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Abstract: This article investigates the relationship between the magnetic properties of magnets and
the percentage and distribution of the CeFe2 phase at different sintering temperatures. At the lower
sintering temperature, the grain boundary phase flow of the magnet is poor, more hole defects are
generated in the magnet, and the comprehensive magnetic properties of the magnet are poor. An
increase in sintering temperature increases the ratio of CeFe2 phase, improves the fluidity of grain
boundary liquid phase, fills the hole defects and causes an increase in remanence. However, an
increase in grain size also inhibits the coercivity of the magnet at this temperature. When the sintering
temperature reaches 1080 ◦C, the CeFe2 phase ratio continues to increase, providing more liquid
phase. The phase Ce2Fe17 was also decomposed into liquid phase, the continuity and wettability of
grain boundary phase were optimized, and the coercivity reached a maximum of 13.18 kOe. However,
the orientation of the magnet changed and the proportion of the main phase decreased, resulting in a
slight decrease in the remanence (Br = 13.17 kGs).

Keywords: CeFe2 phase; Ce2Fe17 phase; liquid phase sintering; magnetic property

1. Introduction

Magnetic materials, as one of the important functional materials, have an influential
position in modern society [1]. In recent years, the replacement of Pr and Nd in sintered
Nd-Fe-B permanent magnets with highly abundant rare-earth elements (REEs) has received
widespread attention due to the soaring prices of REEs Pr and Nd and the large backlog of
highly abundant REEs [2–7]. With regard to the highly abundant rare-earth elements, the
stability of the La2Fe14B phase is not as good as that of Ce2Fe14B and Y2Fe14B due to the
larger atomic radius of La and its higher activity, which is easy to be combined with oxygen,
and the price of Y is much higher than that of Ce, so it is more cost-effective to choose
Ce to partially replace Pr and Nd [2,8–12]. However, it is worth noting that the endowed
magnetic properties, i.e., magnetic polarization strength and magnetocrystalline anisotropy
field, of Ce2Fe14B are significantly lower than those of Nd2Fe14B [13–16]. Therefore, the
enhancement of magnetic properties of Ce-containing magnets through composition and
process optimization has become a hot spot for current research.

To date, a great deal of research has been conducted on the preparation of Ce-
containing sintered permanent magnets. Li et al. [17] found that Ce2Fe14B has a low
melting point, and selecting an appropriate sintering temperature can optimize the magnet
density and grain boundary wettability, thus improving the magnetic properties of magnets.

Materials 2024, 17, 5517. https://doi.org/10.3390/ma17225517 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17225517
https://doi.org/10.3390/ma17225517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4307-0079
https://doi.org/10.3390/ma17225517
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17225517?type=check_update&version=1


Materials 2024, 17, 5517 2 of 10

Chen et al. [18] showed that when the Ce substitution amount in the magnet is 5–10%,
the precipitated CeFe2 phase at the grain boundary makes the grain boundary clearer
and thicker, which is conducive to the magnetic decoupling of the main phase grains and
increases the coercivity of the magnet. In addition to this, some researchers have also
studied the modulation of the ratio and distribution of the REFe2 phase in Ce-containing
magnets to optimize the magnet performance [3,19–22]. Zhang et al. [23] found that the
melting of the REFe2 phase in the liquid-phase sintering process caused an increase in
liquid-phase volume fraction, thus improving the phase continuity at the grain boundary
and increasing the coercivity of magnets, indicating the direction for strengthening the
coercivity of sintered Ce-containing magnets. However, there is a lack of studies on the
correlation between the REFe2 phase and the sintering temperature.

Based on Ce-containing sintered NdFeB magnets, this study systematically analyzed
the connection between liquid-phase sintering temperature and the REFe2 phase by reg-
ulating the liquid-phase sintering temperature, which in turn affects the liquid-phase
generation and flow, and combines with the magnetic properties and microstructure of the
organization so as to enrich and improve the basic research theory on the industrialization
of sintered Ce magnets.

2. Materials and Methods
2.1. Experimental Procedure

The raw materials were Pr-Nd alloy (Pr25Nd75, wt.%), Fe-B alloy (Fe80B20, wt.%),
commercial purity iron, Ce, Co, Cu, Al, Ga, Zr, and Ti. Among them, the purity of both
alloys and metals was greater than 99.9%, and all were purchased from Ganzhou Yingke
Xinchuang Technology Co. Ltd. (Ganzhou, China). First, the sintered magnets with a
nominal composition of Pr5.8325Nd17.4975Ce6.67Co0.8Cu0.3 Al0.5Ga0.2Zr0.15Ti0.1Fe67.04B0.91
(wt.%) were prepared using the strip cast (SC) technique. Then, the SC alloy was subjected
to hydrogen decrepitation (HD) and jet milling (JM) to obtain powders with an average
particle size of 2.8 µm. The powders were compacted at a magnetic field of 2 T and cold-
isostatic-pressed at a pressure of 200 MPa. The compacted greens were sintered at 1030
to 1080 ◦C for 4 h, and then consecutively annealed at 890 ◦C for 3 h and 465 ◦C for 4 h
in vacuum.

2.2. Analytical Techniques

Cylinder samples with a diameter of 10 mm and height of 6 mm were made using
a wire electrical discharge cutting machine. The density of the magnet was determined
using Archimedes’ method. The magnetic properties of each magnet were measured at
20 ◦C using a magnetic measurement system (NIM-500C, National institute of metrology,
China, Beijing) designed by the China Academy of Metrology and Science. The microstruc-
ture morphology of the magnets was observed using scanning electron microscopy (SEM
MIRA3-LMH, TSECAN, China, Shanghai). Differential scanning calorimetry (DSC) curves
were obtained using a differential thermal analyzer (DTA, Netzsch 449F3 Jupiter, NET-
ZSCH, China, Shanghai) in an argon environment to determine the heat absorption and
excretion of each phase of the magnet at a temperature increase rate of 5 ◦C/min and a
temperature decrease rate of 20 ◦C/min. X-ray diffraction (XRD-Panalytical Empyrean,
Malvern Panalytical, China, Shanghai) was used to analyze the phase composition of the
magnet bulk and powder samples. The samples were analyzed for elements using an
electron probe microanalyzer (EPMA-JXA-8100, Japan Electronics Co., Ltd., China, Beijing).

3. Results and Discussion

Figure 1 shows the demagnetization curves of magnets with different sintering tem-
peratures at room temperature, as well as the trends of magnetic properties and densities.
The specific values of magnetic properties and densities of the corresponding magnets
are shown in Table 1. It can be seen from the figure that with the increase in sintering
temperature, the density and magnetic properties of the magnet increase simultaneously.
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When the sintering temperature reached 1060 ◦C, the magnet density reached 7.537 g/cm3,
and the remanence and the maximum magnetic energy product also reached the maximum
(13.28 kGs and 41.44 MGOe), but the coercivity showed an abnormal decrease. With the
further increase in sintering temperature, the change in magnet densities tended to be
gentle, the remanence and the maximum magnetic energy product decreased, and the
coercivity increased again and reached its maximum value (13.18 kOe) at 1080 ◦C.
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Figure 1. (a) Room-temperature demagnetization curves of magnets with different sintering temper-
atures; (b) plots of remanence, coercivity, maximum magnetic energy product, and density versus
sintering temperature.

Table 1. Room-temperature magnetic properties of magnets with different sintering temperatures.

T (◦C) Br (kGs) Hcj (kOe) (BH)max (MGOe) Hk/Hcj (%) ρ (g/cm3)

1030 12.96 12.75 39.44 93.7 7.413
1040 13.02 12.82 39.48 95.7 7.469
1050 13.04 13.09 40.06 96.8 7.516
1060 13.28 12.86 41.44 95.8 7.537
1070 13.19 13.05 40.91 95.8 7.543
1080 13.17 13.18 40.58 95.8 7.543

In order to understand the intrinsic correlation between the magnetic properties
and the sintering temperature, XRD was used to determine the information about the
phase structure of the magnet under different sintering temperatures (Figure 2), and
the corresponding results of the structural refinement are shown in Table 2. The results
show that the magnet is dominated by the RE2Fe14B phase with a small amount of REFe2
phase. The proportion of REFe2 in the magnet increases from 1.5% to 2.5% with increasing
sintering temperature. The structural parameters of RE2Fe14B are also affected by the
sintering temperature. As the temperature increases from 1030 ◦C to 1080 ◦C, the cell
parameter a/c increases from 8.78789/12.19693 Å to 8.78874/12.20015 Å, which involves
the compositional and structural compatibility of the element with the main phase and the
grain boundary phase, and the element Ce is more inclined to enter the grain boundary to
form CeFe2 phase at high temperatures.
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Figure 2. Powder XRD spectra (a–c) and bulk XRD spectra (d) of sintered magnets at 1030 ◦C, 1060 ◦C
and 1080 ◦C.

Table 2. Lattice parameters, Rw and χ2, of magnets analyzed by Rietveld at 1030 ◦C, 1060 ◦C, and
1080 ◦C.

T (◦C) a (Å) c (Å) REFe2 (%) REOx (%) Rw χ2

1030 8.78789(2) 12.19693(2) 1.5 0.9 1.902 1.48
1060 8.78825(2) 12.19958(2) 1.8 1.2 1.817 1.33
1080 8.78874(2) 12.20015(2) 2.5 0.7 2.448 1.96

The sintering temperature also causes a significant difference in the magnet orientation.
As the sintering temperature increases from 1030 ◦C to 1080 ◦C, the intensity ratio of
(006)/(105) diffraction peak decreases from 0.999 to 0.955, and the magnetic orientation
decreases.

According to the magnet’s remanence Equation (1):

Br = Acosθ(1 − β)
ρ
ρ0

Ms# (1)

The remanence is multiplied by the ratio of the main phases, the degree of orientation,
and the densification. When the sintering temperature is low (1030 ◦C), the densification
of the magnet plays a dominant role in the remanence, the high main phase ratio and
orientation have less influence on the remanence, and the remanence is poor. When the
sintering temperature is increased to 1060 ◦C, the remanence reaches the maximum value,
at which time the densification tends to stabilize, and the influence on the remanence
gradually becomes smaller. Further increases in the sintering temperature lead to an
increase in the proportion of REFe2 phase in the magnet and a decrease in the viscosity
of the RE-rich liquid phase, which in turn leads to the rotation of the main phase grains,
deterioration in grain orientation, and a significant decrease in remanence [24].

The microstructure morphology of the magnets at different sintering temperatures was
observed using backscattered electron scanning electron microscopy, as shown in Figure 3.
Figure 3a,c show SEM images of magnets under 5000× magnification at different sintering
temperatures. There are many holes and other defects in the magnet with a sintering
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temperature of 1030 ◦C, and most of the main phase grains are in direct contact with each
other. However, the magnets with sintering temperatures of 1060 ◦C and 1080 ◦C have
no hole defects, and there are very thin grain boundary layers between the main grains.
Figure 3d,f show SEM images of magnets under 15,000× magnification at different sintering
temperature. At higher magnification, the grain boundary phase ratio of the magnet
sintered at 1030 ◦C is lower (7.63%), and RE-rich phase agglomeration is obvious, and the
continuity is poor. As the sintering temperature increased to 1060 ◦C, the proportion of grain
boundary phase increased (9.55%), and the phenomenon of grain boundary agglomeration
decreased and was distributed uniformly and continuously around the main phase. The
further increase in the sintering temperature (1080 ◦C) increased the proportion of the
grain boundary phase to 10.17%, the uniformity and continuity of the distribution of the
grain boundary phase were further optimized, and the main phase grains became rounded
and smooth.
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Figure 3. Backscattered electron scanning electron microscopy (SEM) images of sintered magnets at
1030 ◦C (a,d), 1060 ◦C (b,e), and 1080 ◦C (c,f). (g) Scanning magnification of the magnets at 1080 ◦C
and line scans of the REFe2 phase and the RE-rich phase, as well as grain sizes of the sintered magnets
at 1030 ◦C (h), 1060 ◦C (i), and 1080 ◦C (j).

The low sintering temperature affects the liquid-phase sintering process, resulting
in the poor flow of the rare-earth phase, poor liquid-phase wetting of the main-phase
particles, poor shrinkage of the magnet, and relatively low densities (7.413 g/cm3), which
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seriously affects the magnetic properties of the magnets (Br = 12.96 kGs, Hcj = 12.75 kOe).
With the increase in sintering temperature, the grain boundary phase mobility of the
magnet increases, and the better wettability makes the holes inside the magnet fill with
liquid phase, the density increases rapidly (7.537 g/cm3), the continuity distribution of
the grain boundary improves, the exchange coupling between the main phase grains is
effectively reduced, and the remanence and coercivity are improved. However, the increase
in sintering temperature will also lead to the increase in magnet grain size, as shown in
Figure 3h–j. According to the expression of coercive force with grain size summarized by
Li et al. [25], Hcj = a-bln(D2) is not conducive to the coercive force of magnets. When the
sintering temperature is less than 1060 ◦C, the hole defect is the main factor affecting the
coercivity, which gradually increases with the increase in sintering temperature. When
the sintering temperature reaches 1060 ◦C, the effect of pores on coercivity decreases,
and the growth of grain becomes the main factor limiting coercivity. However, when the
sintering temperature exceeds 1060 ◦C, the coercivity increases instead of decreasing, which
is related to the optimization of the internal structure of the magnet. In other words, the
high-temperature sintering causes the main phase to dissolve, which makes the original
angular main phase grains become round and smooth, the main phase ratio increase, and
the reverse magnetizing domain nucleation be difficult.

As shown in Table 3, EDS point scanning was used to test the edge of ther RE2Fe14B
main phase components at different sintering temperatures to analyze the reasons for
the optimization of magnet performance. With the increase in sintering temperature, the
proportion of Ce element at the edge of the main phase decreases, indicating that Ce diffuses
from the main phase to the grain boundary phase. The microstructure and morphology of
the magnet sintered at 1080 ◦C were further analyzed, as shown in Figure 3g. The white
part is the RE-rich phase (blue line), and the gray part is the REFe2 phase (red line), which
is in good agreement with the XRD results. The former is a conventional intergranular
phase, while the latter exists in cerium containing magnets as a grain boundary phase,
which affects the properties of the magnets.

Table 3. EDS results at 1030 ◦C (A), 1060 ◦C (B), and 1080 ◦C (C).

Atomic Percent (%) Fe Ce Pr Nd

A 82.2 8.45 2.22 7.13
B 82.75 8.13 2.17 6.95
C 82.51 6.83 2.69 7.96

Figure 4 shows the EPMA mapping of the magnets at different sintering temperatures.
The results show that with the increase in sintering temperature, the proportion of the grain
boundary phase increases, and the grain boundary becomes continuously smooth and
wrapped around the main phase, which is consistent with the SEM results. The distribution
of the Ce element reflects strong sensitivity to sintering temperature. When the temperature
is low (1030 ◦C), the agglomeration of the Ce element is obvious, and a large amount of
Ce element is found in the main phase grain epitaxial layer. With the increase in sintering
temperature, the distribution uniformity of Ce is optimized, and the concentration of Ce
in the main phase decreases. When the temperature reaches 1080 ◦C, the Ce element is
enriched at the grain boundary and shows good continuity, and the Ce and Fe elements
overlap with each other. The results show that the precipitation of CeFe2 phase at the grain
boundary increases with the increase in sintering temperature, which is consistent with the
XRD results, which is also an important reason for the improvement of the magnetic grain
boundary phase.
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Figure 4. EPMA maps of 1030 ◦C (a), 1060 ◦C (b), and 1080 ◦C (c) magnets.

Figure 5 shows the DSC curves of the magnets at different rates of temperature rise
and fall. At a heating rate of 5 ◦C/min, the magnet undergoes a phase transition reaction of
CeFe2 at 938 ◦C, which proceeds as CeFe2 + Ce2Fe14B ↔ Ce2Fe17 + L. The CeFe2 phase melts
in the high-temperature sintering process, and a liquid phase is added to the conventional
RE-rich phase to optimize the density of the magnet and the wettability of the main phase,
which weakens the magnetic exchange coupling effect of the main phase and improves
the coercivity of the magnet. When the temperature ranges from 1068.2 ◦C to 1084.5 ◦C,
the magnetic phase transition reaction occurs again, and the reaction process is Ce2Fe14B +
Ce2Fe17 ↔ L + γ-Fe. This also fully confirms that when the sintering temperature of the
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magnet exceeds 1068.2 ◦C, the pre-sintered Ce2Fe17 phase further decomposes to form more
liquid phase, thereby improving the grain boundary phase ratio and continuity, which is
also the reason for the increase in the coercivity of the magnet. The 20 ◦C/min cooling DSC
curves at 931.6 ◦C, 1055.7 ◦C, and 1068.8 ◦C in Figure 5b well confirm the existence of the
two phase transition intervals, but the non-equilibrium solidification occurs due to the fast
cooling rate, resulting in a slight decrease in the reaction temperature.
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