PPV of 81.2%, and an NPV of 44.7%. Mammography
yielded a sensitivity of 83.2%, a specificity of 45.9%, a PPV of 79.8%, and an NPV of 51.5%.
Ultrasound revealed similar results with a sensitivity of 86.3% and a specificity of 43.2%,
with a PPV of 79.6% and an NPV of 55.22%. MRI exhibited a sensitivity of 76.8% and a
specificity of 78.4%, along with a PPV of 90.1% and an NPV of 56.9%. DWI showed the
highest specificity and a PPV at 100% but reported the lowest sensitivity at 46.3%, with an
NPV of 42.1%. Specificity was highest in DWI (100%), followed by MRI (78.4%), AI-CAD
(56.8%), mammography (45.9%), ultrasound (43.2%), and CAD (35.1%) (Figure 1). The
AUC was highest for MRI at 0.776 [95% CI: 0.695, 0.844] and lowest for CAD at 0.565
[0.476, 0.651]. Comparison of AUCs across imaging modalities revealed that MRI and CAD
showed significant differences compared to all other modalities (Figure 2). The AUC for
AI-CAD was 0.647 [0.559, 0.728], with no statistically significant differences compared to
mammography, ultrasound, or DWI (p > 0.05).

Table 3. Diagnostic performance of imaging modalities in post-NAC.

Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) AUC (95% CI)

CAD 77.9 (68.2, 85.8) 35.1 (20.2, 52.5) 75.5 (65.8, 83.6) 38.2 (22.2, 56.4) 0.565 (0.476, 0.651)
AI-CAD 72.6 (62.5, 81.3) 56.8 (39.5, 72.9) 81.2 (71.2, 88.8) 44.7 (30.2, 59.9) 0.647 (0.559, 0.728)
Mammography 83.2 (74.1, 90.1) 45.9 (29.5, 63.1) 79.8 (70.5, 87.2) 51.5 (33.5, 69.2) 0.646 (0.558, 0.727)
Ultrasound 86.3 (77.7, 92.5) 43.2 (27.1, 60.5) 79.6 (70.5, 86.9) 55.2 (35.7, 73.6) 0.648 (0.560, 0.729)
MRI 76.8 (67.1, 84.9) 78.4 (61.8, 90.2) 90.1 (81.5, 95.6) 56.9 (42.2, 70.7) 0.776 (0.695, 0.844)
DWI 46.3 (36.3, 56.3) 100.0 (90.4, 100.0) 100.0 (92.0, 100.0) 42.1 (31.7, 52.4) 0.732 (0.648, 0.805)

pCR: pathologic complete response; NAC: neoadjuvant chemotherapy; AI-CAD: artificial intelligence-based
computer-aided detection; DWI: diffusion-weighted imaging; PPV: positive predictive value; NPV: negative
predictive value; CI: confidence interval.
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Figure 1. A 54-year-old woman diagnosed with breast cancer presenting as a mass with calcifica-
tions, exhibiting a surgically confirmed pathologic complete response (pCR) following neoadjuvant 
chemotherapy (NAC). (A,B) Mammography was analyzed using AI-CAD, identifying an area in the 
left central breast of a mass with calcifications in pre-NAC images (AI-CAD score 98% on the MLO 
view), and no mark was detected in post-NAC images. (C) Utilizing conventional CAD, identifying 
an area in the left central breast corresponding to the calcifications in post-NAC images. (D) Post-
NAC ultrasound recorded a reduction in mass size from 26 mm. (E) Post-NAC maximal intensity 
projection (MIP) of contrast-enhanced MRI (CE-MRI) documented a mass reduction from 36 mm. 
(F) Post-NAC ADC map of DWI displayed regression of the mass. 

 
Figure 2. Area under the ROC curves for pCR prediction in post-NAC imaging modalities. 
* denotes a statistically significant difference 

Figure 1. A 54-year-old woman diagnosed with breast cancer presenting as a mass with calcifica-
tions, exhibiting a surgically confirmed pathologic complete response (pCR) following neoadjuvant
chemotherapy (NAC). (A,B) Mammography was analyzed using AI-CAD, identifying an area in the
left central breast of a mass with calcifications in pre-NAC images (AI-CAD score 98% on the MLO
view), and no mark was detected in post-NAC images. (C) Utilizing conventional CAD, identifying
an area in the left central breast corresponding to the calcifications in post-NAC images. (D) Post-
NAC ultrasound recorded a reduction in mass size from 26 mm. (E) Post-NAC maximal intensity
projection (MIP) of contrast-enhanced MRI (CE-MRI) documented a mass reduction from 36 mm.
(F) Post-NAC ADC map of DWI displayed regression of the mass.
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Table 4 presents the association between pCR and imaging modalities in post-NAC.
CAD demonstrated no significant association with pCR (p = 0.124), with 64.9% of the
pCR group testing positive versus 77.9% of the non-pCR group. Conversely, AI-CAD was
significantly associated with pCR (p = 0.002), with 56.8% of the pCR group testing negative
compared to 27.4% of the non-pCR group. In addition, the AI-CAD’s abnormality score
of AI-CAD was significantly lower in the pCR group (28.8 ± 38.3) than in the non-pCR
group (52.7 ± 41.4, p = 0.001). Mammography was a significant differentiator between
pCR and non-pCR (p = 0.001), with 45.9% of the pCR group testing negative compared to
16.8% of the non-pCR group. Similarly, ultrasound demonstrated a significant difference
(p < 0.001), with 43.2% of the pCR group testing negative compared to 13.7% of the non-pCR
group. MRI showed a strong association (p < 0.001), with 78.4% of the pCR group testing
negative versus 23.2% of the non-pCR group. DWI also demonstrated a strong association
(p < 0.001), as all pCR groups tested negative compared to 47.4% of the non-pCR group.

Table 4. Association between pCR and imaging modalities in post-NAC.

pCR
(n = 37)

Non-pCR
(n = 95) p-Value

CAD 0.124
Negative 13 (35.1) 21 (22.1)
Positive 24 (64.9) 74 (77.9)

AI-CAD 0.002
Negative 21 (56.8) 26 (27.4)
Positive 16 (43.2) 69 (72.6)

AI-CAD abnormality score 0 [0, 77] 59 [0, 92] 0.001
Mammography 0.001

Negative 17 (45.9) 16 (16.8)
Positive 20 (54.1) 79 (83.2)

Ultrasound <0.001
Negative 16 (43.2) 13 (13.7)
Positive 21 (56.8) 82 (86.3)

MRI <0.001
Negative 29 (78.4) 22 (23.2)
Positive 8 (21.6) 73 (76.8)

DWI <0.001
Negative 37 (100.0) 51 (53.7)
Positive 0 (0.0) 44 (46.3)

Values are represented as number (percentage) or median [interquartile range]. p-values were derived using
the chi-square test, Fisher’s exact test, Wilcoxon rank-sum test, or Student’s t-test. pCR: pathologic complete
response; NAC: neoadjuvant chemotherapy; AI-CAD: artificial intelligence-based computer-aided detection; DWI:
diffusion-weighted imaging; CI: confidence interval.

Table 5 presents the results of univariate and multivariable logistic regression analysis
for pCR prediction. In the univariate analysis, negative AI-CAD, mammography, ultra-
sound, and MRI were significantly associated with higher odds of pCR (OR = 3.48, 95%
CI: 1.58, 7.69, p = 0.002; OR = 4.20, 95% CI: 1.81, 9.73, p = 0.001; OR = 4.81, 95% CI: 2.00,
11.5, p < 0.001; OR = 12.0, 95% CI: 4.81, 30.1, p < 0.001, respectively). Histologic grade
3 was significantly associated with higher odds of pCR (OR = 3.93, 95% CI: 1.77, 3.73,
p = 0.01). ER and PR positivity strongly predicted pCR (OR = 0.33, 95% CI: 0.15, 0.74,
p = 0.007; OR = 0.33, 95% CI: 0.14, 0.81, p = 0.015). HER2 positivity and higher levels of Ki-67
strongly predicted pCR (OR = 7.35, 95% CI: 2.92–18.5, p < 0.001; OR = 2.99, 95% CI: 1.19–7.48,
p = 0.02).

In the multivariable analysis, negative MRI remained a significant predictor (adjusted
OR = 12.6, 95% CI: 3.28, 48.5, p < 0.001). Histologic grade 3 and HER2 positivity also
remained significant predictors (adjusted OR = 9.03, 95% CI: 2.40, 33.9, p = 0.001; adjusted
OR = 14.68, 95% CI: 3.42, 62.9, p < 0.001).



Life 2024, 14, 1449 9 of 14

Table 5. Univariate and multivariable logistic regression analysis for pCR prediction.

Univariate Analysis Multivariable Analysis
Odds Ratio (95% CI) p-Value Adjusted Odds Ratio (95% CI) p-Value

Age (years) 0.36
<50 reference
≥50 1.45 (0.65, 3.23)

Breast density 0.65
Almost entirely fatty reference
Scattered 0.63 (0.09, 4.49) 0.64
Heterogeneously dense 0.96 (0.16, 5.63) 0.96
Extremely dense 0.55 (0.08, 3.58) 0.53

CAD 0.13
Positive reference
Negative 1.91 (0.83, 4.38)

AI-CAD 0.002 0.65
Positive reference reference
Negative 3.48 (1.58, 7.69) 1.56 (0.23, 10.7)

Mammography 0.001 0.35
Positive reference reference
Negative 4.20 (1.81, 9.73) 2.49 (0.37, 16.9)

Ultrasound <0.001 0.99
Positive reference reference
Negative 4.81 (2.00, 11.5) 0.99 (0.24, 4.18)

MRI <0.001 <0.001
Positive reference reference
Negative 12.0 (4.81, 30.1) 12.6 (3.28, 48.5)

DWI 0.997
Positive reference
Negative (0, ∞)

Histologic grade 0.01 0.001
Grades 1 and 2 reference reference
Grade 3 3.93 (1.77, 3.73) 9.03 (2.40, 33.9)

Lymph node involvement 0.05
Negative reference
Positive 0.41 (0.17, 1.00)

Estrogen receptor 0.007 0.56
Negative reference reference
Positive 0.33 (0.15, 0.74) 0.64 (0.14, 2.92)

Progesterone receptor 0.015 0.62
Negative reference reference
Positive 0.33 (0.14, 0.81) 0.67 (0.14, 3.27)

HER2 <0.001 <0.001
Negative reference reference
Positive 7.35 (2.92, 18.5) 14.68 (3.42, 62.9)

Ki-67 0.02 0.09
<20% reference reference
≥20% 2.99 (1.19, 7.48) 3.50 (0.82, 14.9)

pCR: pathologic complete response; CI: confidence interval; AI-CAD: artificial intelligence-based computer-aided
detection; NAC: neoadjuvant chemotherapy; DWI: diffusion-weighted imaging; HER2: human epidermal growth
factor receptor 2.

4. Discussion

To the best of our knowledge, this is the first study to demonstrate the potential of a
commercial AI-CAD system for digital mammography to predict the pCR of breast cancer
patients undergoing NAC. In this study, AI-CAD showed better performance in predicting
pCR on post-NAC mammography than conventional CAD. While it did not reach the
level of an MRI, known as the best modality, its performance was comparable to that of
mammography, ultrasound, and DWI.
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A study conducted in 2022 [36] developed a deep learning model using digital mam-
mography to predict pCR. This model was trained and validated on pre-NAC mammo-
grams from 400 patients and tested on a set of 53 patients. The AUC of this model was
0.71 (0.53–0.90), with a sensitivity of 76% at a fixed specificity of 90%. In our study, the
AUC of AI-CAD was 0.65 (0.56–0.73), with a sensitivity of 72.6% and a specificity of 56.8%.
Given that this commercial AI-CAD was developed to assist in breast cancer detection and
diagnosis on mammography, rather than being trained to predict pCR, these results can be
considered satisfactory. Additionally, AI-CAD has the advantage of marking the location of
suspicious findings on mammography alongside the abnormality score, allowing readers to
easily understand the basis of its assessment. These results were likely possible because the
progressive reduction in malignancy-related suspicious findings during NAC was reflected
in the AI-CAD.

We evaluated the concordance between conventional CAD and AI-CAD systems in
pre- and post-NAC mammography. AI-CAD demonstrated a higher concordance rate with
mammography compared to CAD in both pre- and post-NAC settings. Specifically, the
concordance rate for AI-CAD was 97.0% in pre-NAC and 89.4% in post-NAC, while for
CAD, it was 90.9% in pre-NAC and 88.6% in post-NAC. Notably, the difference between
the two systems was particularly pronounced in the detection of mass type in pre-NAC
mammography, and AI-CAD showed superior performance (96.9% vs. 81.3%). In contrast,
CAD misclassified some of these cases as false negatives. This finding highlights AI-
CAD’s potential in improving diagnostic accuracy in breast cancer imaging. In post-NAC
mammography, AI-CAD demonstrated strong concordance in detecting negative findings
with a 100% concordance rate, whereas CAD had a lower concordance rate of 78.8%, as it
often marked false positive findings, leading them to be classified as positive exams. An
additional interesting finding was that all patients in this study who underwent NAC had
a marker clip placed in the main malignancy. Upon analyzing the results, we confirmed
that the placement of the marker clip during NAC did not affect the performance of CAD
or AI-CAD in their assessments.

The concept of pathologic complete response (pCR) remains a subject of debate,
particularly regarding its definition, evaluation methods, and predictive value for patient
outcomes. From a locational perspective, various definitions of pCR are documented in
the literature, often focusing on either the breast alone or on both the breast and axillary
lymph nodes to assess the pathologic response [37]. From the perspective of residual
tumor burden, some studies define pathologic response criteria based on the presence or
absence of residual disease (RD). pCR is characterized by the complete absence of RD,
while RD itself encompasses a wide range of conditions, from near-pCR to minimal tumor
reduction. Residual in situ (RIS) refers to the presence of isolated non-invasive tumors,
while residual invasive carcinoma (RIC) involves histologic evidence of invasive disease in
patients who have shown a complete clinical response [38]. In a clinical setting, the size
of the invasive tumor after NAC is what determines the ypT stage, which serves as the
key metric for assessing the oncologic response to NAC. Although the presence of in situ
components does not influence the ypT stage or response assessment, complete excision of
these components following NAC is necessary to achieve negative surgical margins and
reduce the risk of local recurrence [39]. Von Minckwitz et al. [40] have shown that patients
with residual in situ carcinoma after NAC have a higher risk of relapse compared to those
with no remaining tumors in the breast or lymph nodes. The most recent international
consensus conference on NAC in primary breast cancer defined pCR as the absence of
invasive cancer in both the breast and lymph nodes, with the stipulation that DCIS should
be analyzed separately [38].

In this study, pCR was assessed only in the breast, as mammography is not optimal
for accurately evaluating axillary lymph nodes. We defined pCR as the complete absence
of residual disease, which includes no invasive cancer of in situ lesions. The approach was
necessary because, after NAC, some cases showed a response on MRI but still had residual
calcifications visible on mammography. In this study, 19% (25/132) of the post-NAC mam-
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mography had residual calcifications. These cases included both those with calcifications
only on pre-NAC mammography (n = 3) and cases of the mass with calcifications on
pre-NAC mammography, where the mass regressed post-NAC, leaving only calcifications
(n = 22). When assessing these residual calcifications, CAD indiscriminately marked all
25 cases. In contrast, AI-CAD evaluated the suspiciousness of the calcifications, classifying
cases with a probability of malignancy below 10% as negative exams. AI-CAD identified 6
of the 25 cases as negative, 4 of which were pCR cases.

This study highlights the strengths and limitations of different imaging modalities in
assessing pCR. MRI showed high specificity (78.4%) and PPV (90.1%), making it a reliable
tool for differentiating pCR from non-pCR. While DWI had perfect specificity (100%) and
PPV (100%), its sensitivity was lower (46.3%), limiting its overall utility. Mammography
and ultrasound had comparable sensitivities (83.2% and 86.3%, respectively), but their
specificities were lower (45.9% and 43.2%). AI-CAD, though slightly less sensitive than CAD
(72.6% vs. 77.9%), outperformed CAD in terms of specificity (56.8% vs. 35.1%), PPV (81.2%
vs. 75.5%), and NPV (44.7% vs. 38.2%). When assessed by AUC, MRI performed the best,
while CAD had the lowest. AI-CAD showed no significant difference from mammography,
ultrasound, or DWI, suggesting that it performs comparably to conventional methods but
surpasses CAD.

In the univariate analysis conducted to identify significant predictors of pCR, sev-
eral imaging modalities, including AI-CAD, mammography, ultrasound, and MRI, were
significant, with the exception of CAD and DWI. Pathologic factors such as histologic
grade, as well as ER, PR, HER2, and Ki-67 status, also showed statistical significance. In
the subsequent multivariable analysis, negative MRI findings, histologic grade 3, and
HER2-positive status emerged as significant predictors of pCR. It is well established that
breast MRI is the most accurate imaging modality for assessing tumor response during or
after NAC [5–7]. Although there is some variation in the significant factors reported across
different studies, HER2-positive status and high tumor grade are consistently recognized
as factors that increase the likelihood of achieving pCR [41–44].

This study faced several limitations. Firstly, as a retrospective study with a relatively
small sample size from a single institution, this limits generalizability. This constraint
prevented subgroup analysis by molecular subtype or chemotherapy regimen. Future
studies with larger sample sizes and subgroup analyses could uncover new insights into
the capabilities and limitations of AI-CAD in evaluating treatment response. Secondly,
we defined a negative exam as an image measurement of 0. While clinically aware that
post-NAC mammography may show residual calcifications even in pCR cases, we aimed
to maintain objectivity in image-based assessments. Therefore, any remaining calcifications
were measured and classified as a positive exam, which may have influenced our results.
Subgroup analysis considering specific mammographic features, such as the presence of
calcifications, was not feasible in this study but may be valuable in future research. Lastly,
only one type of AI-CAD software and a single vendor’s mammography system were used
in our analysis. The results may vary with different vendors or AI-CAD systems. Future
studies incorporating various AI-CAD systems and mammography vendors could pro-
vide a more comprehensive understanding of AI-CAD’s effectiveness and generalizability
across platforms.

In conclusion, AI-CAD did not reach the performance of MRI in assessing treatment
response but showed improved specificity compared to conventional CAD and performed
comparably to ultrasound and DWI, demonstrating its potential as a tool for predicting
treatment response in breast cancer patients.
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