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Abstract: Artificial intelligence applied to time-lapse microscopy may revolutionize embryo se-
lection in IVF by automating data collection and standardizing the assessments. In this context,
blastocyst expansion dynamics, although being associated with reproductive fitness, have been
poorly studied. This retrospective study (N = 2184 blastocysts from 786 cycles) exploited both
technologies to picture the association between embryo and inner-cell-mass (ICM) area in µm2,
the ICM/Trophectoderm ratio, and the zona pellucida thickness in µm (zp-T) at sequential blas-
tocyst expansion stages, with (i) euploidy and (ii) live-birth per transfer (N = 548 transfers). A
quantitative-standardized-expansion-assay (qSEA) was also set-up; a novel approach involving
automatic annotations of all expansion metrics every 30 min across 5 h following blastulation.
Multivariate regressions and ROC curve analyses were conducted. Aneuploid blastocysts were
slower, expanded less and showed thicker zp. The qSEA outlined faster and more consistent zp
thinning processes among euploid blastocysts, being more or as effective as the embryologists in
ranking euploid embryo as top-quality of their cohorts in 69% of the cases. The qSEA also outlined
faster and more consistent blastocyst expansion and zp thinning dynamics among euploid im-
planted versus not implanted blastocysts, disagreeing with embryologists’ priority choice in about
50% of the cases. In conclusion, qSEA is a promising objective, quantitative, and user-friendly
strategy to predict embryo competence that now deserves prospective validations.

Keywords: blastocyst expansion; zona pellucida thinning; euploidy; live birth; artificial intelligence

1. Introduction

The main tasks in the IVF laboratory are to optimize the laboratory conditions and
the performance of the embryologists, as well as to score, rank, and select embryos to
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maximize the possibilities to achieve a live birth (LB). An efficient embryo selection tool
to identify reproductively competent embryos would significantly reduce the time-to-
pregnancy by preventing unnecessary embryo transfers (ETs), with relevant economic and
psychological implications [1]. Still, currently, static morphological embryo assessment
is the most common selection scheme, especially in non-preimplantation genetic testing
(PGT) cycles. However, morphological assessment is inconsistent across the embryologist
community, especially across different IVF centers [2].

The introduction of new technologies, such as time-lapse microscopy (TLM) and artifi-
cial intelligence (AI) in clinical embryology, have provided novel and advanced information
on human embryo development. TLM permits undisturbed culture conditions, allowing for
continuous monitoring of embryo development dynamics. Several studies have leveraged
TLM with the aim of identifying morphokinetic markers of embryonic competence [3];
however, to date, TLM-driven embryo selection has not been shown to be better than an
embryologist’s assessment [4,5]. Nonetheless, the implementation of TLM to investigate
human preimplantation development has provided embryologists with a powerful tool
to precisely evaluate the timings of cellular divisions and detect abnormal dynamics that
would be impossible to assess through static assessments (e.g., trichotomous cleavage or
spontaneous blastocyst collapse) [6].

Lately, AI has been subject to several studies because it holds the potential to objectify
and automate embryo assessment and enhance embryo selection by extracting relevant
information from embryo microscopy images and videos. AI models aim at identifying
embryos with the highest chance to implant in each cohort and provide embryologists with
a score to prioritize them for transfer [7]. AI-based TLM assessment represents a powerful
approach to studying embryo preimplantation development with countless possibilities.

In this context, blastocyst expansion represents an interesting feature to investigate.
Indeed, it has been previously reported to be associated with embryo competence through
both static and dynamic morphological assessments [8,9]. Notably, blastocyst expansion
is a morphogenetic process common to several species [10], regulated by trophectoderm
(TE) functional properties after embryonic genome activation. This phase is indeed very
sensitive, being the first process occurring after inner cell mass (ICM) and TE differentiation.
Several authors have indeed focused their attention on the clinical implications of blastocyst
expansion, being mostly concordant in reporting a positive association [11–14].

Huang and colleagues designed a dynamic and standardized blastocyst expansion
assessment scheme called quantitative standardized expansion assay (qSEA). This ap-
proach aimed at minimizing the variability across the operators in assessing blastocysts’
quality by focusing instead on their expansion at well-defined timepoints. Specifically,
beginning at time of blastulation (tB) for 10 h at 2 h intervals, these authors measured the
cross-sectional area of the embryo cavity and its surrounding TE in µm2 through the Em-
bryoscope’s measurement tool. The data reported significantly associated with blastocyst
competence, suggesting qSEA is a promising embryo selection tool that is less exposed to
subjective evaluations and suitable for automation [9,15,16]. The recent implementation
of AI-powered software for dynamic embryo assessment allowed us to slightly adapt
the qSEA and enhance it with additional morphometric information (e.g., zona pellucida
thickness). The aim of this retrospective study was to adopt an AI-powered version of the
qSEA in a large dataset of 2184 biopsied blastocysts—of which 548 transferred—obtained
during 786 PGT-A cycles. We assessed the association of the parameters extracted with
this bioinformatic pipeline with embryo chromosomal competence (euploidy) and the
reproductive competence (LB per euploid ET). In a clinical simulation, we also tested the
putative value of this tool for embryo selection purposes.

2. Materials and Methods
2.1. Study Population and Study Design

This is a retrospective study including 2184 blastocysts obtained from 786 PGT-A
cycles cultured in a time-lapse incubator (Embryoscope, Vitrolife, Gothenburg, Sweden)
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between January 2013 and December 2020 at a private IVF Center in Rome (IVIRMA Global
Research Alliance, Genera, Clinica Valle Giulia). Patient characteristics are summarized
in Supplemental Table S1. They were mostly advanced maternal age and poor prognosis
women. Of the 2184 total blastocysts included in the study, 40.5% (886/2184) were euploid
and the remaining 59.5% (1298/2184) were aneuploid. The aim of the study was to evalu-
ate the putative association between an AI-powered morphometric and morphodynamic
assessment of blastocyst expansion with their chromosomal (i.e., euploidy) and/or repro-
ductive competence (i.e., LB after vitrified-warmed euploid single embryo transfer). The
analysis was conducted at each specific blastulation timings (as described below), as well
as using an adapted protocol of the qSEA described by Huang previously [9,15,16] (also
detailed below).

Ethic committee approval was obtained for the retrospective analysis of pseudonymized
videos and data aimed at identifying patient, cycle or embryo features associated with IVF
efficacy and/or efficiency.

2.2. IVF and PGT-A Laboratory Protocols

Ovarian stimulation was conducted with a GnRH antagonist protocol and ovulation
was triggered with either GnRH-agonist or hCG based on patient characteristics and the
judgment of a gynaecologist. Oocyte retrieval was conducted 35 h after trigger, and ICSI
was performed according to a previously detailed protocol [17]. A continuous single
culture medium (CSCM, Irvine Scientific, Santa Ana, CA, USA) was adopted, with a
medium refresh on Day 5 in case of extended culture to Days 6 or 7. No laser assisted zona
pellucida (zp) drilling was applied on Day 3, and the embryos were left undisturbed within
an intact zp throughout their development until the fully expanded blastocyst stage, when
TE biopsy was conducted as thoroughly described previously [18]. The biopsied blastocysts
were vitrified within 30 min from biopsy to prevent their re-expansion. Comprehensive
chromosome testing (CCT) was conducted through qPCR or NGS at an external laboratory
to report uniform aneuploidies [19,20]. Intermediate chromosomes copy numbers (ICN)
were reported as either euploid or aneuploid [20]. Only vitrified-warmed single euploid
blastocyst transfers were conducted with either a hormonal replacement therapy or a
modified-natural endometrial preparation protocol. All transfers from the same oocyte
retrieval were included. Blastocyst morphology was graded by the embryologists relying
on Gardner’s scoring system [21] as excellent if AA; good if AB or BA; average if BB, AC,
or CA; and low if CC, BC, or CB.

2.3. Blastocyst Expansion AI-Powered Morphometric and Morphodynamic Analysis

All Embryoscope videos were analysed through an AI-powered tool (CHLOE™,
Fairtility, Tel Aviv, Israel) to automate, standardize, objectify, and quantify embryo assess-
ment. CHLOE is an AI tool based on a convolutional neural network that automatically
analyses embryo videos and annotates specific events of embryo development. Here we
leveraged AI to annotate the time of starting blastulation (tSB); the time of blastulation
(tB); the time of expanding blastocyst (tEB) (as described in [3,22]); and the time of biopsy
(t-biopsy; i.e., the end of the video, when TE biopsy was performed) in hours post insem-
ination (hpi). We also leveraged the AI to annotate the area of the embryo including the
zp (zp-A); the area of the embryo proper (emb-A); the thickness of the zona pellucida
(zp-T; calculated as the largest distance between the emb-A and the zp-A edges); the
area of the ICM (ICM-A); and the ratio between the area of the ICM and the area of
the TE (ICM/TE ratio) (Figure 1). All of these metrics were calculated by the software
at the median focal plane as the proportions of video frames occupied by each feature
under investigation (single pixel = 300 µm; whole wells’ area = 90,000 µm2) at each blas-
tulation timing (Figure 1). Also, increases and decreases for all these measures were
assessed between each blastulation timing and the following. All data were assessed
for their association with euploidy and with LB among vitrified-warmed transferred
euploid blastocysts.
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2.4. AI-Powered qSEA 

Figure 1. Definition of the features and timings under investigation. The AI-powered software
CHLOE™ (Fairtility, Tel Aviv, Israel) was adopted to automatically annotate the time of blastulation
(tB); the time of expanding blastocyst (tEB) (according to the definitions of the ESHRE TLT working
group); and the time of biopsy (t-biopsy; i.e., the end of the video, when trophectoderm biopsy
was performed) in hours post insemination (hpi). The same software annotated the area of embryo
including the zp (zp-A; green circle); the area of the embryo proper (emb-A; yellow circle); the
thickness of the zona pellucida (zp-T; calculated as the largest distance between the emb-A and the
zp-A edges; orange line); the area of the ICM (ICM-A; purple shade); and the ratio between the area
of ICM and the area of the trophectoderm (ICM/TE ratio). All of these metrics were calculated by the
software at the median focal plane as the proportions of video frames occupied by each feature under
investigation (single pixel = 300 µm; whole wells’ area = 90,000 µm2) at each blastulation timing. The
quantitative standardized expansion assay (qSEA) was also automatically generated for each embryo
by annotating the zp-A, emb-A, and the zp-T every 30 min across the 5 h following the tB. These data
were then clustered according to blastocyst chromosomal constitution (euploid versus aneuploid)
and reproductive competence (transferred euploid blastocysts that resulted in a LB versus transferred
euploid blastocysts that did not result in a LB). This process generated six expansion maps (like the
example with the blue and red lines for the two different outcomes) that were scrutinized to assess
putative differences. Scale bar, 100 µm.

2.4. AI-Powered qSEA

For zp-A, emb-A, and zp-T, the qSEA was also calculated by adapting Huang’s
protocol [9,15,16]. In detail, these metrics were automatically annotated for each embryo by
CHLOE every 30 min over the 5 h following the tB. The data were then clustered according
to blastocyst chromosomal constitution (euploid versus aneuploid), and reproductive
competence (transferred euploid blastocysts that resulted in a LB versus transferred euploid
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blastocysts that did not result in a LB). This generated six expansion maps that were
scrutinized to assess putative differences in the expansion dynamics (Figure 1).

2.5. Clinical Simulations

Two simulations were conducted to assess the putative value of the qSEA had
we used it clinically to prioritize blastocysts for transfer (as previously done for the
iDAScore v1.0 [23]).

Among the 786 PGT-A cycles with ≥1 biopsied blastocyst, 352 obtained both eu-
ploid and aneuploid embryos. In these cycles, we could assess how often the embry-
ologists and the qSEA were concordant and discordant in blastocyst ranking, and how
often the highest ranked embryos were indeed euploid (the workflow is summarized in
Supplemental Figure S1A).

Among the 237 PGT-A cycles with ≥2 euploid blastocysts, 216 underwent ≥1 ET
(99 performed only 1 ET, 14 performed >1 ET always obtaining a LB, 50 performed
>1 ET never obtaining a LB, and 53 performed >1 ET with both LB and implantation
failures/miscarriages). In these cycles, we could assess how often the embryologists and
the qSEA were concordant and discordant in ranking euploid blastocysts, and how of-
ten the highest ranked embryos indeed resulted in a LB (the workflow is summarized in
Supplemental Figure S1B).

2.6. Statistical Analysis

The software SPSS version 29.0.1.0 (171) was used for statistics (IBM, Armonk, NY,
USA). Continuous data are shown as mean ± standard deviation (SD). The normal
(Gaussian) distribution of the data was assessed with a Shapiro–Wilk test and either
t-test/ANOVA or Mann Whitney U/Kruskal Wallis tests were adopted to assess statisti-
cally significant differences. Categorical data are shown as ratios with percentages. Fisher’s
exact or chi-squared tests were adopted to assess statistically significant differences. All
putative associations of the data with euploidy among biopsied blastocysts, or reproduc-
tive competence (LB) among transferred euploid blastocysts, were confirmed with either
linear or logistic regression analyses. The results were adjusted for relevant confounders
identified among maternal age, BMI, previous conception(s) (no/yes), cause of infertility,
duration of infertility, sperm quality, and blastocyst morphology.

3. Results
3.1. Aneuploid Blastocysts Were Slower, Expanded Less and Showed a Thicker Zona Pellucida with
Respect to Euploid Embryos

The first analysis conducted was a comparison of all morphometric features at
the tSB, tB, tEB, and t-biopsy among euploid and aneuploid blastocysts, as well as
among transferred euploid blastocysts that resulted in a LB versus not (Table 1). The
data were compared among the study groups and adjusted for confounders in case
of significant associations at univariate analyses. The confounders were maternal
age and blastocyst morphology for the euploidy outcome, and only blastocyst mor-
phology for the LB outcome. Aneuploid blastocysts were slower than euploid over
all blastulation timings from tSB to t-biopsy, while euploid reproductively incom-
petent blastocysts were slower than competent from tB onwards (Table 1). Aneu-
ploid blastocysts, while starting from a larger expansion in terms of both zp-A and
emb-A at the tB, showed both smaller zp-A and emb-A than euploid blastocysts at
the t-biopsy (24,082 ± 5763 µm2 versus 25,438 ± 5968 µm2, adjusted-p < 0.01; and
23,612 ± 5960 µm2 versus 25,058 ± 6212 µm2, adjusted-p < 0.01) and expanded signifi-
cantly less (zp-A t-biopsy/tEB: +38% ± 31% versus +47% ± 33%, adjusted-p < 0.01; zp-A
t-biopsy/tB: +69% ± 39% versus +80% ± 41%, adjusted-p < 0.01; emb-A t-biopsy/tEB:
+40% ± 34% versus +48% ± 36, adjusted-p < 0.01; emb-A t-biopsy/tB: +77% ± 44%
versus +90% ± 47%, adjusted-p < 0.01) (Table 1; Supplemental Figure S2A,B). No asso-
ciation was reported between both parameters and the LB (Table 1). Also, the ICM-A and
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the ICM/TE ratio was comparable among euploids and aneuploids, as well as among
euploids that resulted in a LB and euploids that failed to result in a LB (Table 1). Con-
versely, the zp-T was significantly thicker among aneuploid blastocysts versus euploids
already at the tEB (12.9 ± 2.4 µm versus 12.6 ± 2.5 µm, adjusted-p = 0.01), a differ-
ence that became even more visible at the t-biopsy (8.1 ± 3.2 µm versus 7.1 µm ± 2.7,
adjusted-p < 0.01), thereby outlining a significantly less consistent thinning (zp-T
t-biopsy/tEB: −37% ± 24% versus −43% ± 22%, adjusted-p = 0.01; zp-T t-biopsy/tB:
−50% ± 20% versus −55% ± 18%, adjusted-p < 0.01) (Table 1; Supplemental Figure S2C).
Also in this case, no association was reported with the reproductive competence among
transferred euploid blastocysts (Table 1).

Table 1. Summary of the main results. Area of the zona pellucida (zp-A), area of the embryo proper
(emb-A), thickness of the zona pellucida (zp-T), are of the inner cell mass (ICM-A), ratio between
ICM and trophectoderm (ICM/TE ratio) at the time of blastulation (tB), at the time of blastocyst
expansion (tEB) and at the time of biopsy (t-biopsy), between aneuploid versus euploid blastocysts,
and between euploid not resulted and resulted in a live birth (LB). Also, the increase in all areas
and the decrease in zp-T throughout consecutive timings and from tB to t-biopsy were reported and
compared across the study groups.

Aneuploid
N = 1298

Euploid
N = 886 p-Value Euploid–No LB

N = 315
Euploid–LB

N = 233 p-Value

tSB, mean ± SD, hpi
tB, mean ± SD, hpi

tEB, mean ± SD, hpi
t-biopsy, mean ± SD, hpi

102.5 ± 10.5
113.0 ± 12.7
120.9 ± 14.5
136.0 ± 15.2

100.5 ± 9.6
109.7 ± 11.1
115.9 ± 12.0
131.6 ± 13.7

p < 0.01
p < 0.01
p < 0.01
p < 0.01

100.3 ± 9.7
109.9 ± 11.2
116.7 ± 12.4
132.4 ± 13.9

99.0 ± 9.8
107.5 ± 10.9
112.6 ± 11.2
127.1 ± 12.5

p = 0.10
p = 0.01
p < 0.01
p < 0.01

zp-A at tB, mean ± SD, µm2 14,288 ± 1257 14,168 ± 1119 p = 0.02 * 14,124 ± 1071 14,263 ± 1231 p = 0.16

zp-A at tEB,
mean ± SD, µm2 17,435 ± 1828 17,417 ± 1955 p = 0.82 17,482 ± 2234 17,542 ± 1835 p = 0.74

Ratio tEB/tB, mean ± SD +22% ± 10% +23% ± 12% p = 0.74 * +24% ± 14% +23% ± 9% p = 0.48

zp-A at t-biopsy,
mean ± SD, µm2 24,082 ± 5763 25,438 ± 5968 p < 0.01 * 25,141 ± 5873 25,790 ± 6159 p = 0.21

Ratio t-biopsy/tEB,
mean ± SD +38% ± 31% +47% ± 33% p < 0.01 * +45% ± 33% +47% ± 33% p = 0.35

Ratio t-biopsy/tB,
mean ± SD +69% ± 39% +80% ± 41% p < 0.01 * +79% ± 42% +81% ± 42% p = 0.47

emb-A at tB,
mean ± SD, µm2 13,349 ± 1196 13,249 ± 1121 p = 0.03 * 13,235 ± 1107 13,309 ± 1121 p = 0.44

emb-A at tEB,
mean ± SD, µm2 16,900 ± 1867 16,922 ± 1986 p = 0.79 16,996 ± 2274 17,030 ± 1757 p = 0.85

Ratio tEB/tB, mean ± SD +27% ± 11% +28% ± 13% p = 0.28 * +29% ± 16% +28% ± 10% p = 0.64

emb-A at t-biopsy,
mean ± SD, µm2 23,612 ± 5960 25,058 ± 6212 p < 0.01 * 24,694 ± 6169 25,512 ± 6299 p = 0.13

Ratio t-biopsy/tEB,
mean ± SD +40% ± 34% +48% ± 36% p < 0.01 * +46% ± 35% +50% ± 34% p = 0.22

Ratio t-biopsy/tB,
mean ± SD +77% ± 44% +90% ± 47% p < 0.01 * +87% ± 48% +92% ± 46% p = 0.26

zp-T at tB, mean ± SD, µm 16.4 ± 2.9 16.2 ± 2.9 p = 0.25 16.5 ± 3.0 16.3 ± 3.1 p = 0.55

zp-T at tEB, mean ± SD, µm 12.9 ± 2.4 12.6 ± 2.5 p = 0.01 * 12.9 ± 2.5 12.8 ± 2.5 p = 0.54

Ratio tEB/tB, mean ± SD −21% ± 11% −22% ± 11% p = 0.53 * −21% ± 11% −22% ± 10% p = 0.90

zp-T at t-biopsy,
mean ± SD, µm 8.1 ± 3.2 7.1 ± 2.7 p < 0.01 * 7.3 ± 2.9 6.9 ± 2.5 p = 0.11

Ratio t-biopsy/tEB,
mean ± SD −37% ± 24% −43% ± 22% p = 0.01 * −43% ± 22% −44% ± 20% p = 0.24

Ratio t-biopsy/tB,
mean ± SD −50% ± 20% −55% ± 18% p < 0.01 * −55% ± 18% −57% ± 16% p = 0.21
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Table 1. Cont.

Aneuploid
N = 1298

Euploid
N = 886 p-Value Euploid–No LB

N = 315
Euploid–LB

N = 233 p-Value

ICM-A at tB,
mean ± SD, µm2 3458 ± 905 3414 ± 902 p = 0.27 3425 ± 953 3434 ± 852 p = 0.91

ICM-A at tEB,
mean ± SD, µm2 3497 ± 1047 3460 ± 1066 p = 0.43 3414 ± 1078 3468 ± 984 p = 0.55

Ratio tEB/tB,
mean ± SD +5% ± 35% +5% ± 33% p = 0.99 +4% ± 33% +3% ± 25% p = 0.65

ICM-A at t-biopsy,
mean ± SD, µm2 3804 ± 1471 3727 ± 1469 p = 0.31 3800 ± 1547 3541 ± 1212 p = 0.08

Ratio t-biopsy/tEB,
mean ± SD +11% ± 50% +10% ± 45% p = 0.42 +13% ± 46% +4% ± 36% p = 0.17 **

Ratio t-biopsy/tB,
mean ± SD +12% ± 49% +12% ± 51% p = 0.97 +16% ± 56% +6% ± 45% p = 0.08

ICM/TE ratio at tB,
mean ± SD 26% ± 7% 26% ± 7% p = 0.61 26% ± 7% 26% ± 7% p = 0.95

ICM/TE ratio at tEB,
mean ± SD 21% ± 6% 21% ± 6% p = 0.36 20% ± 6% 20% ± 6% p = 0.50

ICM/TE ratio at t-biopsy,
mean ± SD 17% ± 8% 16% ± 7% p = 0.97 * 16% ± 7% 15% ± 6% p = 0.47 **

* adjusted for maternal age and blastocyst morphological quality. ** adjusted for blastocyst morphological quality.

When adjusting for maternal age, blastocyst morphological quality, and the zp-A,
the zp-A ratio t-biopsy/tB showed a more significant association with euploid constitu-
tion than the zp-A per se, with a multivariate-OR 2.2, 95%CI 1.1–4.4, and an adjusted
p-value = 0.02.

When adjusting for maternal age, blastocyst morphological quality and the emb-
A, the emb-A ratio t-biopsy/tB showed a more significant association with euploid
constitution than the emb-A per se, with a multivariate-OR 2.2, 95%CI 1.3–4.0, and an
adjusted p-value < 0.01.

When adjusting for maternal age, blastocyst morphological quality and the zp-T
ratio t-biopsy/tB, the zp-T showed a more significant association with euploid constitu-
tion than the ratio itself, with a multivariate-OR 0.92, 95%CI 0.86–0.98, and an adjusted
p-value < 0.01.

3.2. The Zona Pellucida Thinning Process in the 5 h Following the tB Was More Substantial
Among Euploid Blastocysts than Aneuploid

The definition of the t-biopsy is based on embryologists’ assessments, daily workload,
and IVF laboratory logistics; therefore, it cannot be fully standardized. Conversely, the tB
is specific to each embryo (i.e., “Time from insemination to formation of a full blastocyst;
when the blastocoele filled the embryo with <10% increase in its diameter” according
to [22] or “last frame before zona starts to thin” according to [3]), and it is automatically
annotated by CHLOE. Moreover, blastocysts are never biopsied within 5 h following the tB,
as they cannot achieve a suitable stage in such timeframe. These characteristics suggest that
the qSEA is a more reliable and less biased strategy for assessing the association between
blastocyst expansion dynamics and their competence.

When adopting the qSEA to compare aneuploid versus euploid blastocysts, no dif-
ference was reported for the emb-A and the zp-A (Supplemental Figures S3 and S4). Con-
versely, the zp-T showed a significantly slower and less consistent zona thinning among
aneuploid blastocysts, which became significant already 150 min following the tB (even
when adjusted for maternal age and blastocyte morphology) (Supplemental Figure S5A).
The receiver operating characteristic (ROC) curve analysis showed an area under the curve
(AUC) = 0.72, 95%CI 0.69–0.74, p < 0.01 for the prediction of euploidy based on the zp-T
qSEA adjusted for maternal age. The same value was 0.75, 95%CI 0.73–0.77, p < 0.01 if
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considering the zp-T along with maternal age, blastocyst morphology, and the t-biopsy
(Supplemental Figure S5B).

3.3. zp-A, emb-A, and zp-T qSEA Were Significantly Associated with Euploid Blastocysts’
Reproductive Competence

When adopting the qSEA to compare euploid blastocysts resulting in a LB versus
reproductively incompetent blastocysts, all three qSEA showed a significant association
(Figures 2A, 3A and 4A). The zp-A qSEA outlined significant differences already after
150 min following the tB (Figure 2A), while the emb-A and the zp-T did so after 180 min
(Figures 3A and 4A). The ROC curve analyses showed AUCs to be almost superimposable
for all three qSEA models, either per se (AUC = 0.61) or adjusted for confounders
(AUC = 0.64–0.65) (Figures 2B and 3B).
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Figure 2. (A) The zp-A (area of the embryo including the zona pellucida in µm2) qSEA (quantitative
standardized expansion assay) outlined a larger expansion among euploid blastocysts that resulted in
a live birth (LB) (green line) versus euploid blastocysts that did not result in a LB (orange line), which
became significant 150 min following the time of blastulation (tB). The stars (*) identify the significant
datapoints showing the mean ± SD in the two groups at that timing. (B) Receiver Characteristics
Operating (ROC) curve analyses outlined a significant association between the zp-A qSEA with a LB
after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and adjusted for
blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.
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Figure 3. (A) The emb-A (area of the embryo proper in µm2) qSEA (quantitative standardized
expansion assay) outlined a large expansion among euploid blastocysts that resulted in a live birth
(LB) (green line) versus euploid blastocysts that did not result in a LB (orange line), which became
significant already 180 min following the time of blastulation (tB). The stars (*) identify the significant
datapoints showing the mean ± SD in the two groups at that timing. (B) Receiver Operating
Characteristics (ROC) curve analyses outlined a significant association between the emb-A qSEA with
a LB after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and adjusted
for blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.

3.4. The zp-T qSEA Would Have Ranked a Euploid Blastocyst as Top Quality in Its Cohort in 57%
of the Cycles with >1 Biopsied Blastocyst and Both Euploid and Aneuploid Embryos

As detailed previously, 352 cycles could be included in a clinical simulation to
assess whether the zp-T qSEA (versus the embryologists) would have ranked a euploid
blastocyst as top-quality within cohorts with >1 biopsied blastocyst and both euploid
and aneuploid embryos (Supplemental Figure S1A). In 24% of the cases (N = 85/352), the
embryologists and the zp-T qSEA would have agreed on the highest-ranked blastocyst;
in 42% of the cases (N = 147/352), they would have disagreed; and in the remaining
34% of the cases (N = 120/352), the embryologists ranked more than one blastocyst as
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top-quality in their cohort (Supplemental Figure S6). Overall, the embryologists’ highest
ranked blastocysts were: (i) euploid in 45% of the cases (N = 159/352) versus 57% for the
zp-T qSEA (N = 199/352); (ii) aneuploid in 25% of the cases (N = 89/352) versus 43% for
the zp-T qSEA (N = 153/352); and (iii) both euploid and aneuploid in 30% of the cases
(N = 104/352) versus never for the zp-T qSEA (Supplemental Figure S6). In fact, it is
highly unlikely that two blastocysts would be equally ranked by the qSEA, being that
this strategy is based on highly specific and objective measurements.
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Figure 4. (A) The zp-T (thickness of the zona pellucida in µm) qSEA (quantitative standardized
expansion assay) outlined a more consistent zona thinning among euploid blastocysts that resulted
in a live birth (LB) (green line) versus euploid blastocysts that did not result in a LB (orange line),
which became significant already 180 min following the time of blastulation (tB). The stars (*) identify
the significant datapoints showing the mean ± SD in the two groups at that timing. (B) Receiver
Characteristics Operating (ROC) curve analyses outlined a significant association between the zp-T
qSEA with a LB after euploid blastocyst transfer unadjusted, adjusted for blastocyst morphology, and
adjusted for blastocyst morphology and time of biopsy (t-biopsy). AUC, area under the curve.



Life 2024, 14, 1396 11 of 18

3.5. In 69% of the Cycles with >1 Biopsied Blastocyst and Both Euploid and Aneuploid Embryos,
the zp-T qSEA Ranking Would Be Equal or Better than Embryologist Rankings

When embryologists and the zp-T qSEA were compared for their putative effectiveness
in blindly ranking euploid blastocysts as top quality within their cohorts: (i) they would
have been equally effective in 43% of the cases (being either both wrong [N = 47/352, 13%]
or both right [N = 104/352, 30%]); (ii) the embryologists would have been more effective in
15% of the cases (N = 52/352); (iii) the zp-T qSEA would have been more effective in 7%
of the cases (N = 26/352); (iv) the zp-T qSEA would have ranked a euploid on top while
the embryologists both a euploid and an aneuploid in 19% of the cases (N = 66/352); and
(v) the zp-T qSEA would have ranked an aneuploid on top while the embryologists both a
euploid and an aneuploid in 16% of the cases (N = 57/352) (Supplemental Figure S6). The
raw data of this clinical simulation are provided in Supplemental Table S2.

3.6. In 46% of the Cases, the zp-A and emb-A qSEAs Would Have Disagreed with the
Embryologists in Prioritizing Euploid Blastocysts for Transfer; The zp-T qSEA, Instead, Would
Have Disagreed in 60% of the Cases

As detailed previously, 216 cycles could be included in a clinical simulation to
assess the zp-A, emb-A, and zp-T qSEAs performance versus the embryologists in pri-
oritizing euploid blastocysts for transfer within cohorts with ≥2 euploid blastocysts
(Figure 2B). Specifically, in 99 cycles there were ≥2 euploid blastocysts but only 1 had
been transferred, in 14 cycles there were ≥2 euploid blastocysts and all resulted in
a LB, in 50 cycles there were ≥2 euploid blastocysts and all did not result in a LB,
and in 53 cycles there were ≥2 euploid blastocysts resulting in both LBs and implan-
tation failures/miscarriages. In 54% of the cases (N = 116/216), the embryologists
and the zp-A or the emb-A qSEA would have agreed on euploid blastocyst prioritiza-
tion for transfer, while in 46% of the cases (N = 100/216) they would have disagreed
(Supplemental Figure S7A,B). The same results for the zp-T qSEA would have been
40% (N = 86/216) and 60% (N = 130/216), respectively (Supplemental Figure S7C). In
terms of clinical effectiveness, the embryologists prioritized for transfer a competent
euploid blastocyst in 47% of the cases (N = 102/216). In this scenario, the zp-A and
the emb-A qSEA choice would have been correct in 38% of the cases (N = 82/216 and
81/216, respectively). However, this outcome may improve up to 61%, because in 23%
of the cases (N = 50/216 for both the zp-A and emb-A) the euploid blastocysts with the
highest priority according to the zp-A and emb-A qSEA had not been transferred yet
(Supplemental Figure S7A,B). Regarding the zp-T qSEA, instead, its choice would have
been correct in 27% of the cases (N = 59/216). However, this outcome may improve up to
63%, because in 36% of the cases (N = 78/216) the euploid blastocysts with the highest pri-
ority according to the zp-T qSEA had not been transferred yet (Supplemental Figure S7C).
The raw data of this clinical simulation are provided in Supplemental Figure S7A–C and
in Supplemental Tables S3–S5).

4. Discussion

Blastocyst morphological quality is significantly associated with both the chromoso-
mal and reproductive competence of embryos [24]; however, it cannot be used alone to
accurately predict these outcomes. Currently, blastocyst morphological quality is primar-
ily assessed in IVF laboratories using grading systems such as the Gardner system [21].
Nonetheless, these grading systems are subjective and often vary among clinical embry-
ologists, particularly when they work at different IVF centers or have undergone diverse
training programs [2]. To address these limitations, AI-powered tools have been devel-
oped to analyze static images or time-lapse videos of embryo development. These tools
aim to objectively assess embryo quality and rank embryos within a cohort based on a
standardized scoring system. Typically, a higher score indicates a greater likelihood that
the embryo is euploid and/or will successfully implant after embryo transfer [7,25]. In
this study, we evaluated a qSEA model, determined its association with embryo euploidy
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and its potential to predict live birth outcomes. Both a comprehensive analysis and an
intra-cohort clinical simulation were performed to test its effectiveness.

4.1. Clinical Implications of the Evidence Produced in This Study

Blastocyst expansion dynamics might provide relevant information on embryo re-
productive competence. Indeed, several studies suggested that, among blastocyst mor-
phological characteristics, expansion represents an intriguing feature to consider when
ranking embryos in terms of priority for transfer [8,26,27] in both conventional and PGT-A
cycles. Based on these preliminary data from the literature, we aimed at producing ob-
jective, morphometric and reproducible information on the expansion process, to reliably
assess a putative association between these embryo-specific dynamics and its chromosomal
(i.e., euploidy) and/or reproductive competence (i.e., LB after euploid blastocyst transfer).
Huang’s former positive experience with the qSEA [9,15,16], and the possibility of integrat-
ing this method with AI-standardized and -powered analyses and PGT-A, incited us to test
it for its association with blastocyst competence in our setting and patient population. Our
study improved Huang’s previous experience through a large sample size (N = 2184), the
use of PGT-A to assess the chromosomal constitution of all blastocysts, and the adoption of
a TE biopsy protocol that does not entail assisted hatching on Day 3, thereby not affecting
the process of blastocyst physiological expansion.

Besides confirming that aneuploid and euploid reproductively incompetent em-
bryos are generally slower in reaching all blastulation timings milestones from tSB to
t-biopsy [28,29], our data have highlighted an association between euploidy and larger
zp-A and emb-A, as well as thinner zp at t-biopsy. Also, the zp-A and emb-A ratio t-
biopsy/tB and the zp-T ratio t-biopsy/tB outlined larger expansion and more consistent
zona thinning among euploid blastocysts versus aneuploid. Possibly, different issues—
either chromosomal, metabolic, or structural—affect embryo timeliness in setting up TE
epithelium architecture. This in turn could affect its possibility to cope with the increased
hydrostatic pressure, essential for the expansion process. This hypothesis is consistent
with a recent study [30], where the authors attempted to define to what extent blastocyst
expansion dynamics could be affected by different classes of aneuploidies. Interestingly, all
classes of aneuploidies, except for trisomies, significantly impaired the expansion process
compared to euploid blastocysts. As has already been shown across several studies in the
literature, TE characteristics seem more relevant than ICM in terms of association with
embryo reproductive competence [8,31,32]. Indeed, the ICM-A and the ICM/TE ratio
showed no association with all outcomes under investigation. This evidence might mirror
the predominant role of the TE over the ICM in the process of implantation when it must
establish a timely and effective dialogue with the endometrium.

Although blastocyst static morphometric evaluation before vitrification or biopsy in
the absence of time-lapse incubators might also be clinically relevant, it is inherently biased
by logistic issues, like daily workload, lab schedule, and embryologist decisions. The qSEA
instead represents a less biased and more embryo-centred assessment, because the tB is
reached by all useable blastocysts, regardless of their developmental pace, and more than
5 h always elapse from this timing and biopsy. Interestingly, consistent with Huang’s
previous experience, the expansion maps showed significant associations between the
zp-A, emb-A, and zp-T qSEAs and euploid blastocyst reproductive competence, even when
adjusted for blastocyst morphology and t-biopsy (i.e., the main embryological confounders
upon euploid embryo implantation potential), already 150–180 min following the tB. The
zp-T qSEA outlined significant associations with the euploidy as well. Although this overall
association already has important implications in terms of basic knowledge (which we will
discuss below), we were interested in defining the putative clinical relevance of qSEA had
we used it clinically in our setting. In fact, to improve the performance of embryologists
with embryo ranking and prioritization for transfer, the information provided by this
tool (as any other embryo selection tool) must be clinically effective when used within a
given cohort of embryos produced by a couple. To this end, we conducted two clinical
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simulations (as previously done for iDAScore v1.0 [23]): (i) among cycles with ≥2 biopsied
blastocysts, of which both euploid and aneuploid, to test zp-T qSEA euploidy prediction;
and (ii) among cycles ≥2 euploid blastocysts, of which ≥1 transferred, to test all qSEA
LB prediction. Notably, the zp-T qSEA would have disagreed with the embryologists in
ranking embryos in 42% of cases, while it would have represented a swing vote between
two blastocysts equally ranked on top by the operators in a further 34% of the cases.
This information is interesting, especially considering that the zp-T qSEA ranked euploid
blastocysts on top in 57% of the cases and it would have been right with the embryologists
being either wrong or uncertain in 26% of the cases. In our population of advanced maternal
age women, these data are even more intriguing. When tested for its prediction of a LB
in the context of euploid blastocyst transfers among cohorts with ≥2 euploid embryos,
the zp-A and emb-A qSEAs disagreed with the embryologists in embryo prioritization in
46% of the cases, a rate that increased to 60% for the zp-T qSEA. Again, this is interesting
because it outlines a scenario where there is room for improving embryo selection when
adopting this tool with respect to embryologist evaluations. In 38% and 27% of the cases,
the zp-A or emb-A qSEAs and zp-T qSEA, respectively, would have correctly prioritized for
transfer a competent euploid blastocyst. Both these rates may significantly increase in the
future considering that in 23% and 36% of the cases, the blastocysts that would have been
chosen based on the zp-A or emb-A qSEAs and the zp-T qSEA, respectively, had not been
transferred yet. In the case of a positive outcome after transfer, these instances will increase
the prevalence of events where the qSEA would have outperformed the embryologists
(currently 8% and 10% for the zp-A or emb-A qSEAs and zp-T qSEA, respectively). Only
a future RCT comparing embryologist rankings versus qSEA rankings to prioritize the
first blastocyst for transfer in the context of either conventional or PGT-A cycles would
ultimately unveil the true clinical benefit of this tool. Until then, these preliminary data
should be considered only promising.

The main limitation of this study is inherent to its retrospective nature. Moreover, this
study represents the second experience worldwide with the qSEA; confirmatory evidence
should therefore be derived from further investigation at other centres and in other settings
to validate these findings.

4.2. Basic Science Data Supporting the Evidence Produced in This Study

The cavitation and expansion processes are regulated by several genes, including
E-cadherin, catenin, tight junction proteins, and the sodium–potassium ATPase transport
system [33]. The initiation of blastulation is characterized by the formation of a small
cavity or multiple microlumens eventually merging. A study on mice has proposed that
vesicles or vacuoles are involved in blastocoel formation as they are released by exocytosis
at the level of the basal membrane, thereby producing the microlumens [34]. More recently,
another group proposed a “hydro-osmotic coarsening theory” suggesting that osmotic
pressure at the level of the intercellular cell junctions transiently disrupts cell–cell contact,
forming numerous small lumens [35]. These lumens then undergo intercellular ion and
fluid exchange, eventually coalescing into a single lumen, i.e., the blastocoel cavity. After
the initial microlumen formation, further expansion results from the active Na/K-ATPase
transport mechanism located on the basolateral surface of the TE epithelium. This generates
a sodium gradient, in turn ensuring water influx from the external environment into the
microlumen [36,37]. Along with the osmotic gradient, water channels known as aquaporins
(AQPs) facilitate water influx through the outer cells. Various AQP isoforms are expressed
during preimplantation development in mice, and each isoform may play a unique role
because of their temporally and spatially distinct expression patterns [38]. Simultaneously,
the adherens junction, tight junction, desmosomes, and gap junction, form a seal between
the TE cells, which are pivotal for fluid intake and blastocoel formation and expansion [33].
From a basic cellular perspective, the chromosome instability at the origin of aneuploidies
seems to universally compromise cellular fitness [39–41]. It is reasonable to hypothesize that
the resulting imbalances in both transcription and translation can affect both the cellularity
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and function of the emerging TE to produce and maintain the blastocoel fluid that will
be critical both for hatching and for productive, sustained invasion of the endometrium.
Transcription defects affecting the various players involved in these processes, as well as
external environmental insults may impact the cavitation process and alter the viscoelastic
properties of the blastocyst [42–44]. Throughout blastocyst expansion, the blastocyst applies
hydrostatic mechanical pressure on the zp, progressively leading to its thinning up to the
creation of a nick [45]. Following, expansion allows the embryo to hatch and possibly
implant. In mice, this hatching process is facilitated by the timely secretion of implantation-
related molecules, such as cytokines [45] and zonalytic proteases, like strypsin, hepsin, and
cathepsin [46] by both TE and endometrial cells [45,47]. Proteases might be involved in this
process in humans as well, according to recent data [48]. In general, the extent of zp thinning
might mirror the timeliness of these finely regulated spatiotemporal processes, providing
relevant information to predict blastocysts reproductive potential in mammals, including
humans [49]. Previous studies have suggested that zp-T and zp-T variation may be useful
additional parameters for embryo assessment, in addition to conventional morphological
grading. Indeed, embryos with a thinner zp or greater zp-T variation showed a greater
chance of implantation and evolution in an ongoing pregnancy than embryos with thicker
zp [50–53]. In general, a thinner zp, even if localized just to some areas, might facilitate
hatching, as well as the transportation and release of lytic enzymes and/or messengers
(e.g., miRNAs), ultimately supporting implantation [50,54]. In summary, the process
of blastulation, expansion, and hatching certainly deserve future deeper biomechanical
investigations, as their characterization holds potential for generating relevant evidence for
embryo selection purposes as well.

4.3. Future Perspectives of Molecular Investigations

In the future, integrating molecular data, particularly transcriptomic analyses, with
genomic and chromosomal assessments from a single biopsy may significantly enhance our
understanding of early embryonic development and implantation processes [55]. Current
clinical investigations still fail to capture the complete picture of embryonic competence.
In-depth transcriptomic data could identify molecular markers that explain why certain
embryos exhibit varying developmental rates, distinct levels of blastocyst expansion, and
heterogeneous overall morphological quality, despite being derived from the same cohort
of oocytes and exposed to the same in vitro culture conditions. These differences in gene
expression may reveal underlying metabolic, cellular, or epigenetic factors with significant
implications for embryo selection [56,57].

5. Conclusions

Blastocyst expansion dynamics, timing, and morphometrics measured by AI provide
objective and quantitative data related to embryo competence. qSEA is a promising, user-
friendly, and easily applicable strategy that deserves further evaluation. Basic research into
the mechanisms controlling blastocyst expansion is also warranted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life14111396/s1, Supplemental Figure S1. Study Flowchart.
The figure summarizes the study flowchart and the number of preimplantation genetic testing for
aneuploidies (PGT-A) cycles that could be included in the clinical simulations for euploidy (A) and
live birth (LB) (B) prediction. Supplemental Figure S2. Euploid blastocysts (green boxplots) expand
more (larger zp-A and emb-A, respectively area of the embryo in µm2 with or without the zona
pellucida) between the time of blastulation (tB) and the time of biopsy (t-biopsy) and undergo a more
consistent zona pellucida thinning (zp-T, thickness of the ZP in µm) than aneuploid blastocysts (red
boxplots). Supplemental Figure S3. (A) The zp-A (area of the embryo including the zona pellucida in
µm2) qSEA (quantitative standardized expansion assay) did not outline any significant difference
between euploid (green line) and aneuploid (red line) blastocysts. Supplemental Figure S4. (A) The
emb-A (area of the embryo proper in µm2) qSEA (quantitative standardized expansion assay) did not
outline any significant difference between euploid (green line) and aneuploid (red line) blastocysts.

https://www.mdpi.com/article/10.3390/life14111396/s1
https://www.mdpi.com/article/10.3390/life14111396/s1
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Supplemental Figure S5. (A) The zp-T (thickness of the zona pellucida in µm) qSEA (quantitative
standardized expansion assay) outlined a more consistent zona thinning among euploid blastocysts
(green line) versus aneuploid blastocysts (red line), that became significant already 150 min following
the time of blastulation (tB). The stars (*) identify the significant datapoints showing the mean ± SD in
the two groups at that timing. (B) Receiver Characteristics Operating (ROC) curve analyses outlined
a significant association between the zp-T qSEA with euploidy when adjusted only for maternal
age, for maternal age blastocysts’ morphology, as well as for maternal age, blastocysts’ morphology
and time of biopsy (t-biopsy). AUC, area under the curve. Supplemental Figure S6. Outcomes of a
clinical simulation to assess zp-T (zona pellucida thickness in µm) qSEA (quantitative standardized
expansion assay) performance versus the embryologists (E) in ranking euploid blastocysts on top
among cohorts with both euploid and aneuploid siblings. Ranking concordance was not assessable
any time ≥2 embryos were ranked on top by the embryologists, among which one was the zp-T
qSEA highest ranked blastocyst (black bar of the histogram). Effectiveness in prioritizing the euploid
blastocyst was not assessable any time ≥2 embryos were ranked on top by the embryologists, of
which ≥1 was euploid and ≥1 was aneuploid (dark grey section of the pie chart; blue and brown bars
of the histogram). Raw data are shown in Supplemental Table S2. Supplemental Figure S7. Outcomes
of a clinical simulation to assess (A) zp-A (area of the embryo including the zona pellucida in µm2)
qSEA (quantitative standardized expansion assay), (B) emb-A (area of the embryo proper in µm2)
qSEA, and (C) zp-T (zona pellucida thickness in µm) qSEA performance versus the embryologists
(E) in ranking euploid blastocysts resulting a live birth (LB) on top among cohorts with ≥2 euploid
siblings. Effectiveness in prioritizing the competent euploid blastocyst was not assessable any time
the highest ranked embryo according to the qSEA has not been transferred yet (dark grey sections
of the pie charts; dark grey bars of the histograms). Raw data are shown in Supplemental Tables
S3–S5. Supplemental Table S1. Patients’ characteristics. Supplemental Table S2. Distribution of the
PGT-A cycles in the clinical simulation for the comparison of embryologists’ (E) versus zp-T qSEA’s
performance in ranking euploid blastocysts on top. The results are summarized in Supplementary
Figure S3. * ≥2 embryos ranked on top according to the embryologists, that included also the
embryo ranked on top according to the zp-T qSEA. ˆ ≥2 embryos ranked on top according to the
embryologists, of which ≥1 euploid and ≥1 aneuploid. Supplemental Table S3. Distribution of
the PGT-A cycles in the clinical simulation for the comparison of embryologists’ (E) versus zp-A
qSEA’s performance in ranking euploid blastocysts that resulted in a live birth (LB) on top. The
results are summarized in Supplementary Figure S4A. Supplemental Table S4. Distribution of the
PGT-A cycles in the clinical simulation for the comparison of embryologists’ (E) versus emb-A qSEA’s
performance in ranking euploid blastocysts that resulted in a live birth (LB) on top. The results are
summarized in Supplementary Figure S4B. Supplemental Table S5. Distribution of the PGT-A cycles
in the clinical simulation for the comparison of embryologists’ (E) versus zp-T qSEA’s performance in
ranking euploid blastocysts that resulted in a live birth (LB) on top. The results are summarized in
Supplementary Figure S4C.
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