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Abstract: This study comprehensively investigates the stress distribution and aging effects in Ethy-
lene Propylene Diene Monomer (EPDM) and Liquid Silicone Rubber (LSR) gasket materials through a
novel integration of hyperelastic modeling and advanced machine learning techniques. By employing
the Mooney–Rivlin, Ogden, and Yeoh hyperelastic models, we evaluated the mechanical behavior
of EPDM and LSR under conditions of no aging, heat aging, and combined heat- and sulfuric-acid
exposure. Each model revealed distinct sensitivities to stress distribution and material deformation,
with peak von Mises stress values indicating that LSR experiences higher internal stress than EPDM
across all conditions. For instance, without aging, LSR shows a von Mises stress of 24.17 MPa
compared to 14.96 MPa for EPDM, while under heat and sulfuric acid exposure, LSR still exhibits
higher stress values, showcasing its resilience under extreme conditions. Additionally, the ensemble
learning approach achieved a classification accuracy of 98% for LSR and 84% for EPDM in predicting
aging effects, underscoring the robustness of our predictive framework. These findings offer practical
implications for selecting suitable gasket materials and developing predictive maintenance strate-
gies in industrial applications, such as fuel cells, where material integrity under stress and aging
is paramount.

Keywords: aging effects; deformation analysis; ensemble model; fuel cell reliability; gasket materials;
hyperelastic models; PEMFC; predictive modeling; stress distribution

1. Introduction

Sealing materials’ durability and mechanical performance are essential for the long-
term efficiency of proton exchange membrane fuel cells (PEMFCs), particularly under
extreme environmental conditions [1]. Ethylene Propylene Diene Monomer (EPDM) and
Liquid Silicone Rubber (LSR) are widely used as gasket materials in PEMFCs because
of their flexibility and resilience under mechanical loads [2]. However, these materials
are prone to degradation from aging conditions, such as prolonged exposure to heat
and sulfuric acid, which can compromise PEMFC performance and increase the risk of
hydrogen fuel leaks—an important safety concern, particularly in hydrogen vehicles or
fuel-cell electric vehicle (FCEV) applications [3,4].

Gaskets are critical for maintaining PEMFC integrity by preventing leaks and ensur-
ing optimal operation under varying pressures, extreme temperatures, and mechanical
stresses [5]. Given PEMFCs’ prominent role in hydrogen fuel-cell technology as a clean
energy solution, especially in electric vehicles, their reliability heavily depends on the dura-
bility of these gasket materials [6]. Addressing the challenges posed by gasket degradation
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requires advanced modeling and testing techniques to predict performance, optimize mate-
rial selection, and ultimately enhance PEMFC safety and efficiency. Significant progress
has been made in advancing gasket materials, with EPDM and LSR showing promise
due to their mechanical stability and resistance to chemical degradation [7,8]. This study
specifically investigates the performance of gasket materials (EPDM and LSR) at 95 ◦C,
representing high-temperature operational conditions typical in PEMFC systems, rather
than low-temperature or cold-start conditions.

Thermal management is a crucial factor in PEMFC systems to maintain optimal opera-
tional temperatures, particularly for gasket materials that are susceptible to degradation
under thermal stress. Effective thermal regulation minimizes overheating, which can ac-
celerate material aging and reduce the durability of critical components. Recent studies
have highlighted various approaches for managing thermal gradients, such as liquid cool-
ing systems, nanofluid integration, and advanced flow field designs that enhance heat
dissipation and maintain consistent temperatures across the fuel-cell stack [9–12]. These
advancements improve the efficiency and longevity of PEMFCs and support the structural
integrity of gasket materials, especially in automotive applications where both space and
weight constraints are essential. Our research emphasizes the impact of sustained high tem-
peratures, such as 95 ◦C, on the degradation of EPDM and LSR gaskets, as this aligns with
the typical operational demands of PEMFC systems in high-temperature environments.
Cold-start scenarios, which pertain to lower temperature thresholds, are beyond the scope
of this study.

Recent studies underscore the importance of optimizing gasket design and material
composition to enhance durability in PEMFCs. For instance, Yoo et al. demonstrated that
half-circular gasket designs provide superior airtightness and durability even at −40 ◦C,
making them suitable for PEMFCs operating in extreme conditions [13]. Sim et al. explored
silica surface treatments to reduce silicon leaching, thereby minimizing contamination
and preserving PEMFC membrane integrity for extended operation [14]. Complementary
research by Fan et al. focused on system-level PEMFC design, integrating components like
bipolar plates and gas diffusion layers to improve mass transfer and thermal management,
which further enhances fuel-cell stack durability [15]. Furthermore, Wang et al. introduced
a rate-dependent aging constitutive model for EPDM rubber, which effectively captures the
effects of strain rate, aging time, and temperature, providing a framework for predicting
long-term gasket performance in PEMFCs [16].

Moreover, Li et al. examined the aging behavior of EPDM, LSR, and fluorine rubber
(FPM) under high- and low-temperature cycling, showing that temperature fluctuations
can induce fatigue failure in rubber materials, increasing compression set—an outcome
especially relevant for PEMFC gaskets under cyclic temperature conditions. Li et al.’s study
introduced an accelerated aging test, offering a faster, cost-effective method to predict the
service life of rubber seals under cyclic temperatures [17].

Hyperelastic models, such as Mooney–Rivlin, Yeoh, and Ogden, provide valuable in-
sights into the non-linear elastic behavior of elastomers like EPDM and LSR. These models
enable detailed stress–strain analysis under operational conditions. Although hyperelastic
models have been individually researched, few studies comprehensively compare these
models under different aging types and materials. This study investigates EPDM and LSR
mechanical behavior across various aging conditions using these three models, focusing
on von Mises stress, contact stress, and deformation at critical points in a PEMFC configu-
ration. Through comparative analysis, this work develops predictive models to forecast
material failure or degradation, which are essential for effective maintenance strategies and
improved PEMFC performance and reliability.

• This study makes a unique contribution by comprehensively assessing EPDM and
LSR material performance under simulated PEMFC operational stresses through a
novel comparison of hyperelastic modeling methods under varied aging conditions.
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• Unlike previous studies, this paper evaluates the models’ effectiveness in stress dis-
tribution and integrates predictive ensemble machine learning methods to classify
aging effects.

• This approach advances predictive maintenance strategies, supporting improved
material selection for PEMFC gaskets with enhanced durability and reliability.

These contributions advance PEMFC safety and durability by applying predictive
modeling and data-driven maintenance strategies. They underline the potential of this
research to inform more resilient gasket designs and efficient PEMFC maintenance practices.
The remainder of this study is structured as follows: Section 2 presents the background
study and related works on PEMFC gasket materials, hyperelastic modeling, and en-
semble learning. Sections 3 and 4 describe the methodology framework for modeling
the mechanical performance and predictive maintenance of EPDM and LSR materials.
Section 5 provides the study’s results, discussion, and limitations. Finally, Section 6 offers
the concluding remarks and potential future directions.

2. Background Study and Literature Review
2.1. Hyperelastic Material Models

Hyperelastic models are commonly used to describe the non-linear stress–strain be-
havior of elastomers, which undergo significant deformations under load. Among the
prominent models are Mooney–Rivlin, Yeoh, and Ogden, each offering unique advantages
for modeling elastomers under different conditions.

2.1.1. Mooney–Rivlin Model

The Mooney–Rivlin model assumes that the strain energy density W depends on the
first two invariants of the deformation tensor, making it suitable for materials experiencing
moderate strains. The strain energy function for the Mooney–Rivlin model is given by:

W = C10(I1 − 3) + C01(I2 − 3) (1)

where C10 and C01 are material constants, and I1 and I2 are the first and second invariants
of the deformation tensor, defined as:

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ2
2 + λ2

2λ2
3 + λ2

3λ2
1 (2)

where λ1, λ2, and λ3 are the principal stretches. Due to its simplicity, this model is widely
used in finite element analysis (FEA) for sealing materials in PEMFCs. However, under
extreme deformations or aging conditions (e.g., exposure to high temperature or acid),
variations in C10 and C01 might reflect the material’s degradation, reducing the model’s
accuracy [18,19].

2.1.2. Yeoh Model

The Yeoh model extends the Mooney–Rivlin formulation by relying solely on the defor-
mation tensor’s first invariant I1, making it particularly effective for materials undergoing
large strains. The strain energy function is expressed as:

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (3)

where C10, C20, and C30 are material constants. Including higher-order terms enables the
Yeoh model to capture non-linear material responses more accurately. For applications
involving high deformation, such as PEMFC gaskets made from EPDM and LSR, the
flexibility of the Yeoh model in handling significant strain variations is advantageous. In
the context of aging, the sensitivity of the C20 and C30 parameters may provide insights
into the degree of degradation under conditions like heat and chemical exposure [20,21].
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2.1.3. Ogden Model

The Ogden model is based on principal stretches λi rather than invariants, making
it suitable for materials subjected to extreme loads and capable of modeling anisotropic
behavior. The strain energy density function is defined as:

W =
N

∑
p=1

µp

αp

(
λ

αp
1 + λ

αp
2 + λ

αp
3 − 3

)
(4)

where µp and αp are material parameters, and N represents the number of terms in the
series. The choice of µp and αp enables the Ogden model to represent complex material
behaviors across various strain levels, but it requires significant computational resources.
In our study, the Ogden model’s parameters are tuned to capture the effects of aging, with
variations in αp reflecting stiffness changes in materials exposed to harsh environments.
This model is particularly effective for simulating the severe deformation of PEMFC gasket
materials under combined thermal and chemical stresses [22,23].

2.2. Aging Effects on Elastomers

Elastomers like EPDM and LSR are favored in PEMFCs due to their flexibility and
environmental resistance. However, aging, induced by thermal and chemical exposure,
alters their mechanical properties, impacting their performance in sealing applications.
Thermal and chemical aging primarily affect stiffness, tensile strength, and deformation
characteristics, influencing stress distribution in these materials. Table 1 summarizes key
studies on thermal and chemical aging effects on EPDM and LSR. High temperatures in-
crease elastomer stiffness and reduce flexibility, which impacts contact, and von Mises stress
in PEMFC gaskets, where mechanical integrity is vital. Mooney–Rivlin and Yeoh’s models
have been widely applied to assess mechanical changes from thermal aging [24–26]. Acidic
exposure, particularly sulfuric acid, degrades elastomers at the molecular level, reducing
structural integrity. Studies indicate that combined thermal and chemical aging exacerbates
degradation, impacting von Mises and contact stress distributions, especially in PEMFC
gaskets [27,28]. In PEMFCs, elastomeric gaskets maintain structural integrity and prevent
gas leakage, which is crucial for safety and efficiency [29]. EPDM and LSR gaskets are
favored for their thermal and chemical degradation resistance. Hyperelastic models, such
as Mooney–Rivlin, Yeoh, and Ogden, are employed to predict their mechanical response
under varying loads and aging conditions. By simulating stress–strain relationships and
deformation characteristics, these models enable accurate predictions of material perfor-
mance over time, enhancing PEMFC reliability in demanding conditions [30]. Integrating
hyperelastic models with predictive maintenance strategies offers a proactive approach to
identifying gasket degradation. Analyzing aging effects through predictive models enables
the early detection of material failure risks. Combined with a digital twin framework,
these models provide real-time monitoring capabilities, allowing for timely maintenance
interventions that increase PEMFC system longevity.

2.3. Ensemble Learning

EL improves predictive accuracy by combining multiple base models to reduce bias
and variance and improve generalization. This study explores bagging, boosting, and stack-
ing methods in EL, each contributing unique advantages to predictive modeling [31–35]:

• Bagging (Bootstrap Aggregating): generates multiple model versions by training on
random data subsets, reducing variance. RF is a standard bagging algorithm known
for stabilizing high-variance models.

• Boosting: builds models iteratively to correct errors from previous iterations, focusing
on hard-to-predict instances. Techniques like AdaBoost and Gradient Boosting effec-
tively address complex data patterns, though they may be prone to overfitting if not
correctly regulated.
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• Stacking: uses a meta-learner to combine predictions from multiple base learners, al-
lowing models of different types (e.g., SVM, RF) to complement each other’s strengths,
enhancing accuracy and robustness.

Table 1. Summary of recent studies on thermal and chemical aging of EPDM and LSR materials.

Study Aging Type Aging Condition Performance Results

Thermal Aging of EPDM at
100 ◦C [36] Thermal

130 ◦C, 145 ◦C, and 160 ◦C,
with aging periods of up to

3072 h (130 ◦C), 768 h (145 ◦C),
and 288 h (160 ◦C)

Breakdown strength
decreased by 13.3% (130 ◦C),

21.2% (145 ◦C), and 22.5%
(160 ◦C). Thermal

degradation, chain breaking,
and the generation of

oxygen-containing groups led
to reduced thermal stability.

Initial decomposition
temperature decreased by

11.35% after 288 h at 160 ◦C.

Acid and Thermal Aging of
HTV Silicone Rubber [37] Acid + Thermal 80 ◦C, Nitric Acid (pH = 1)

Significant cracking, reduced
tensile strength from 4.58 MPa

to 2.07 MPa, fracture strain
reduced from 470% to 130%,
thermal stability reduced by

30 ◦C.

Chemical Aging of EPDM [38] Chemical (NaOH, H3PO4,
NaClO) NaOH, NaClO, H3PO4, 65 ◦C

Accelerated crosslinking in
NaOH and H3PO4 exposure,
reduction in glass transition

temperature, oxidation
damage. Increased crosslink
density in NaClO exposure

during compression.

Multi-Stress Aging of EPDM
and Silicone Rubber [39] Electrical + Mechanical

Electrical stress: 11.5 kV/mm;
Mechanical stretching: 0%,

35%, 65%; Aging times: 0, 50,
100 h

For EPDM, surface damage
occurred but internal

properties remained stable.
Mechanical properties

declined by less than 20%, and
the crosslinking degree

remained stable.

Chemical Degradation of SR,
EPDM, FKM in PEMFC

Environment [40]
Chemical + Thermal

80 ◦C, Sulfuric Acid
(pH = 3–4), Nafion®
Accelerated Solution

SR experienced degradation
with surface cracking and

filler loss; FKM showed the
best stability; EPDM showed
stable mechanical properties.

Chemical and Thermal
Degradation of PEFC

Sealants—FKM, EPDM,
Silicone Rubber [41]

Chemical + Thermal 60–80 ◦C, Sulfuric Acid
(pH = 3.35)

EPDM showed good chemical
stability. Silicone exhibited
degradation in the form of

weight loss. FKM showed the
highest thermal stability.

2.3.1. Hyperparameter Tuning in Ensemble Models

Optimizing ensemble models requires careful hyperparameter tuning, which can sig-
nificantly affect model accuracy and efficiency. Two popular tuning methods are as follows:

• GridSearchCV: an exhaustive search over predefined hyperparameter grids, select-
ing the best combination based on a performance metric, though computationally
intensive for large search spaces.
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• RandomSearchCV: samples hyperparameters from a defined distribution, finding near-
optimal solutions efficiently by avoiding exhaustive searches; ideal for large datasets.

For ensemble models like RF and Gradient Boosting, hyperparameters such as the
number of estimators, maximum depth of trees, learning rate, and regularization parame-
ters are commonly tuned using these methods. Properly selecting hyperparameters can
significantly impact ensemble models’ accuracy and computational efficiency.

2.3.2. Related Works in Applications of Different Machine Learning Models in
Material Science

EL has demonstrated success in material science, enhancing predictive accuracy in
fault detection, aging classification, and stress distribution. This study employs stacking
to combine models such as SVM and RF, optimized through RandomSearchCV and Grid-
SearchCV. As PEMFCs continue to emerge as sustainable energy solutions, it is paramount
to ensure operational reliability through advanced diagnostic methods. This section reviews
recent advancements, emphasizing machine learning, EL, and predictive methodologies for
PEMFC fault detection and degradation analysis. Timely fault diagnosis is crucial for main-
taining PEMFC reliability. Wang et al. developed a fault diagnosis model by combining
segmented cell technology with a dual-input convolutional neural network (CNN), achiev-
ing over 98.5% accuracy in identifying flooding and drying faults. This approach leverages
current distribution and sensor data, highlighting segmented cell technology’s potential for
enhanced water management in PEMFCs [42]. While fault diagnosis is vital, prescriptive
maintenance frameworks further extend PEMFC efficiency and durability. Gibey et al.
developed a prescriptive maintenance model that utilizes RF for real-time diagnostics
and BiLSTM and BiESN for predicting Remaining Useful Life (RUL) based on voltage
degradation. Operating within a hybrid Cloud–Edge architecture, this framework enables
in situ, online PEMFC maintenance [43]. The accurate performance prediction of PEMFCs,
mainly the polarization curve, is essential for optimizing zero-emission electro-hydrogen
generators. Soufian et al. proposed an AI-based model, integrating kernel principal com-
ponent analysis and mutual information for feature selection, followed by XGBRegressor
with Bayesian optimization. Tested on industrial PEMFC data, this model outperformed
conventional methods, setting a benchmark for AI-driven predictive maintenance in fuel
cells [44]. Addressing durability and corrosion challenges in PEMFCs, Madhavan et al.
used machine learning, specifically extreme gradient boosting (XGB) and artificial neural
networks (ANN), to predict the corrosion resistance of diamond-like carbon (DLC)-coated
metallic bipolar plates (MBPs). ANN achieved R2 > 0.98 for both corrosion current density
and impedance parameters, underscoring the value of ML for rapid MBP performance
prediction [45]. Due to complex physical interactions in PEMFC systems, Zhang et al.
developed an ensemble fault diagnosis method, integrating five distinct algorithms. This
method achieves over 95% precision, recall, and F-measure across various PEMFC faults.
This ensemble method enhances diagnostic stability, especially in cases of sensor failure,
across diverse operational environments [46]. Shin et al. applied models like DNN, RF, and
SVM across 18 specific PEMFC faults in thermal and air management. The DNN model
excelled with an F1-score of 0.987 for fault detection and 0.942 for fault diagnosis. This
study highlights the robustness of ML-based fault diagnosis and its integration potential
for PEMFC monitoring [47]. The accurate degradation prediction of PEMFCs is essential
for health management. Yu et al. introduced the UTE-MLSTM model, a framework in-
corporating Time-Varying Filtered Empirical Mode Decomposition (TVF-EMD), Uniform
Manifold Approximation and Projection (UMAP), and Mogrifier LSTM (M-LSTM). This
model significantly improved predictive accuracy, offering a stable solution for PEMFC
health monitoring [48]. Ozdemir et al. demonstrated the efficacy of ML models like SVM,
MLP, and RF for Proton Exchange Membrane Water Electrolyzer (PEMWE) systems in
hydrogen production. Their model predicted vital parameters such as hydrogen flow rate
and current density. SVM achieved a Mean Absolute Error (MAE) of 0.0317 for current
density and 0.0671 for hydrogen flow rate, underscoring ML’s role in optimizing PEMWE
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performance [49]. Effective fault detection in Polymer Electrolyte Fuel Cells (PEFCs) also
supports system health and operational efficiency. Melo et al. employed ML and DL models
across seven classifiers to diagnose PEFC faults in a dataset of 182,156 records. Models like
logistic regression (LR), KNN, DT, RF, and NB demonstrated high accuracy with lower
computational costs, indicating ML’s promise for PEFC maintenance and design optimiza-
tion [50]. Collectively, these studies illustrate the rapid advancements in machine learning
and deep learning applications for PEMFC and PEMWE systems, spanning fault diagnosis,
predictive maintenance, and performance optimization. From precise diagnostic frame-
works and prescriptive maintenance models to AI-driven performance predictions, these
approaches underscore the immense potential of data-driven techniques to address the
complex challenges in hydrogen energy systems. Integrating diverse ML and DL method-
ologies enhances fault detection and predictive accuracy and opens avenues for more
resilient, efficient, and sustainable fuel-cell technologies. Building on these advancements,
the present study aims to further refine diagnostic and predictive models, contributing to
the evolution of robust maintenance frameworks for PEMFC and PEMWE applications.

3. Hyperelastic Modeling Approach

This section details the methodological framework to investigate the mechanical
performance and predictive maintenance of EPDM and LSR gasket materials in PEMFC sys-
tems. As depicted in Figure 1, the proposed methodology involves a multi-step framework
integrating hyperelastic modeling, simulation, and EL to comprehensively assess material
degradation under varied aging conditions. The framework employs Mooney–Rivlin, Yeoh,
and Ogden models to capture the stress–strain characteristics of EPDM and LSR, followed
by a machine learning approach to predict material behavior. This combined approach
facilitates predictive maintenance by enabling the accurate classification of aging effects on
gasket materials and supports optimized model selection for performance prediction in
PEMFC applications.

Figure 1. Proposed hyperelastic modeling approach for PEMFC gasket materials.

3.1. Materials and Aging Conditions

This study evaluates EPDM and LSR, elastomers commonly used in PEMFC gaskets.
Known for their durability under challenging conditions, EPDM resists heat and weath-
ering, while LSR withstands harsh chemicals. The aging conditions applied in this study,
including sustained heat at 95 ◦C, are designed to simulate high-temperature operational
stresses typical of PEMFC applications, excluding low-temperature or cold-start scenarios.
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Their mechanical performance under three aging conditions is analyzed using hyperelastic
models to capture the stress–strain behavior:

• No Aging: baseline condition with no aging exposure.
• Heat-Aging: 95 ◦C for 3000 h, simulating high-temperature operation.
• Heat- + Sulfuric-Acid-Aging: 95 ◦C with 5% sulfuric acid exposure (H2SO4) for 3000 h,

representing severe thermal and chemical degradation.

3.2. Hyperelastic Models

To characterize stress–strain behavior, three hyperelastic models were chosen for their
suitability in predicting elastomeric response under large deformations:

1. Mooney–Rivlin Model: suitable for moderate strains, this model’s strain energy
function depends on the first two invariants of the deformation tensor.

2. Yeoh Model: using only the first invariant performs well for materials under
large deformations.

3. Ogden Model: employing principal stretches, this effectively captures non-linear
elastic behavior at large deformations.

3.3. Stress and Deformation Metrics

To assess the mechanical performance of the materials under different aging conditions,
the following metrics are analyzed:

• von Mises Stress: this metric evaluates the equivalent stress distribution in the material,
providing insights into areas of potential failure under load.

• Contact Stress: this is evaluated at the interface between the gasket and the mating
components to understand the material’s ability to maintain sealing integrity.

• Height (Deformation): the deformation of the gasket under load is measured to assess
how much compression or elongation the material undergoes during operation. This
is critical for ensuring proper sealing in PEMFC applications.

3.4. Simulation Setup and Tools

The simulations were conducted using MSC MARC 2011, Version 2011.1, MSC Soft-
ware Corporation, Newport Beach, CA, USA, a robust finite element analysis (FEA) soft-
ware suite particularly suited for non-linear materials and hyperelastic modeling. The
computations were performed on a desktop system with an AMD Ryzen 9 3950X 16-core
processor with a base speed of 3.5 GHz and 32 GB of RAM. This configuration provided
ample computational power to handle the intensive simulation tasks required for hypere-
lastic material analysis. Each analysis took approximately 30 min, allowing for the efficient
processing of multiple simulation runs. The gasket has a cross-sectional profile with a width
of 4.8 mm and a height of 1.85 mm, composed of multiple layers: a 0.09 mm Pi film layer,
a 0.34 mm anode layer, and a 1.42 mm cathode layer. This layered structure is essential
for capturing the complex interactions and mechanical responses under varying aging
conditions. Figure 2 illustrates the structured mesh generated for the gasket geometry,
which was imported into MARC for further analysis to ensure accuracy in capturing the
mechanical behavior of EPDM and LSR materials under these conditions. The following
steps detail the setup of the simulation environment:

• Importing preprocessed files: The initial geometry and mesh were generated using
HYPERMESH, and the files were subsequently imported into MSC MARC for further
analysis. ABAQUS file formats (.inp) were utilized to ensure compatibility and smooth
integration between the preprocessing tools and the MARC solver. This preprocessing
stage ensures a high-quality mesh and accurate geometry representation for analyzing
EPDM and LSR gaskets.

• Element type selection: Our precision and expertise were demonstrated in selecting
specific element types to model the mechanical behavior of gasket materials and other
components in the simulation. For planar dimensions, we used element ID types
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(Type 80 for gaskets and Type 11 for contact elements), which are well suited for
the simulation of large deformations typical in hyperelastic materials such as EPDM
and LSR. The material properties of steel components were also defined, using the
typical values for Young’s modulus (210 GPa) and Poisson’s ratio (0.3) for an accurate
interaction between rigid and deformable bodies [51].

• Contact interaction setup: In the simulation, we defined deformable contact bod-
ies between critical components, including the interaction between the gasket and
mating surfaces. We utilized MARC’s advanced contact modeling capabilities to
ensure accurate force transfer and deformation behavior between interacting surfaces,
highlighting the advanced tools and techniques employed in the simulation.

• Solver and post-processing: The non-linear solver in MSC MARC was employed to
handle large deformations and non-linear material behavior. After solving the finite
element model, post-processing tools extracted vital performance metrics, including
von Mises stress, contact stress, and deformation for each aging condition. The results
were then visualized and compared to experimental data for validation.

Figure 2. Mesh generation using Hypermesh for the gasket material simulation.

3.5. Hyperelastic Model Parameters and Simulation Computing Environment

The FEA modeling for EPDM and LSR gasket materials is based on the selected
hyperelastic models: Mooney–Rivlin, Yeoh, and Ogden. Each model’s parameters were
optimized to accurately reflect the materials’ mechanical behavior under various aging
conditions. The FEA modeling results, shown in Table 2, outline the fitted parameters for
each hyperelastic model obtained at a reference temperature of 95◦C. These parameters are
inputs in the subsequent simulations and are crucial for understanding the materials’ stress–
strain responses in predictive maintenance applications. These parameters are critical for
describing the stress–strain behavior of the materials in the simulations. The Mooney–
Rivlin model utilizes the constants C10, C01, and C11, while the Yeoh model incorporates C10,
C20, and C30. The Ogden model includes moduli and exponents for three terms, capturing
the complex material behavior under large deformations.

The gasket assembly consists of multiple layers that provide structural integrity and
effective sealing under operational conditions. As shown in Figure 3, the assembly includes
a Pi film layer at the base, followed by a structured cathode section with separate cathode-up
and cathode-down layers, a central cathode plate, and finally, an anode plate supporting the
anode layer. This configuration ensures optimal mechanical performance and compatibility
with the aging conditions under study.
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Figure 3. A cross-sectional profile of the gasket assembly, showing the Pi film layer, cathode, and
anode sections, and supporting plates for structural stability.

Table 2. FEA material model parameters under aging conditions.

Model Parameters Value

EPDM

Mooney–Rivlin
C10 1.89472 × 10−9

C01 0.609227
C11 0.194325

Yeoh
C10 0.559296
C20 0.026558
C30 0.00294048

Ogden

Modulus 1 −0.664004
Modulus 2 −2.20126 × 10−5

Modulus 3 0.0757264
Exponent 1 −3.93474
Exponent 2 −0.0664976
Exponent 3 4.91726

LSR

Mooney–Rivlin
C10 0.430276
C01 0.0162594
C11 0.016835

Yeoh
C10 0.475585
C20 0.00318065
C30 2.74909 × 10−13

Ogden

Modulus 1 −0.402385
Modulus 2 0.626279
Modulus 3 7.91621 × 10−13

Exponent 1 −0.686773
Exponent 2 2.41526
Exponent 3 15.2995

4. EL Model Approach

This study utilizes a stacked EL model, combining Random Forest (RF) and Support
Vector Machine (SVM) classifiers to improve classification accuracy for aging effects in
EPDM and LSR gasket materials. The architecture, illustrated in Figure 4, integrates
RF and SVM base learners with a meta-classifier, aiming to capture complex patterns in
the data and improve robustness against data variability. EL combines multiple models,
or base learners, to achieve greater predictive accuracy and robustness than individual
models. By leveraging the complementary strengths of different algorithms, EL reduces
the risk of overfitting, making it well suited for classifying material behavior under aging
conditions in EPDM and LSR gaskets. This supports predictive maintenance by accurately
modeling stress distribution and aging effects, contributing to the enhanced durability
of PEMFC gasket materials. Specifically, this stacking ensemble model uses SVM and
RF to improve accuracy in classifying stress distributions and aging effects. It enables
proactive maintenance interventions by accurately predicting material degradation and
reducing false positives and negatives in fault detection. The stacking framework integrates
predictions from SVM and RF through an additional RF classifier as the meta-learner. This
setup maximizes classification accuracy for non-linear, high-dimensional data:
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• SVM: is chosen for its ability to handle high-dimensional spaces and robustness in
finding optimal decision boundaries.

• RF: included for its ensemble approach, which reduces variance by constructing
multiple decision trees trained on different data subsets.

The meta-learner, an RF classifier, combines the base learners’ predictions, optimally
weighting their outputs to enhance overall prediction accuracy.

Figure 4. The framework of the stacking ensemble model.

The parameters for the SVM and RF classifiers used in the stacked EL are detailed in
Table 3. These parameters were optimized through hyperparameter tuning using Random-
SearchCV and GridSearchCV, allowing adjustments to kernel types, regularization for SVM,
and the number of estimators and maximum depth for RF. The tuning process involved
cross-validation to enhance robustness, with RandomSearchCV initially exploring a broader
parameter range, followed by GridSearchCV to fine-tune the optimal configurations. The
complete machine learning pipeline, including data preprocessing, model training, and
evaluation, is outlined in the pseudocode provided in the Appendix A.

Table 3. Stacked ensemble model parameters for SVM and RF.

ML Classifier Major Functional Parameters Parameter Values

SVM Regularization (C) 0.1, 1, 10
Kernel Linear, RBF

Gamma (γ) Auto

RF Number of Estimators (n estimators) 50, 100, 200
Max Depth 10, 20, None

Random State 42

Common metrics, including accuracy, precision, recall, and F1-score, were used to
evaluate the model’s performance. The mathematical expressions for these metrics are
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)
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F1 Score = 2 · Precision× Recall
Precision + Recall

(8)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives. To evaluate the effectiveness of the stacked EL model, classification performance
was measured using standard metrics, with particular emphasis on achieving high accuracy
and balanced precision and recall. A model F1-score above 0.80 was set as the benchmark
for reliable performance, ensuring the accurate classification of degradation patterns while
minimizing false positives and false negatives. This classification standard supports the EL
model’s role in predictive maintenance, providing reliable assessments of PEMFC gasket
conditions under aging effects in EPDM and LSR materials [52].

EL Computing Environment

The machine learning experiments were conducted on a desktop system with the
following specifications: AMD Ryzen 5 5600 6-Core Processor, with a base speed of 3.5 GHz,
six cores, 12 logical processors, and a cache configuration that significantly enhanced its
performance: 384 KB L1 cache, 3.0 MB L2 cache, and 32.0 MB L3 cache. The system also
had 56 GB of RAM, running on Windows 10. The study utilized Python 3.8, Scikit-Learn
0.24, and TensorFlow 2.4. Depending on model complexity, hyperparameter tuning with
RandomSearchCV and GridSearchCV took approximately 3–4 h per model.

5. Results and Discussion
5.1. Contact Stress

Each model is selected for the EPDM material under different aging conditions based
on how effectively it represents its behavior under stress. If the material has not undergone
any aging (Figure 5a), the Ogden model is the most appropriate choice. The contact
stress distribution is relatively even, with moderate peaks, indicating that the material
retains much of its original elasticity. The Ogden model captures this behavior, reflecting
EPDM’s stability without aging factors like heat or acid. When EPDM is subjected to heat
(Figure 5b), the Mooney–Rivlin model comes into play. It effectively portrays the material’s
loss of elasticity as the contact stress becomes more concentrated, especially in the central
region. The model’s selection for this condition is significant, as it accurately reflects how
heat affects the material, resulting in a moderate increase in stress. This portrayal of the
material’s behavior under heat is a key aspect of the model’s effectiveness. Regarding
combined heat and acid exposure (Figure 5c), EPDM shows significant peaks in contact
stress, indicating substantial structural breakdown. The stress distribution is no longer
uniform, with localized peaks pointing to severe material fatigue. The Yeoh model is the
best fit here, designed to handle rubber-like materials under large strains. The Yeoh model
accurately reflects EPDM’s highly non-linear response when subjected to heat and acid,
showing the material’s progressive failure under extreme conditions.

Figure 5. Contact-stress contour distribution of EPDM under different aging conditions: (a) no aging
(Ogden); (b) heat (Mooney–Rivlin); and (c) heat + sulfuric acid (Yeoh).

The Mooney–Rivlin model accurately represents its behavior when the LSR material is
not aged (Figure 6a). LSR exhibits a relatively uniform stress distribution, indicating its high
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elasticity and resilience. The Mooney–Rivlin model captures this stable state, making it the
best fit for LSR in its unaged condition, where the material’s elastic properties are fully intact.
Stress concentrations appear when LSR is exposed to heat (Figure 6b). The Ogden model is
chosen here because it best represents the slight loss of elasticity due to thermal exposure.
Ogden’s capability to manage moderate deformations aligns with the observed behavior,
where the material shows localized peaks but continues to perform within acceptable limits.
The Yeoh model again proves its worth in the most severe condition, where LSR is exposed
to heat and acid (Figure 6c). It effectively captures the severe structural degradation LSR
experiences under these conditions, where the material’s elastic limits are exceeded. The
model’s ability to simulate large strains and significant material responses is crucial in this
context, as it accurately portrays the substantial deformation and sharp peaks in stress that
suggest critical fatigue. The model selection for both EPDM and LSR is grounded in their
respective stress responses to different aging conditions. For unaged materials, the Ogden
model accurately captures the balanced stress distributions. Under moderate heat exposure,
the Mooney–Rivlin model portrays the slight degradation of elasticity. Finally, the Yeoh
model is the most suitable for conditions involving combined heat and acid exposure, as it
effectively captures the non-linear behavior and material fatigue that both EPDM and LSR
exhibit in extreme environments. Each figure complements the discussion by illustrating
the distinct stress distributions for the models chosen under each condition.

Figure 6. Contact-stress contour distribution of LSR under different aging conditions: (a) no aging
(Mooney–Rivlin); (b) heat (Ogden); and (c) heat + sulfuric acid (Yeoh).

5.2. Von Mises Stress

Each model is meticulously chosen for the EPDM material based on its precise repre-
sentation of its structural response to stress across various aging conditions. This rigorous
selection process ensures the accuracy and reliability of our findings. The Ogden model
(Figure 7a) accurately depicts stress distribution under no aging conditions. EPDM retains
much elasticity, and the stress remains evenly distributed. The Ogden model reflects this
behavior, capturing EPDM’s stable structural integrity under these conditions, where no
significant degradation has occurred. The Mooney–Rivlin model (Figure 7b) best fits when
heat is applied. Under heat exposure, EPDM experiences an increase in stress concentration,
particularly in the center regions, indicating some loss of elasticity. The Mooney–Rivlin
model effectively portrays this moderate degradation, illustrating how heat impacts the
material’s ability to maintain its original mechanical properties. Under combined heat and
acid exposure, the Yeoh model (Figure 7c) is the most appropriate choice. EPDM exhibits
highly localized stress peaks, indicating significant structural breakdown. The Yeoh model
captures the extreme, non-linear material response under this condition, reflecting the
progressive failure as EPDM loses its ability to handle strain effectively.
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Figure 7. von Mises stress distribution of EPDM under different aging conditions: (a) no aging
(Ogden); (b) heat (Mooney–Rivlin); and (c) heat + sulfuric acid (Yeoh).

The selection for the LSR material is similarly grounded in the material’s response to
von Mises stress under different conditions. When LSR is not aged, the Mooney–Rivlin
model (Figure 8a) best represents its stress behavior. LSR exhibits a relatively uniform
stress distribution, indicating that the material’s elasticity is intact. The Mooney–Rivlin
model accurately captures this stable state, making it the best fit for LSR in its unaged form.
The Ogden model (Figure 8b) is the most suitable under heat exposure. LSR shows the
onset of stress concentration, especially in specific localized regions. The Ogden model’s
ability to handle moderate deformation makes it well suited to depict LSR’s performance,
where heat causes a slight degradation in elasticity. Finally, when LSR is exposed to heat
and acid, the Yeoh model (Figure 8c) provides the most precise representation of stress
behavior. The material undergoes significant deformation, and the Yeoh model’s capacity
to capture large strains accurately represents the severe fatigue and degradation of LSR
under extreme conditions.

Figure 8. von Mises stress distribution of LSR under different aging conditions: (a) no aging (Mooney–
Rivlin), (b) heat (Ogden); and (c) heat + sulfuric acid (Yeoh).

The models selected for both EPDM and LSR under von Mises stress conditions
demonstrate their adaptability to different aging conditions. The Ogden and Mooney–
Rivlin models offer the best fit for unaged materials due to their capability to represent
balanced and stable stress distributions. Under moderate heat exposure, the Mooney–
Rivlin and Ogden models accurately portray the elasticity loss. Finally, the Yeoh model
consistently captures the severe degradation and material fatigue for both EPDM and LSR
for the combined heat and acid condition. Each model complements the specific aging
condition, with the figures provided illustrating the stress distribution that guided the
model selection.

5.3. Comparison of EPDM and LSR for Each Aging Condition Using Different Models

The stress and deformation behaviors of EPDM and LSR under different aging condi-
tions, as evaluated using the Mooney–Rivlin, Ogden, and Yeoh models, reveal significant
findings. These distinct differences between the two materials, reflecting their respective
resistances to stress and deformation, are of utmost importance in materials science and
polymer engineering. The comparison of von Mises stress, contact stress, and deformation
(height) for EPDM and LSR under various aging conditions, using the Mooney–Rivlin,
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Ogden, and Yeoh models, reveals critical insights into the material behavior of both elas-
tomers. As shown in Table 4, the von Mises stress values for EPDM are generally lower
than those for LSR under all conditions. For example, under no aging, the von Mises stress
at the 1st cathode-up location for EPDM is 14.96 MPa using the Mooney–Rivlin model,
while LSR shows a significantly higher value of 24.17 MPa under the same conditions.
The same trend holds for the heat and heat + sulfuric acid conditions. This indicates
that LSR tends to experience more significant stress than EPDM, likely due to its more
elastic nature. The Mooney–Rivlin model consistently shows the highest stress for both
materials, with the Ogden model yielding the next highest values, followed by the Yeoh
model. Table 5 provides contact stress comparisons, further emphasizing the higher stress
endured by LSR compared to EPDM. For instance, at the 1st cathode-down location under
heat conditions, LSR shows a contact stress of 296.93 MPa with the Ogden model, whereas
EPDM records a much lower value of 22.53 MPa. Across all models and aging conditions,
LSR shows a higher contact stress response, which aligns with its greater flexibility and
susceptibility to deformation under stress. The Ogden model yields the highest contact
stress across the board, followed by the Mooney–Rivlin and Yeoh models. Deformation
measurements presented in Table 6 show that, despite the higher stress experienced by LSR,
its deformation remains similar to that of EPDM. Under heat + sulfuric acid conditions,
the 1st cathode-up position shows a deformation of 0.3851 mm for EPDM (Mooney–Rivlin
model) and 0.3800 mm for LSR. This indicates that, while LSR tends to deform more under
stress than EPDM, the overall deformation across different models and conditions remains
relatively consistent for both materials. The Ogden model generally records the highest
deformation values, reflecting its capacity to capture more significant elastic deformations.

The results show that LSR tends to experience more significant stress and contact
stress than EPDM across all conditions and models, though both materials exhibit similar
deformation values. These findings suggest that LSR is more responsive to stress and
suitable for flexible applications. At the same time, EPDM maintains its integrity under
high-stress conditions, making it ideal for applications prioritizing rigidity and durability.

The Mooney–Rivlin, Ogden, and Yeoh models each provide distinct insights into
the mechanical behavior of LSR and EPDM materials under different aging conditions.
They present unique and overlapping observations on von Mises stress, contact stress, and
material height.

Table 4. Comparison of von Mises stress (MPa) for EPDM and LSR across different aging conditions
using Mooney–Rivlin, Ogden, and Yeoh models.

Location
EPDM LSR

Mooney–Rivlin Ogden Yeoh Mooney–Rivlin Ogden Yeoh

No Aging
1st Anode 4.71 24.54 2.04 7.93 73.46 16.11
1st Cathode Up 14.96 78.40 7.26 24.17 245.18 49.64
1st Cathode Down 15.59 77.12 7.19 24.68 229.84 48.83

Heat
1st Anode 4.74 24.41 1.89 7.98 82.61 13.92
1st Cathode Up 15.18 76.30 5.82 24.37 277.51 43.22
1st Cathode Down 15.64 75.30 6.58 24.61 260.11 39.23

Heat + Sulfuric Acid
1st Anode 5.19 5.04 2.33 1.74 1.55 1.50
1st Cathode Up 16.25 16.68 8.42 6.16 5.50 5.41
1st Cathode Down 16.52 17.03 8.51 6.10 5.58 5.34
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Table 5. Comparison of contact stress (MPa) for EPDM and LSR across different aging conditions
using Mooney–Rivlin, Ogden, and Yeoh models.

Location
EPDM LSR

Mooney–Rivlin Ogden Yeoh Mooney–Rivlin Ogden Yeoh

No Aging
1st Anode 20.99 75.38 10.81 31.11 211.01 51.35
1st Cathode Up 23.86 91.07 11.46 37.57 261.49 62.93
1st Cathode Down 22.26 85.31 10.98 33.45 277.17 57.61

Heat
1st Anode 21.29 73.32 10.09 31.72 241.29 47.03
1st Cathode Up 24.02 89.09 10.86 38.20 285.88 58.21
1st Cathode Down 22.53 81.14 10.31 33.66 296.93 50.69

Heat + Sulfuric Acid
1st Anode 22.32 20.57 11.75 9.21 8.31 8.10
1st Cathode Up 25.83 23.61 12.76 9.75 8.76 8.50
1st Cathode Down 23.07 21.70 11.90 9.22 8.25 8.18

Table 6. Comparison of height (deformation) (mm) for EPDM and LSR across different aging
conditions using Mooney–Rivlin, Ogden, and Yeoh models.

Location
EPDM LSR

Mooney–Rivlin Ogden Yeoh Mooney–Rivlin Ogden Yeoh

No Aging
1st Anode 0.2522 0.2472 0.2520 0.2518 0.1987 0.2494
1st Cathode Up 0.3848 0.4103 0.3755 0.3908 0.4140 0.4021
1st Cathode Down 0.4046 0.4139 0.3949 0.4061 0.4220 0.4097

Heat
1st Anode 0.2521 0.2442 0.2524 0.2517 0.2028 0.2520
1st Cathode Up 0.3841 0.4055 0.3800 0.3905 0.4175 0.4025
1st Cathode Down 0.4043 0.4146 0.4013 0.4108 0.4254 0.4202

Heat + Sulfuric Acid
1st Anode 0.2508 0.2515 0.2510 0.2493 0.2497 0.2505
1st Cathode Up 0.3851 0.3838 0.3802 0.3746 0.3754 0.3782
1st Cathode Down 0.4054 0.4028 0.4029 0.3990 0.3844 0.3966

Starting with LSR, the Mooney–Rivlin model offers a foundational understanding of
stress distribution under its “No Aging” conditions (Figure A1). Here, we observe baseline
stress levels across all tested locations, with notably higher contact stress in the 1st cathode
positions, hinting at potential stress concentration zones in unaged LSR. This scenario
shifts under “Heat Aging” (Figure A2), where von Mises stress significantly increases,
especially at the cathode positions, suggesting that thermal exposure induces a degree of
rigidity in LSR. However, under the “Heat + Sulfuric Acid Aging” conditions (Figure A3),
there is a slight reduction in both von Mises and contact stress, indicating that sulfuric
acid may counteract the thermal rigidity, softening the material and thereby reducing its
stress resistance.

The Ogden model, in the “No Aging” state (Figure A4), presents a similar baseline
to Mooney–Rivlin but shows heightened sensitivity to elasticity changes under “Heat
Aging” (Figure A5). Both von Mises and contact stress increase markedly at the anode and
cathode locations, implying that heat exacerbates material rigidity when elasticity-sensitive
parameters are considered. Upon exposure to “Heat + Sulfuric Acid Aging” (Figure A6),
stress levels drop substantially compared to the heat-only condition, reinforcing the no-
tion that sulfuric acid induces a degradation in LSR’s structural integrity, counteracting
the rigidifying effect of heat. This degradation aligns with the Mooney–Rivlin findings,
bolstering the hypothesis that sulfuric acid compromises the material’s resilience.
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The Yeoh model complements this analysis with further insights into LSR’s defor-
mation tendencies. Under the “No Aging” conditions (Figure A7), the distribution of
height and stress levels mirrors that of previous models. Under “Heat Aging” (Figure A8),
both stress types rise, confirming that thermal exposure stiffens the material. However,
“Heat + Sulfuric Acid Aging” (Figure A9) reveals reduced stress values and subtle defor-
mations in height, implying that acid exposure not only reduces rigidity but also affects the
material’s deformation capacity, likely due to chemical softening. This pattern suggests
that the Yeoh model captures not only stress variations but also subtle shifts in material
deformation, aligning well with observed chemical degradation effects.

Turning to EPDM, the Mooney–Rivlin model (Figures A10–A12) consistently reflects
von Mises stress responsiveness to aging, showing EPDM’s higher stress capacity in no
aging compared to heat- and acid-aged conditions. The strong correlation between von
Mises and contact stress underscores an even distribution of external pressure within the
material. However, the model displays limited sensitivity to changes in height, holding
these values nearly constant, which suggests it may be less effective at detecting physical
deformations over time.

The Ogden model (Figures A13–A15) offers a sharper focus on height changes, partic-
ularly under prolonged heat- and sulfuric-acid-aging. This model’s pronounced contact
stress response underscores increased EPDM’s rigidity under combined aging conditions,
indicating that it might be more apt for failure prediction under extreme conditions. The
Ogden model’s tendency to emphasize stress concentration more than the Mooney–Rivlin
model implies its utility in scenarios where chemical exposure affects the physical proper-
ties of EPDM.

In contrast, the Yeoh model (Figures A16–A18) demonstrates a balanced sensitivity to
stress and height changes across all aging conditions. Its ability to capture stress variations
comparable to the Ogden model while interpreting subtle height shifts highlights its
versatility and reliability. The Yeoh model’s stress resilience under severe aging conditions,
particularly with acid exposure, suggests its efficacy in long-term durability predictions
for EPDM, making it particularly useful when both mechanical and chemical degradation
factors are of interest.

The LSR and EPDM analyses across the Mooney–Rivlin, Ogden, and Yeoh models
illustrate a cohesive narrative of how heat- and sulfuric-acid-aging differentially affect
these materials. These findings have significant implications for engineering applications,
providing a comprehensive understanding of how these materials perform under varying
environmental stressors. The Mooney–Rivlin model offers a foundational overview of
stress behaviors; the Ogden model emphasizes elasticity and failure points under severe
conditions; and the Yeoh model balances stress and deformation sensitivity. For EPDM, the
Mooney–Rivlin model offers a simplified perspective with limited deformation insights,
the Ogden model is suited for extreme aging sensitivity, and the Yeoh model’s balanced
response aids in understanding long-term durability. These combined insights underscore
the importance of a multi-model approach in understanding LSR and EPDM performance
and reliability.

5.4. EL Performance Metrics

The EL model’s performance was evaluated using standard classification metrics,
including accuracy, precision, recall, and F1-score. These metrics were computed for the
model and classifications of aging types for EPDM and LSR materials.

The LSR model-type and aging-type classification results demonstrate strong and
reliable performance across both search methods. For model type, RandomSearchCV
achieved an accuracy of 0.95, with the optimal hyperparameters tuned for SVM using a
linear kernel. GridSearchCV produced a similar result with a slight reduction in accuracy
at 0.94. These scores indicate satisfactory balance across precision, recall, and F1-score
across all classes (Table 7). For aging type, RandomSearchCV outperformed slightly,
delivering a higher test accuracy of 0.98, particularly effective in identifying class 1 with
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high precision and recall values. GridSearchCV, with an accuracy of 0.97, maintained
consistent performance across classes, showing that both methods effectively capture the
aging effect on LSR materials (Table 8).

Table 7. Classification results for LSR model type using RandomSearchCV and GridSearchCV.

Search Method Class Precision Recall F1-Score

RandomSearchCV
0 0.94 0.94 0.99
1 0.98 0.91 0.94
2 0.93 0.97 0.90

Test Accuracy 0.95
Best Accuracy 0.88
Best Hyperparameters {’svm__kernel’: ’linear’,

’svm__C’: 1, ’rf__n_estimators’:
200, ’rf__max_depth’: None,
’final_estimator__n_estimators’: 100,
’final_estimator__max_depth’: 10}

GridSearchCV
0 0.91 0.90 0.95
1 0.98 0.98 0.93
2 0.93 0.93 0.93

Test Accuracy 0.94
Best Accuracy 0.90
Best Hyperparameters {’final_estimator__max_depth’: 10,

’final_estimator__n_estimators’:
200, ’rf__max_depth’: 20,
’rf__n_estimators’: 200, ’svm__C’:
1, ’svm__kernel’: ’linear’}

Table 8. Classification results for LSR aging type using RandomSearchCV and GridSearchCV.

Search Method Class Precision Recall F1-Score

RandomSearchCV
0 0.90 0.98 0.94
1 0.92 0.92 0.92
2 0.91 0.95 0.98

Test Accuracy 0.98
Best Accuracy 0.93
Best Hyperparameters {’svm__kernel’: ’rbf’, ’svm__C’:

0.1, ’rf__n_estimators’:
200, ’rf__max_depth’: 20,
’final_estimator__n_estimators’: 50,
’final_estimator__max_depth’: 20}

GridSearchCV
0 0.81 0.85 0.83
1 0.91 0.88 0.90
2 0.86 0.87 0.86

Test Accuracy 0.97
Best Accuracy 0.91
Best Hyperparameters {’final_estimator__max_depth’: 10,

’final_estimator__n_estimators’:
200, ’rf__max_depth’: None,
’rf__n_estimators’: 50, ’svm__C’:
0.1, ’svm__kernel’: ’rbf’}

In the case of EPDM, the classification results for both model and aging types also
show robustness. For model type, both RandomSearchCV and GridSearchCV achieved a
test accuracy of 0.84, confirming the model’s effectiveness in recognizing EPDM material
types (Table 9). When focused on the aging type, RandomSearchCV achieved a slightly
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higher accuracy of 0.81, with a high recall of 0.93 in class 0, highlighting the model’s ability
to detect specific aging conditions accurately. GridSearchCV’s accuracy was slightly lower,
at 0.80, but showed consistent results, confirming its effectiveness (Table 10).

Table 9. Classification results for EPDM model type using RandomSearchCV and GridSearchCV.

Search Method Class Precision Recall F1-Score

RandomSearchCV
0 0.80 0.83 0.86
1 0.85 0.82 0.85
2 0.82 0.87 0.89

Test Accuracy 0.84
Best Accuracy 0.83
Best Hyperparameters {’svm__kernel’: ’rbf’,

’svm__C’: 10, ’rf__n_estimators’:
200, ’rf__max_depth’: None,
’final_estimator__n_estimators’: 100,
’final_estimator__max_depth’: None}

GridSearchCV
0 0.80 0.83 0.86
1 0.85 0.82 0.85
2 0.82 0.87 0.89

Test Accuracy 0.84
Best Accuracy 0.83
Best Hyperparameters {’final_estimator__max_depth’: None,

’final_estimator__n_estimators’:
100, ’rf__max_depth’: None,
’rf__n_estimators’: 200, ’svm__C’:
10, ’svm__kernel’: ’rbf’}

Table 10. Classification results for EPDM aging type using RandomSearchCV and GridSearchCV.

Search Method Class Precision Recall F1-Score

RandomSearchCV
0 0.88 0.93 0.81
1 0.95 0.89 0.85
2 0.81 0.81 0.85

Test Accuracy 0.81
Best Accuracy 0.81
Best Hyperparameters {’svm__kernel’: ’rbf’,

’svm__C’: 10, ’rf__n_estimators’:
200, ’rf__max_depth’: None,
’final_estimator__n_estimators’: 100,
’final_estimator__max_depth’: None}

GridSearchCV
0 0.85 0.90 0.89
1 0.90 0.89 0.84
2 0.83 0.81 0.87

Test Accuracy 0.80
Best Accuracy 0.83
Best Hyperparameters {’final_estimator__max_depth’: 10,

’final_estimator__n_estimators’:
200, ’rf__max_depth’: 20,
’rf__n_estimators’: 200, ’svm__C’:
10, ’svm__kernel’: ’rbf’}

These results, highlighted in the tables, underscore the effectiveness of both search
methods in delivering high classification accuracy, precision, and recall. RandomSearchCV
displayed a marginal edge in optimizing complex aging classifications, demonstrating its



Materials 2024, 17, 5675 20 of 31

slight advantage in capturing nuanced patterns in aging-related tasks across EPDM and
LSR materials.

The comparison of classifier performance on LSR and EPDM datasets, as shown in
Table 11 and illustrated in Figure 9, highlights the clear advantage of using a stacked
ensemble model combining RF and SVM, particularly for accurately classifying both model
type and aging type. The alternative classifiers used for comparison against the stacked
ensemble model were randomly selected from the literature to represent a diverse range of
commonly applied machine learning techniques, ensuring a robust benchmarking context
and further underscoring the superior performance of the ensemble approach in this study.

Figure 9. Comparison of classification accuracy for LSR and EPDM materials using RandomSearchCV
and GridSearchCV for model type (M) and aging type (A) classification.

Table 11. Comparison of model performance on LSR and EPDM datasets for model-type and
aging-type classification.

Model Target Dataset Accuracy Precision Recall F1-Score

XGBoost

Model Type LSR 0.70 0.71 0.70 0.70
Model Type EPDM 0.69 0.67 0.69 0.68
Aging Type LSR 0.62 0.62 0.62 0.61
Aging Type EPDM 0.62 0.67 0.68 0.67

MLP

Model Type LSR 0.59 0.66 0.59 0.59
Model Type EPDM 0.55 0.60 0.55 0.53
Aging Type LSR 0.67 0.60 0.67 0.65
Aging Type EPDM 0.58 0.61 0.62 0.64

DNN

Model Type LSR 0.62 0.65 0.62 0.61
Model Type EPDM 0.69 0.66 0.69 0.66
Aging Type LSR 0.70 0.77 0.70 0.71
Aging Type EPDM 0.76 0.78 0.76 0.76

Stacked Model

Model Type LSR 0.95 0.93 0.97 0.90
Model Type EPDM 0.84 0.82 0.87 0.89
Aging Type LSR 0.98 0.91 0.95 0.98
Aging Type EPDM 0.83 0.81 0.83 0.87

The stacked model achieves significantly higher accuracy than individual classifiers
like XGBoost, MLP, and DNN. For LSR, the stacked model attains 95% accuracy for the
model type and 98% for the aging type, underscoring its strong capability to capture
complex data patterns. In contrast, DNN, which performs moderately well for LSR aging-
type classification at 70% accuracy, falls short compared to the ensemble approach. XGBoost
and MLP achieve lower accuracies of approximately 70% and 62% for model type and
aging type, respectively, demonstrating their limited effectiveness with LSR data.

Similarly, in the EPDM dataset, the stacked model maintains its superior performance,
achieving 84% accuracy for the model type and 83% for the aging type. While DNN
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shows promise in aging-type classification with 76% accuracy, it remains less consistent in
precision and recall than the stacked model. XGBoost reaches 69% accuracy for the EPDM
model type but continues to underperform relative to the ensemble model. The bar chart
further illustrates the impact of hyperparameter search techniques, with RandomSearchCV
slightly outperforming GridSearchCV in most cases. Notably, RandomSearchCV helps the
stacked model reach its highest scores, such as 98% accuracy for the LSR aging type and
83% for the EPDM aging type, underscoring its utility in fine-tuning ensemble models for
complex, non-linear classification tasks, such as distinguishing aging conditions in different
material types.

In summary, the stacked ensemble approach, integrating the predictive strengths of
RF and SVM, is the most effective classifier for both datasets and classification tasks. Its
impressively high accuracy and reliability make it a valuable tool for predictive maintenance
applications in PEMFC gasket materials, providing a robust solution for anticipating
material degradation. This analysis emphasizes that while individual models like DNN may
be viable alternatives in specific cases, ensemble methods deliver superior performance,
ensuring robustness and precision in classification tasks crucial for industrial applications.

5.5. Comparison with the Recent Literature on Stress and Aging Performance

The findings from this study align closely with recent advancements in PEMFC gasket
research, reassuringly validating the role of optimized material selection and structural
resilience under various stress and aging conditions. In examining contact stress, it was
observed that LSR consistently maintained higher values compared to EPDM across all
aging scenarios, particularly under the conditions of heat and sulfuric acid exposure. This
robustness suggests that LSR is well suited for reliable sealing applications in high-stress
environments. This result corresponds with the findings in [13], who reported that half-
circular gasket geometries enhanced airtightness and durability, especially under extremely
low temperatures. While Yoo’s work focused on geometry, the high contact-stress retention
observed in LSR suggests that material resilience can further complement structural design
choices to ensure PEMFC integrity under fluctuating conditions. Regarding von Mises
stress, the study demonstrated that LSR sustains higher internal stresses than EPDM,
indicating that it can withstand greater mechanical loads without yielding. This result aligns
with the rate-dependent aging model developed in [16], which revealed that EPDM’s stress
tolerance diminishes over prolonged aging, particularly under thermal and mechanical
stress. The results of this study affirm that LSR’s higher von Mises stress retention makes
it a more resilient choice for PEMFC applications that involve high-load demands over
time. The aging effects in this study revealed that both EPDM and LSR degrade under
prolonged exposure to heat and sulfuric acid; however, LSR showed more excellent stability
by maintaining higher stress values and experiencing less deformation. This aligns with
findings in [17], who reported an increased compression set and reduced mechanical
resilience in EPDM under thermal cycling, emphasizing LSR’s superior performance under
temperature fluctuations. Additionally, the study in [15] highlighted system-level PEMFC
design improvements that enhance durability through optimized mass transfer and thermal
management. This strategy could be further supported by integrating durable gasket
materials like LSR to extend the PEMFC’s lifespan. These findings demonstrate that LSR’s
superior contact and von Mises stress retention under aging conditions make it more
suitable than EPDM for PEMFC applications that require reliable sealing performance and
resilience under fluctuating stress. This consistency with the recent literature validates the
potential of LSR as a practical choice in PEMFC gasket applications. More importantly, it
contributes to predictive maintenance strategies and informed material selection, offering
hope for enhanced fuel cell performance and longevity.

6. Conclusions, Limitations and Future Directions

This study comprehensively examined the mechanical behavior of EPDM and LSR
gasket materials under various aging conditions using hyperelastic modeling and machine
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learning, providing insights crucial for the broader fields of materials science, engineering,
and industrial maintenance. The differential stress and deformation responses observed for
EPDM and LSR materials, particularly under heat and sulfuric acid exposure, underscore
the nuanced requirements of gasket materials in high-stress applications. Our results
demonstrate that EPDM exhibits superior stability, making it particularly suitable for high-
stress environments where long-term durability is essential. Conversely, LSR, while highly
flexible, shows greater susceptibility to stress concentrations and deformation, potentially
limiting its application in harsh environments. These insights are valuable for improving
gasket selection for PEMFC systems and supporting proactive maintenance strategies
that enhance fuel-cell reliability and longevity in industrial applications. By focusing on
gasket material performance at high operational temperatures, this study provides practical
insights for PEMFC applications in demanding environments. It contributes to material
selection and maintenance strategies that support PEMFC durability under prolonged ther-
mal stress, empowering professionals to make informed decisions in their field. Integrating
machine learning, specifically ensemble learning techniques such as stacking with Random
Forest and SVM, further enhances predictive accuracy regarding material behavior under
different aging conditions. Hyperparameter optimization with RandomSearchCV and
GridSearchCV enabled the precise classification of EPDM and LSR materials, positioning
the ensemble approach as a critical tool for predicting material degradation and informing
maintenance strategies in real-world settings. While the research yields promising results,
it is essential to recognize its limitations. While effective in capturing specific material
behaviors under targeted aging conditions, the hyperelastic models may only partially
account for the multi-stress factors present in real-world scenarios. These factors include
UV exposure, prolonged mechanical wear, and other environmental stressors. Furthermore,
although ensemble learning demonstrated high accuracy, its computational complexity
may pose challenges for real-time predictive maintenance, highlighting the need for future
model efficiency improvements. Another limitation pertains to the dataset, which focuses
on a limited set of aging conditions. Expanding the dataset to include a broader range of
environmental exposures and material compositions could yield more universally appli-
cable insights. This potential for future research, along with the incorporation of digital
twin technology to simulate real-time material performance, further enhancing predictive
accuracy, should inspire professionals in the field.

Author Contributions: Conceptualization S.-Y.P., A.B.K. and T.A.M.; methodology S.-Y.P. and A.B.K.,
software S.-Y.P., A.B.K. and T.A.M.; validation S.-Y.P., A.B.K. and T.A.M.; formal analysis S.-Y.P.,
A.B.K. and T.A.M.; investigation S.-Y.P., A.B.K. and T.A.M.; data curation S.-Y.P., A.B.K., T.A.M. and
W.-J.J., writing—original draft preparation A.B.K.; writing—review and editing S.-Y.P., A.B.K. and
T.A.M. and visualization S.-Y.P., A.B.K. and T.A.M. resources and supervision W.-J.J. and J.-W.H.;
project administration W.-J.J. and J.-W.H.; and funding acquisition W.-J.J. and J.-W.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Technology Innovation Program (or Industrial Strategic
Technology Development Program-Development of Silicon-based Materials and Application Technol-
ogy for Fuel Cell Stack Gaskets with Excellent Acid Resistance) (202002450005) and funded by the
Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to laboratory regulations.

Conflicts of Interest: Author Woo Jeong Joo was employed by Pyung Hwa Oil Seal Co., Ltd. The
remaining authors declare that the research was conducted without commercial or financial relation-
ships that could be construed as a potential conflict of interest.



Materials 2024, 17, 5675 23 of 31

Appendix A

Algorithm A1: Machine learning pipeline for model-type and aging-
type classification

Input: LSR dataset DLSR = {XLSR, ymodel_LSR, yaging_LSR}, EPDM dataset
DEPDM = {XEPDM, ymodel_EPDM, yaging_EPDM}

Output: Final accuracy Afinal, classification report, and confusion matrix Cfinal

1 Load datasets DLSR and DEPDM from CSV files;

2 Concatenate features: Xmodel ← [XLSR, XEPDM];
3 Concatenate model-type labels: ymodel ← [ymodel_LSR, ymodel_EPDM];
4 Encode model-type labels: ymodel_encoded ← LE(ymodel);
5 Normalize features: Xmodel_scaled ← SC(Xmodel);

6 Concatenate features: Xaging ← [XLSR, XEPDM];
7 Concatenate aging-type labels: yaging ← [yaging_LSR, yaging_EPDM];
8 Encode aging-type labels: yaging_encoded ← LE(yaging);
9 Normalize features: Xaging_scaled ← SC(Xaging);

10 Split Xmodel_scaled, ymodel_encoded and Xaging_scaled, yaging_encoded into 80–20 training and
testing sets;

Input: Model M, training and testing sets for model-type or aging-type
classification task

Output: Performance metrics: accuracy A, classification report, and confusion
matrix C

11 Train model M on training data Xtrain, ytrain to minimize the loss function L;
12

M← arg min L(M(Xtrain), ytrain)

Predict test labels ŷtest on Xtest:;
13

ŷtest = M(Xtest)

Calculate accuracy A:;
14

A =
1
n

n

∑
i=1

⊮(ŷi = yi)

Output classification report and confusion matrix C;
15 Define and initialize models for both classification tasks as follows:

• XGBoost: Define with default hyperparameters.
• Multilayer Perceptron (MLP): Define with 100 hidden units and ReLU activation.
• Deep Neural Network (DNN): Define with hidden layers [150, 100, 50].
• Stacked Model (RF + SVM): Use Random Forest (RF) and Support Vector Machine

(SVM) as base estimators, with an RF as the final estimator.
Input: Stacked model Mstacked, Parameter grid G
Output: Optimal parameters G∗ and best model Mbest

16 Perform a randomized search on Mstacked with grid G;
17 for each parameter configuration g ∈ G do
18 Evaluate Mstacked(g) on the training set and compute accuracy A(g);
19 Set G∗ ← arg max A(g) and update best model Mbest = Mstacked(G∗);

Input: Optimized stacked model Mbest, testing set Xtest, ytest
Output: Final accuracy Afinal, classification report, and confusion matrix Cfinal

20 Use Mbest to predict labels ŷtest on test data:;
21

ŷtest = Mbest(Xtest)

Calculate and output final accuracy Afinal, classification report, and confusion
matrix Cfinal;

22 return Afinal, Cfinal
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Figure A1. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation)
for LSR materials under no aging conditions.

Figure A2. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation)
for LSR materials under heat-aging conditions.

Figure A3. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deformation)
for LSR materials under heat- + sulfuric-acid-aging conditions.
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Figure A4. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
LSR materials under no aging conditions.

Figure A5. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
LSR materials under heat-aging conditions.

Figure A6. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
LSR materials under heat- + sulfuric-acid-aging conditions.
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Figure A7. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR
materials under no aging conditions.

Figure A8. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR
materials under heat-aging conditions.

Figure A9. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for LSR
materials under heat- + sulfuric-acid-aging conditions.
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Figure A10. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deforma-
tion) for EPDM material under no aging conditions.

Figure A11. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deforma-
tion) for EPDM material under heat-aging conditions.

Figure A12. Mooney–Rivlin model analysis of von Mises stress, contact stress, and height (deforma-
tion) for EPDM material under heat- + sulfuric-acid-aging conditions.
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Figure A13. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under no aging conditions.

Figure A14. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under heat-aging conditions.

Figure A15. Ogden model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under heat- + sulfuric-acid-aging conditions.
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Figure A16. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under no aging conditions.

Figure A17. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under heat-aging conditions.

Figure A18. Yeoh model analysis of von Mises stress, contact stress, and height (deformation) for
EPDM material under heat- + sulfuric-acid-aging conditions.
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