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Abstract: Calcium silicate hydrate (CSH) gel is an important hydration product of cement, signifi-
cantly influencing the coagulation and hardening processes, as well as the mechanical properties,
volume stability, and durability of cement. Moreover, it plays a crucial role in the adsorption of
harmful ions. In this study, CSH gel was synthesized through the precipitation of calcium acetate
and sodium silicate and was subsequently used to adsorb chloride ions. The results indicated that
when the calcium-to-silicon ratio was 1.2, the CSH gel exhibited excellent adsorption performance
for chloride ions introduced via CaCl2 and NaCl, with adsorption capacities of 17.45 mg·g−1 and
8.06 mg·g−1, respectively. The adsorption of chloride ions in CSH gel primarily occurs due to the
physical adsorption of chloride ions on the surface and within the internal pores of the CSH gel,
accompanied by a displacement reaction between hydroxide ion and chloride ions.

Keywords: calcium silicate hydrate gel; adsorption properties; chloride ions; adsorption mechanism

1. Introduction

Chloride ion wastewater is one of the most common types of wastewaters generated
in industries such as printing, dyeing, petroleum, and chemicals [1–3]. If this wastewater is
not adequately treated before being discharged into the natural environment, it can lead to
soil salinization and disrupt the ecological balance [4,5]. The concentration of chloride ions
in surface water and groundwater in coastal and saline–alkali areas is notably high, and
direct use of this water can negatively impact industrial production. Additionally, elevated
chloride ion levels can compromise the accuracy of scientific experiments. Therefore, it is
essential to remove chloride ions from water efficiently, rapidly, and cost-effectively [6–10].
Currently, commonly used methods for the removal of chloride ions include precipitation,
adsorption, separation, and oxidation [11–14].

The adsorption process of CSH for chloride ions is complex, and numerous scholars
have conducted relevant studies on this topic. Tang et al. [15] found that the chloride ions
binding capacity of concrete is largely dependent on the content of the CSH gel within the
concrete. They established a relationship between bound chloride ions and free chloride
ions in concrete, which can be described using the Freundlich isothermal adsorption model.
Zibara et al. [16] discovered that the chloride ions binding capacity of CSH increases
with a higher calcium-to-silicon ratio (C/S). Zhou et al. [17] systematically studied the
effects of the C/S ratio on the adsorption behavior of CSH through experimental tests
and molecular dynamics simulations. Their findings indicated that calcium ions play
a crucial role in determining the surface potential in the system and significantly affect
chloride ions adsorption. In their molecular dynamics simulations, they observed that an
increase in the C/S ratio leads to the breaking of long chains into shorter, defective chains,
with the potential for these shorter chains to bond with more calcium ion. High calcium
concentrations were found to facilitate the adsorption of chloride ions, resulting in CSH
with a higher C/S ratio exhibiting better chloride ions adsorption capacity.
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Due to the complex composition of cement-based materials, some researchers have
synthesized CSH to observe its chloride ions binding properties in simulated solutions.
Gomi et al. [18] analyzed the chloride ion binding capacity of synthesized CSH and found
that the chloride ions adsorption capacity is related to its structure. They determined that
when the average chain length of CSH is around four, the adsorption of chloride ions is
maximized. Furthermore, calcium ions can promote an increase in the chain length of CSH,
thereby enhancing its chloride ions binding ability. Hiroshi et al. [19] mixed their prepared
CSH with a NaCl solution and found that the binding of chloride ions to CSH adhered to
the Langmuir isothermal adsorption model, with a maximum chloride ions adsorption
capacity of 0.6 mmol·g−1.

2. Materials and Equipment

Calcium acetate, water glass (mass fraction is 40%), sodium chloride (NaCl), and
calcium chloride (CaCl2) were all the reagents used, and they are analytical grade.

Experimental and testing equipment mainly included an X-ray diffractometer (XRD-
7000, Kyoto, Japan), specific surface area analyzer (TriStar II 3020, for Kyoto, Japan),
scanning electron microscope (Hitachi S-3400N, Tokyo, Japan), inductively coupled plasma
emission spectrometer (Optima 7000DV, Waltham, MA, USA), and 400M Solid-State Nu-
clear Magnetic Resonance Spectrometer (Avance neo 400M, Allston, MA, USA).

3. Results
3.1. Preparation of CSH Gel

Using calcium acetate as the calcium source and sodium silicate (40% by mass) as the
silicon source, CSH gel was prepared using a precipitation method. The calcium-to-silicon
ratio was set at 1.2, the pH of the reaction system was 11.0, and the reaction temperature
was 30 ◦C for the preparation of the CSH gel (Figure 1).

Materials 2024, 17, x FOR PEER REVIEW 2 of 11

concentrations were found to facilitate the adsorption of chloride ions, resulting in CSH 
with a higher C/S ratio exhibiting better chloride ions adsorption capacity.

Due to the complex composition of cement-based materials, some researchers have 
synthesized CSH to observe its chloride ions binding properties in simulated solutions. 
Gomi et al. [18] analyzed the chloride ion binding capacity of synthesized CSH and found 
that the chloride ions adsorption capacity is related to its structure. They determined that 
when the average chain length of CSH is around four, the adsorption of chloride ions is 
maximized. Furthermore, calcium ions can promote an increase in the chain length of 
CSH, thereby enhancing its chloride ions binding ability. Hiroshi et al. [19] mixed their 
prepared CSH with a NaCl solution and found that the binding of chloride ions to CSH 
adhered to the Langmuir isothermal adsorption model, with a maximum chloride ions 
adsorption capacity of 0.6 mmol·g−1.

2. Materials and Equipment
Calcium acetate, water glass (mass fraction is 40%), sodium chloride (NaCl), and cal-

cium chloride (CaCl2) were all the reagents used, and they are analytical grade.
Experimental and testing equipment mainly included an X-ray diffractometer (XRD-

7000, Kyoto, Japan), specific surface area analyzer (TriStar II 3020, for Kyoto, Japan), scan-
ning electron microscope (Hitachi S-3400N, Tokyo, Japan), inductively coupled plasma 
emission spectrometer (Optima 7000DV, Waltham, MA, USA), and 400M Solid-State Nu-
clear Magnetic Resonance Spectrometer (Avance neo 400M, Allston, MA, USA).

3. Results
3.1. Preparation of CSH Gel

Using calcium acetate as the calcium source and sodium silicate (40% by mass) as the 
silicon source, CSH gel was prepared using a precipitation method. The calcium-to-silicon 
ratio was set at 1.2, the pH of the reaction system was 11.0, and the reaction temperature 
was 30 °C for the preparation of the CSH gel (Figure 1).

Figure 1. Preparation of CSH gel.

Firstly, the phase composition, chemical structure, and surface morphology of the 
CSH gel were analyzed. The phase composition of the CSH gel was determined using X-
ray diffraction analysis. The surface morphology of the CSH gel was examined using a 
high-resolution scanning electron microscope. Additionally, the structure of the silica tet-
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Figure 1. Preparation of CSH gel.

Firstly, the phase composition, chemical structure, and surface morphology of the
CSH gel were analyzed. The phase composition of the CSH gel was determined using
X-ray diffraction analysis. The surface morphology of the CSH gel was examined using
a high-resolution scanning electron microscope. Additionally, the structure of the silica
tetrahedra in the CSH gel was investigated using a 400 MHz solid-state nuclear magnetic
resonance spectrometer.

3.1.1. Phase Composition

XRD analysis of the CSH gel was conducted, and the resulting spectrum is presented
in Figure 2. From the figure, it is evident that there is a distinct amorphous “steamed
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bread” peak in the range of 2θ around 27 degrees, indicating that the prepared CSH gel
was entirely amorphous. The gel structure of amorphous CSH contains silicon-oxygen
tetrahedra [SiO4]4−, which include non-bridging oxygen structures that are considered
potential sites for chloride ions adsorption.
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Figure 2. XRD pattern of CSH gel.

Due to the varying positions of the [SiO4]4− tetrahedra, each chemical bond in the
CSH gel exhibits different characteristic vibrational wave numbers. In contrast to XRD,
Fourier transform infrared (FTIR) spectroscopy can reveal the structure of substances at
group and atomic levels. Therefore, in this paper, in addition to XRD and SEM analyses,
the structure of the samples was examined in detail using Fourier infrared spectroscopy.
The prepared samples were analyzed using a Fourier transform infrared spectrometer, and
the results are presented in Figure 3.
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In the infrared spectrum, CSH contains O-Si-O, Si-O-Si, Si-O(Q1), Si-O(Q2), O-Ca-O,
H2O, -OH, and other groups, and its peak positions are at 450, 650, 816, 970, 1445, 1640
and 330, respectively. Figure 3 is the Fourier infrared spectrum of synthetic CSH. As
can be seen from the figure, the prepared C-S-H sample showed a -OH vibration peak at
3697 cm−1, H2O vibration peak at 1690 cm−1, O-Ca-O vibration peak at 1445 cm−1, and
Si-O(Q2) vibration peak at 1020 cm−1. The vibration peak of Si-O(Q1) is displayed at
806 cm−1, and the vibration peak of O-Si-O is displayed at 450 cm−1, which corresponds to
the wave number range of each group of CSH, which indicates that the prepared sample
had a relatively pure CSH structure.

3.1.2. Structural Composition

The content of Qn structural units in the CSH gel can be determined using the 29Si
spectrum obtained from solid-state NMR measurements, which allow for the calculation of
the network polymerization degree of the CSH gel. It is generally accepted that a lower
degree of network polymerization in the CSH gel structure correlates with higher activity.
The polymerization degree of the silicate polyhedra was analyzed through NMR, primarily
by examining the shifts in the NMR peaks to assess changes in the polymerization degree
of the CSH gel.

Based on the number of bridging oxygen atoms coordinated around silicon (Si), the
structures can be classified into five categories: Q0, Q1, Q2, Q3, and Q4, where n in Qn
represents the number of bridging oxygen atoms surrounding Si. In the CSH gel structure,
the breaking of each Si-O-Si bond alters the coordination structure of Si with respect to the
bridging oxygen. Generally, the value of the relative bridging oxygen number (RBO) is
negatively correlated with the activity of the CSH gel. A higher relative bridging oxygen
number (RBO) indicates a greater degree of polymerization in the network system, which
in turn results in lower activity [20].

To determine the content of different silicon structural units in the CSH gel and
calculate the corresponding network polymerization degree, Origin (2018, 64-bit version)
software was used to deconvolute the 29Si spectrum of the CSH gel. The processing was
performed using a Gaussian function curve fitting method. After deconvolution, the relative
area of each resonance peak could be obtained. The peak area in the NMR data represents
the relative content of [SiO4]4− silicon-oxygen tetrahedra in various polymerization states.
Figure 4 illustrates the schematic diagram of Gaussian curve fitting for the 29Si spectrum of
the CSH gel.

As shown in the figure, the chemical shift in the siloxane tetrahedron in the CSH
gel structure primarily ranged from −80 to −120 ppm. The polymerization states of the
siloxane tetrahedra in the CSH gel included the dimerization state or chain terminal group
represented by Q1 type, the chain intermediate group represented by Q2 type, the siloxane
tetrahedron represented by Q3 type with a double-chain polymerization structure or layered
structure, and the siloxane tetrahedron with a Q4 type three-dimensional network structure.
The peak shapes of the four types of polymerized silicon-oxygen tetrahedra were relatively
broad, indicating that the prepared CSH gel was amorphous.

The surface morphology of the CSH gel was analyzed using a scanning electron
microscope (SEM), and the results are presented in Figure 5. Due to the rapid reaction
between calcium acetate and sodium silicate, crystal nuclei could not form, resulting in the
formation of CSH gel with a highly active surface in the absence of a growth environment.
As shown in the figure, the primary morphology of the prepared CSH gel was spherical,
with distinct particles and an uneven surface. The CSH gel exhibited a very rough surface
structure and a large specific surface area, making it advantageous for use as an adsorbent
to capture chloride ions.
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3.2. Effect of Chloride Ions Source on the Adsorption Capacity of CSH Gels for Chloride Ions
(Chloride Ions)

This study compares the adsorption capacity of CSH gels for chloride ions derived
from different sources, as illustrated in Figure 6. Chloride ions were introduced in the
form of calcium chloride ions (CaCl2) and sodium chloride ions (NaCl), each at a con-
centration of 3.0 mol·L−1 of chloride ions. It can be observed that as the calcium–silicon
ratio increased, the CSH gel exhibited a higher adsorption capacity for chloride ions from
CaCl2, while showing a slightly lower adsorption capacity for chloride ions introduced via
NaCl. Notably, when the calcium–silicon ratio was 1.2, the CSH gel demonstrated optimal
adsorption performance for chloride ions from both CaCl2 and NaCl, with adsorption
capacities of 17.45 mg·g−1 and 8.06 mg·g−1, respectively. This enhancement is attributed to
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the ability of calcium ions to promote an increase in the chain length of CSH gels, which
facilitates the adsorption of chloride ions by CSH gels [18].
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3.3. Mechanism Analysis of Chloride Ions Adsorption by CSH Gel

According to the research literature, there are two primary mechanisms for the adsorp-
tion of chloride ions in CSH gel: physical adsorption and chemical adsorption. Chemical
adsorption occurs due to a chemical reaction between the CSH gel and the chloride ions,
making this mode of adsorption more stable. The physical adsorption of chloride ions
in CSH gel can primarily be explained by the Electric Double Layer Theory. This theory
posits that the electric double layer consists of a stationary layer of charge attached to the
surface of the adsorbent, along with a mobile diffusion layer. The potential difference
between these two layers determines the adsorption capacity of the adsorbent for chloride
ions [21–24].

To further investigate the mechanism of chloride ions adsorption in CSH gel, we
characterized the composition, structure, and morphology of the CSH gel following chloride
ions adsorption using X-ray diffraction (XRD), Fourier transform infrared spectroscopy
(FTIR), solid-state nuclear magnetic resonance (SNMR), scanning electron microscopy
(SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM).

3.3.1. Changes in Composition and Chemical Bonds

FTIR analyses were conducted to examine the modifications in composition and
functional groups of CSH gels after chloride ions adsorption. The results are illustrated in
Figure 7.

As can be seen from the figure, there was a characteristic absorption peak of ν(Si-O) Q1

in the vicinity of the wave number of 690 cm−1, and the absorption peak increased slightly
after adsorbing chloride ions. This shows that the adsorption of chloride ion reduces the
polymerization degree, the number of the bridging oxygen, and the chain length of siloxane
tetrahedron in CSH gel, which is manifested by the increase of Q1 content in the infrared
spectrum. There was a stretching vibration peak of -OH at the wave number of 3644 cm−1.
According to the analysis, there was a certain degree of displacement between Cl− and OH-,
so the peak corresponding to -OH was weakened, indicating that CSH gel had adsorbed
chloride ions.
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3.3.2. Structural Changes in CSH Gel

As stated earlier, the composition and chemical bonding of the CSH gel were sig-
nificantly affected by the adsorption of chloride ions. The effect of chloride ions on the
structure of the CSH gel was analyzed using 29Si NMR spectroscopy, and the results are
presented in Figure 8.
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From Figure 8, it is evident that the polymerization states of the silicon-oxygen tetra-
hedra in the CSH gel structure prior to chloride ion adsorption were primarily represented
by bimeric or chain-end groups (Q1 type), silicon-oxygen tetrahedra representing chain
intermediate groups (Q2 type), silicon-oxygen tetrahedra corresponding to double-linked
polymerization structures or layered structures (Q3 type), and silicon-oxygen tetrahedra
with a three-dimensional network structure (Q4 type). After the adsorption of chloride ions,
the peak shapes of these four types of polymerized silicon-oxygen tetrahedra exhibited
minor changes and appeared as broad peaks, indicating a low crystallinity of the CSH gel.
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Furthermore, following the adsorption of chloride ions, the peak area of Q1 in the CSH
gel increased from 11.64% to 50.90%, while the peak area of Q2 decreased from 43.04% to
2.85%. This indicates that the relative content of Q1 increased while that of Q2 decreased,
suggesting that chloride ions significantly affected the structure of the CSH gel and reduced
its polymerization degree.

3.3.3. Morphological Changes in CSH Gel

To investigate the impact of chloride ions on the morphology of CSH gels, scanning
electron microscopy (SEM) was employed to observe the morphological changes in the
CSH gels following ion adsorption, as illustrated in Figure 9.
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chloride ions.

From the figure, it can be observed that the morphology of CSH gels prior to chloride
ion adsorption was predominantly irregular and spherical. However, after the adsorption
of chloride ions, significant changes occurred in the CSH gel structure. A layer of chloride
ions was adsorbed on the surface of the CSH gel, and the phenomenon of agglomeration
became more pronounced. The primary reason for these morphological changes in the CSH
gels following chloride ions adsorption was the replacement of hydroxide ions on the surface
of the CSH gel by chloride ions. This replacement altered the structure of the silicon-oxygen
tetrahedra, resulting in considerable changes in the morphology of the CSH gel.

The elemental spectra and composition analyses of the CSH gel before and after
chloride ions adsorption are presented in Figure 10 and Table 1. From the elemental energy
spectrum and composition analysis, it is evident that after the adsorption of chloride ions,
a notable amount of chloride ions was incorporated into the CSH gel. Specifically, the
proportion of Cl detected in the spectroscopic analysis was found to be 4.44%. This indicates
that CSH gel possesses a strong adsorption capacity for chloride ions.

Materials 2024, 17, x FOR PEER REVIEW 9 of 11

Figure 10. EDS of CSH gel after adsorption of chloride ions.

Table 1. Component analysis of CSH gel after adsorption of chloride ions.

Element Mass Percentage
C 48
O 33.5
Si 9.46
Ca 11.82
Cl 4.44

Considering electron diffraction and high-resolution electron microscopic analysis, 
the microscopic information of crystal morphology can be grasped more accurately. In 
this section, transmission electron microscopy was used to study the morphology of CSH 
gel before and after chloride ions adsorption. Transmission electron microscopy and elec-
tron diffraction patterns before and after chloride ions adsorption on CSH gel, as shown 
in Figure 11.

(a) (b)

(c)

Figure 10. EDS of CSH gel after adsorption of chloride ions.



Materials 2024, 17, 5464 9 of 11

Table 1. Component analysis of CSH gel after adsorption of chloride ions.

Element Mass Percentage

C 48
O 33.5
Si 9.46
Ca 11.82
Cl 4.44

Considering electron diffraction and high-resolution electron microscopic analysis,
the microscopic information of crystal morphology can be grasped more accurately. In this
section, transmission electron microscopy was used to study the morphology of CSH gel
before and after chloride ions adsorption. Transmission electron microscopy and electron
diffraction patterns before and after chloride ions adsorption on CSH gel, as shown in
Figure 11.
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Figure 11. TEM observation and electron diffraction spectra of CSH gel. (a) CSH. (b) CSH + chloride
ions. (c) Diffraction ring of CSH.

As shown in the figure, the CSH gel prior to chloride ions adsorption revealed a
diameter of approximately 100 nm and exhibited a smooth crystal edge when observed
under high-resolution transmission electron microscopy (HRTEM). In contrast, the electron
diffraction patterns of the CSH gel after chloride ions adsorption exhibited significant
differences. The morphology of the CSH gel after chloride ions adsorption appeared
spherical, with a reduction in particle size and improved dispersion.

Additionally, the electron diffraction spectrum indicates that the diffraction pattern
was centered around the transmission spot of the direct beam, with the presence of multi-
crystalline concentric rings observed in the higher-order diffraction regions on the periph-
ery. Furthermore, the intensity of electron diffraction spots varied in different directions,
and there were differences in the brightness of the higher-order diffraction spots. This
observation suggests that the crystal structure of CSH gel is complex.

These changes may be attributed to the chemical adsorption of chloride ions onto the
CSH gel, leading to a displacement reaction between the adsorbed chloride ions and the
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hydroxide ion on the surface of the CSH gel, which ultimately alters the morphology of the
CSH gel.

4. Conclusions

In this paper, we investigated the influencing factors and adsorption mechanisms of
chloride ions on CSH gel. The adsorption of chloride ions in CSH gel is also influenced by
the presence of cations in the solution. Specifically, when calcium ion is present, it promotes
the growth of the average chain length of the CSH gel, thus enhancing its adsorption
capacity for chloride ions. The adsorption of chloride ions in CSH gel primarily occurs
through physical adsorption on the surface and, to some extent, within the internal pores
of the CSH gel. Additionally, a displacement reaction occurs between hydroxide ions and
chloride ions.
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