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Abstract: This study evaluated the bone-to-implant contact (BIC) of various surface-treated dental
implants using high-resolution micro-CT in rabbit bone, focusing on the effects of different treatments
on osseointegration and implant stability before and after bone demineralization. Six male New
Zealand White rabbits were used. Four implant types were tested: machined surface with anodizing,
only etching, sandblasting with Al2O3 + etching, and sandblasting with TiO2 + etching. Implants
were scanned with high-resolution micro-CT before and after demineralization. Parameters like
implant volume, surface area, and BIC were determined using specific software tools. During
demineralization, the BIC changed about 6% for machined surface with anodizing, 5% for only
etching, 4% for sandblasting with Al2O3 + etching, and 10% for sandblasting with TiO2 + etching.
Demineralization reduced BIC percentages, notably in the machined surface with anodizing and
sandblasting with TiO2 + etching groups. Etching and sandblasting combined with etching showed
higher initial BIC compared to anodizing alone. Demineralization negatively impacted the BIC across
all treatments. This study underscores the importance of surface modification in implant integration,
especially in compromised bone. Further research with larger sample sizes and advanced techniques
is recommended.

Keywords: osseointegration; X-ray microtomography; dental implant surface

1. Introduction

In both dentistry and orthopedics, evaluating the osseointegration of an implant is
crucial for determining the stability of internal fixation. The bone-to-implant contact (BIC)
ratio, which is the proportion of the length of bone in direct contact with the implant thread
to the total length of the implant thread, is used to assess the level of osseointegration and
the implant’s stability [1–3].

Currently, histomorphometry is regarded as the gold standard for analyzing BIC [4].
However, the process of creating histological slides is labor-intensive, time-consuming, and
destructive. This method yields only a limited number of representative cross-sections
from specific positions on the implant, which is insufficient for providing comprehensive
information about the entire implant [4,5]. Furthermore, once a specimen has undergone
histomorphometric analysis, it cannot be used for any additional assessments.
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Micro-computed tomography (µCT) has been widely adopted for evaluating the struc-
ture of bony tissue due to its time-saving, convenient, and nondestructive nature. The
µCT data can be reconstructed to examine bone architecture at any location around the
implant and analyze bone parameters in the region of interest (ROI). However, the different
attenuation coefficients of bone and implant materials generate metallic artifacts at the
bone–implant interface, affecting the BIC measurements obtained using µCT [6–8]. Some
studies recommend using soft filters, such as aluminum or brass, to reduce artifacts during
CT scanning and employing correction functions in analysis software to mitigate these
artifacts [9,10]. These functions include misalignment compensation, ring artifact reduction,
and beam-hardening correction [11]. Additionally, a few studies suggest excluding several
voxels near the screw surface to eliminate the artifact zone when measuring BIC [12,13]. De-
spite these efforts, there is currently no ideal method or program for accurately measuring
BIC using µCT [14].

So far, bone-to-implant contact measurements have been derived from two-dimensional
(2D) µCT images or three-dimensional (3D) µCT models using various methods. Re-
searchers have explored the correlation between BICs obtained from µCT and histology to
determine if µCT could replace histology in assessing osseointegration [10,15,16]. However,
the results of these correlation studies have been inconsistent. Few studies have evaluated
implant osseointegration by integrating 2D µCT slices from multiple locations, which could
potentially offer a more comprehensive assessment [5].

The successful integration of dental implants into bone is characterized by three key
criteria [17]. The absence of rejection reactions includes a lack of inflammatory responses in
surrounding tissues, local necrotic changes, and systemic manifestations such as allergic or
immune reactions. The formation of morphofunctional determinants in the contact area,
known as the “implant–tissue medium”, involves bone or bone-like substances in the case
of osseointegration. The relative stability of determinants, including mechanical stability,
of these morphofunctional determinants over time reflects the dynamic equilibrium within
the “implant–tissue substrate” system.

Therefore, the primary operational properties of dental implants, such as osseointegra-
tion and biocompatibility, largely depend on the characteristics of their surface layer, which
interacts directly with the biological tissues of the body (bone and gingiva). Consequently,
surface modification of dental implants is crucial, and many scientific studies focus on this
aspect. Surface modification methods can be broadly categorized into groups based on their
primary effect, mechanical, physical, chemical, or biochemical, and combined methods that
utilize multiple types of processing exist.

Mechanical treatment is one method of surface treatment which includes, among
others, machining through cutting (machine stroking) [18–23] and sandblasting. The main
goal of these treatments is to enhance the bone’s adherence to the implant (osseointegration),
which is crucial for the long-term success of implantation.

Sandblasting is simple and cost-effective, enhancing cell adhesion and proliferation
and osteoblast differentiation. However, acid etching of the implant is often required
to homogenize the surface micro-profile and remove any remaining sand particles. If
not performed, the surface material’s inhomogeneity can reduce the implant’s corrosion
resistance [24].

Physical treatment techniques involve laser ablation [25,26], plasma spraying [27],
vacuum arc coating [28–30], glow discharge plasma [31], ultraviolet light treatment [32],
and ion implantation [33]. Chemical surface treatment methods are techniques that modify
the properties of material surfaces using chemical reactions. Their goal is to improve surface
durability, corrosion resistance, adhesion, aesthetics, or biocompatibility. These include
anodizing, chemical etching, sandblasting, electrochemical [34,35] and electrophoretic [36]
deposition of coatings, the sol–gel method [37], and plasma electrolytic oxidation [38].

Anodization is commonly used in bioengineering to modify surfaces and improve the
properties of implants by forming an oxide layer. The thickness of this layer follows Fara-
day’s law. Titanium alloys are anodized to thicken the natural TiO2 oxide layer. Anodizing
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increases the surface roughness of titanium, creating an oxide layer with a crystalline
structure primarily composed of anatase TiO2. The increased wettability and microporous
structure enhance the adhesion of specific proteins, improving osseointegration and surface
bioactivity. The process is conducted in oxidizing acid solutions (sulfuric acid, phosphoric
acid) or alkaline phosphate or silicate solutions, with varying concentrations and process
conditions (voltage, current density) [39,40].

Chemical (including electrochemical) etching can be divided into two main groups
depending on the solution used: acid etching and alkaline etching (alkali treatment).
Different surface textures and roughness can be achieved by varying the composition of
etching solutions (typically the acid concentration), the temperature, and etching duration.
Acid etching notably increases the roughness of the implant surface without altering its
contact angle. In contrast, alkaline etching enhances the hydrophilicity of the dental implant
surface. Additionally, acid etching is performed at lower temperatures and requires less
time compared to the standard alkaline etching treatment [41].

Sandblasting of the surface followed by acid etching combines the benefits of both
surface modification techniques. The SLA (Sand-blasted, Large-grit, Acid-etched) surface
features a coarse-grained texture, resulting in improved osseointegration and osseoconduc-
tivity, particularly in the early stages after implantation, compared to untreated surfaces.
The RBM (Resorbable Blast Media) surface is created by sandblasting the implant with
resorbable Ca–phosphate compound particles, followed by etching in a low-concentration
organic acid. This process produces deeper micropores compared to SLA, enhancing osseo-
conductivity and helping to reduce osteoporosis. However, the combined treatment results
in a hydrophobic surface, which can slightly hinder the osseointegration of implants [42,43].

The aim of this article is to investigate the effects of different surface treatments on the
osseointegration and stability of dental implants by comparing BIC values before and after
bone demineralization using high-resolution µCT analysis and to examine whether selected
innovative surface treatments, including etching and sandblasting, influence the degree of
demineralization in cells surrounding implants. An innovative aspect of this publication is
the use of an alternative type of surface treatment, coupled with in vivo studies that have
been conducted to assess its effects. The following research null hypotheses were raised:
(a) the method of preparing the implant surface does not affect BIC; (b) µCT is not a tool
for correct assessment of BIC.

2. Materials and Methods
2.1. Implant Preparation

The implants were made of grade 4 titanium using CNC machines. They were then
washed according to the company’s procedures, and surface treatment began—sandblasting
and etching. Implants were etched in 50% H2SO4. Sandblasting was used in addition for
some of them. Two types of SLA (Sandblasted, Large grit, Acid-etched) surfaces were
obtained. First, part of implants were sandblasted with Al2O3 (grain size 180–250 µm)
and etched in 50% H2SO4 at 120 ◦C. The rest of the samples were sandblasted with TiO2
(grain size 106–150 µm) and etched in 50% H2SO4 at 120 ◦C. After surface treatment, the
samples were rinsed in distilled water and air-dried. The choice of compounds used for
sandblasting was deliberate. Studies confirm the positive influence of sandblasting with
TiO2 [44–46] and Al2O3 [47] on bone–implant contact (BIC) as early as the beginning of
the 21st century. Additionally, Al2O3 is the most commonly used abrasive in sandblasting
processes, while TiO2 is considered a more biocompatible alternative. These assumptions
were verified through a series of tests and analyses. The concentrations of acids applied for
etching were selected experimentally in preliminary studies.

2.2. In Vivo Tests

Our research was conducted on 6 male New Zealand White rabbits, each under
12 weeks of age and weighing no less than 3.5 kg. This study was approved by the Local



Materials 2024, 17, 5396 4 of 14

Ethics Committee under the number 18/ŁB195/2021. All animals were quarantined before
the start of the research and subjected to a one-day handling acclimation period.

The European rabbit animal model was chosen in accordance with the requirements
and standards of PN-EN ISO 10993-6:2017-04, Biological Evaluation of Medical Devices—
Part 6: Tests for Local Effects after Implantation. Dental implants were deliberately designed
and manufactured for rabbits purposes. The dimension of the implants was 2.5 mm ×
6 mm. The first and final drill was 1.6 mm in diameter.

In the initial stage, we established the procedure techniques, implantation sites, and
drills using a dead rabbit. Only then did we proceed to in vivo studies. There were some
changes in the number of rabbits used, but for economic and ethical reasons, we aimed to
limit their number to 6. Additionally, we used 2 rabbits designated for practicing cutting
bone into pieces and taking RVG (radiovisiography) and CBCT (cone beam computed
tomography) images to minimize the risk of damaging the valuable material with implants.

2.3. Scanning Electron Microscopy

The surface of all samples was thoroughly analyzed for morphology using a scan-
ning electron microscope (SEM) both before and after demineralization (Phenom ProX;
ThermoFisher Scientific, Waltham, MA, USA). Surface morphology analysis is achieved by
scanning the sample with a focused beam of electrons, which are emitted by the cathode
and shaped into a beam by the optical system. The emitted electron signal is processed to
generate an SEM image. The topographic contrast in the image is produced by the emission
of secondary electrons. For this analysis, an accelerating voltage of 15 kV was applied.

2.4. Micro-Computed Tomography

High-resolution X-ray computed tomography, µ-CT (SkyScan 1272; Bruker, Kontich,
Belgium), was used to investigate the geometric parameters (implant volume, implant
surface, BIC) of the four tested implants. Implants screwed into the bone were scanned
twice (before and after bone demineralization) under identical conditions: X-ray source
voltage: 50 kV; X-ray source current: 200 µA; pixel size: 5 µm; rotation: 180◦ rotation;
rotation step: 0.2◦, with an Al 0.5 + Cu 0.038 filter. Using the software NRecon 1.7.4.2,
CTAn 1.17.7.2+, Data Viewer 1.5.6.2 (Bruker, Kontich, Belgium), and ImageJ (ver. 1.8.0_245),
the following implant parameters were determined: (1) implant volume, (2) implant
surface, and (3) BIC. Using CTvox 3.3.0 r1403 software (Bruker, Kontich, Belgium), three-
dimensional visualizations of each implant with bone attached were made (Figure 1).
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Figure 1. Three-dimensional visualization of implant with bone attached.

Figure 2 shows the method based on which BIC was determined. Figure 2b shows a
cross-section in the 0◦–180◦ plane of the implant screwed into the bone (Figure 2a). The
green line (length Lgreen) marks the edge of the implant in this selected plane, including
the implant–bone connection and the implant–air connection (in the place where the bone
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has not attached to the implant). The red line (length Lred) marks the line covering the
implant–air connection. In this case, BIC was calculated using Formula (1).

BIC =
Lgreen − Lred

Lgreen
× 100% (1)
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Figure 2. A schematic illustration of the BIC calculation method.

The average BIC value for each implant was calculated from four BIC values calculated
for sections in four planes (0◦–180◦; 45◦–225◦; 90◦–270◦; 135◦–315◦). The orientation of each
of the four implants in any plane was randomly selected to better average the obtained
BIC results.

Figure 3 shows the RVG (Gendex Dental Systems, Hatfield, PA, USA) of all four dental
implants placed in a rabbit’s tibia and femoral bone.
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Figure 3. Four tested implants screwed into rabbit’s bone. Implant 1—machined surface with
only anodizing; Implant 2—only etching; Implant 3—sandblasting by Al2O3 + etching; Implant
4—sandblasting by TiO2 + etching.

Figure 3 shows that the implants were properly screwed into the bone. There are no
visible changes around them that would indicate a problem with osseointegration.

3. Results

The samples after surface treatment were thoroughly examined. An analysis was
conducted using a scanning electron microscope (SEM) with energy-dispersive X-ray spec-
troscopy (EDX) before demineralization to compare the surface properties and morphology
of implants treated in different ways (Figure 4). After demineralization, another series of
SEM images was taken to assess the changes resulting from demineralization (Figure 5).
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This allows for the observation of differences in surface characteristics, while EDX spectra
identify all elements present on the sample surfaces. The information provided by this
analysis is highly valuable for selecting the appropriate surface treatment method.
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Energy-dispersive X-ray spectroscopy undoubtedly revealed titanium as the main
element (Figure 4). Etching in 50% H2SO4 did not cause any noticeable changes in morphol-
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ogy, as observed in the SEM images. However, the EDX spectra show a higher oxygen peak.
Sandblasting and etching produced a similar effect. The surface is covered with small pits
with sharp edges, which are deeper in the sample sandblasted with titanium oxide. In the
sandblasted and etched samples, no oxygen was detected. This study provides preliminary
insights into expected outcomes following the implantation of similarly treated implants,
considering surface morphology and characteristics.

After implant insertion, significant demineralization of the implants was observed on
SEM images (Figure 5).

A significant amount of tissue growth was observed around each of the previously
modified implants. The osseointegration process is advanced and clearly visible in all
samples. The best result is achieved with the implant that was sandblasted with Al2O3 and
then etched, where the tissue fully covers the implant (Figure 5). Observing implants post-
implantation allows us to evaluate the effect of osseointegration, enabling a comparison of
the efficacy of osseointegration across implants subjected to various surface treatments.

Tables 1–4 present the results of implant connections with the edge, air, and bone. For
each implant, the average bone-to-implant contact (BIC) is also provided. This research
represents a highly detailed analysis of the quality of the bond between the implant and
the bone.

Table 1. Average BIC value for implant with machined surface.

Machined Surface—Only Anodizing

Before Demineralization After Demineralization

cross-sectional plane 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦ 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦

implant–edge
connection line [mm] 16,784 16,606 16,523 15,535 16,151 16,934 16,812 15,303

implant–air
connection line [mm] 2432 2853 4118 1748 2037 1768 6674 4702

implant–bone
connection line

(BIC) [%]
86 83 75 89 87 90 60 69

average BIC [%] 83 77
standard deviation

BIC [%] 6 14

Table 2. Average BIC value for implant with etched surface.

Only Etching

Before Demineralization After Demineralization

cross-sectional plane 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦ 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦

implant–edge
connection line [mm] 16,781 16,957 16,853 15,787 19,950 15,329 17,596 17,621

implant–air
connection line [mm] 1942 2335 2379 1320 6741 1204 1458 2852

implant–bone
connection line

(BIC) [%]
88 86 86 92 66 92 92 84

average BIC [%] 88 83
standard deviation

BIC [%] 3 12
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Table 3. Average BIC value for implant with surface sandblasted by Al2O3 and etched.

Sandblasting by Al2O3 + Etching

Before Demineralization After Demineralization

cross-sectional plane 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦ 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦

implant–edge
connection line [mm] 16,953 17,638 15,692 16,957 16,321 16,275 17,258 17,028

implant–air
connection line [mm] 2976 1497 1299 6193 1490 1946 9137 2481

implant–bone
connection line

(BIC) [%]
82 92 92 63 91 88 47 85

average BIC [%] 82 78
standard deviation

BIC [%] 13 21

Table 4. Average BIC value for implant with surface sandblasted by TiO2 and etched.

Sandblasting by TiO2 + Etching

Before Demineralization After Demineralization

cross-sectional plane 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦ 0◦–180◦ 45◦–225◦ 90◦–270◦ 135◦–315◦

implant–edge
connection line [mm] 16,112 17,071 16,726 16,999 17,808 15,978 18,563 17,415

implant–air
connection line [mm] 3051 1755 1848 3949 2008 4451 8646 2878

implant–bone
connection line

(BIC) [%]
81 90 89 77 89 72 53 83

average BIC [%] 84 74
standard deviation

BIC [%] 6 16

Based on the micro-CT results obtained from dental implants placed in rabbits, several
observations and implications can be drawn regarding the bone-to-implant contact (BIC)
percentages before and after demineralization across different surface treatments. Given
the ethical constraints limiting the sample size to six rabbits, this discussion focuses on the
trends and patterns observed while acknowledging the limitations in statistical power.

The results summarized in Tables 1–4, obtained from the measurements after deminer-
alization, exhibit a greater amplitude compared to those measured prior to demineralization.
The standard deviation of the post-demineralization samples is approximately twice as
large as that of the pre-demineralization samples. The greatest difference in the results
was observed for the implants that underwent sandblasting with Al2O3 and acid etching.
The lower standard deviations before demineralization indicate more consistent outcomes
following the initial treatments. In contrast, the relatively higher standard deviations after
demineralization, particularly in the sandblasting groups, suggest increased variability in
response to demineralization. This variability may be attributed to differences in individual
bone quality and healing responses among the rabbits. The unique characteristics of each
organism could have contributed to a high standard deviation. The variation in BIC values
across different measurement points may also result from surface heterogeneity. Surface
treatments—etching or sandblasting—may not have produced identical effects across all
areas. These inconsistencies could have been challenging or impossible to detect during
the analysis of other research findings.

Moreover, the increased variability post-demineralization underscores the need for
further research to better understand the underlying mechanisms and to develop strategies
to mitigate these effects.
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The BIC analysis enabled a quantitative assessment of osseointegration quality, highlight-
ing the variability in the results. This study identified limitations arising from the sample size
and variations in the bone characteristics of each rabbit. This is the most precise technique
among those used in the current study to determine the degree of osseointegration.

Figure 6 presents the average bone-to-implant contact (BIC) values for implants sub-
jected to various surface treatments, both before and after demineralization. This compari-
son makes differences in BIC more readily observable.
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Figure 6. Average BIC value for all implants tested.

The highest BIC values are observed in Figure 6 for the implant that was only etched.
The BIC value for each implant decreased by 4–10% after demineralization. This indicates
that demineralization adversely affects the bone–implant interface, potentially compro-
mising implant stability. The largest BIC reduction was seen in the implant sandblasted
with TiO2 and etched, while the smallest reduction occurred in the implant sandblasted
with Al2O3 and etched. Titanium oxide (TiO2) is softer than aluminum oxide (Al2O3),
which may have resulted in less effective sandblasting. The difference in grain hardness
could have influenced surface roughness, leading to uneven etching. Overall, sandblasting
reduced BIC compared to the etched-only implant. Despite the reduction in BIC during
demineralization, the etched-only implant maintained a BIC level similar to that of the
other implants before demineralization.

The analysis of surface area and volume for all implants (Table 5) allows us to assess
mass loss or gain, as well as changes in surface area. Such changes in implant characteristics
can lead to varying outcomes, making it crucial to monitor these parameters. Significant
differences in mass may prevent the proper fit of different components, potentially leading
to loosening. Conversely, changes in surface area impact the quality of the implant–bone
connection, where a larger surface area is preferred.

Table 5. Implant volume and surface.

Only Anodizing Only Etching Sandblasting by
Al2O3 + Etching

Sandblasting by
TiO2 + Etching

implant volume
[mm3] 9.45 8.91 9.46 9.54

implant surface
[mm2] 60.82 69.11 66.85 63.29
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The volumes of the implants across the different treatments are relatively consistent,
ranging from 8.91 mm3 to 9.54 mm3 (Table 5). Implant volume appears to be largely
unaffected by the surface treatment method. The slight variations in volume suggest that
the chosen treatments do not significantly alter the overall dimensions of the implants.

The surface areas of the implants vary more significantly between treatments. The
etching-only method resulted in the highest surface area (69.11 mm2), while the anodizing-
only method resulted in the lowest (60.82 mm2). Sandblasting followed by etching with
either Al2O3 or TiO2 produced intermediate surface areas (66.85 mm2 and 63.29 mm2,
respectively). This suggests that the combination of sandblasting and etching effectively
increases the surface area compared to anodizing alone. The increased surface area observed
in the etched and sandblasted samples may contribute to better osseointegration, as a larger
surface area typically enhances the mechanical interlocking between the implant and bone.

4. Discussion

Research indicates that the best osseointegration results are achieved with sandblasting
and etching, as these treatments result in minimal mass loss while effectively increasing
surface area, thereby enhancing the implant’s integration with bone. Surface treatment is a
critical process that often determines the quality of the bone–implant interface. Selecting
the appropriate type of surface treatment and optimizing the parameters of the procedure
have a significant impact on bone-to-implant contact (BIC) values and the potential risk of
implant failure. Studies have demonstrated that the rough surface resulting from etching
and sandblasting promotes bone tissue integration with the implant. Selecting compounds
for this type of treatment is an essential first step. According to the literature, sandblasting
with aluminum oxide (Al2O3) is the most common method. However, TiO2 may be a
beneficial alternative due to its positive effects on osteoblast-like cells and bone integration.
The SLA method with Al2O3 and sulfuric (H2SO4) or hydrochloric (HCl) acid is well
documented in the literature, although there are mentions of potential risks for long-term
osseointegration due to particle embedding on the surface during treatment. Unfortunately,
there is a lack of in vivo studies documenting the results of using TiO2 in SLA surface
preparation [48–50].

The results found in the literature regarding Al2O3 use are inconsistent. Some studies
suggest it reduces osteolysis without a significant impact on osteoblast-like or macrophage-
like cells. Other studies indicate that Al2O3 induces an inflammatory response during the
co-culture of osteoblasts and macrophages in its presence, potentially due to the release
of cytokines, which act as inflammatory mediators. Sandblasting with Al2O3 may cause
its accumulation at the mineralization front and within the osteoid matrix itself [51–55].
Despite these drawbacks, Al2O3 remains one of the only ceramic oxides that produces
satisfactory results, leading researchers to seek better alternatives. TiO2 minimizes the
risk of contamination by residual debris from the blasting procedure. While many studies
present biomechanical results, few address in vivo studies. It has been confirmed that TiO2
sandblasting increases wettability compared to a machined surface, positively influencing
the osseointegration process. Accelerated bone formation and improved interface quality
have also been confirmed [49,56,57].

One significant association with implant insertion is the process of demineralization
caused by inflammation, where hydroxyapatite (HA) mineral ions are removed from hard
tissues, especially bone. Demineralization can be triggered by various factors, including un-
even bone loading due to the implant. Furthermore, even minimal implant movement can
damage bone, leading to implant loosening. Upon implant placement, there is an increased
risk of bacterial inflammation, which may occur more frequently. Bone demineralization
alters the bone’s chemical composition and physicochemical properties. The production
of osteoblasts may also be impaired, resulting in lower BIC values post-demineralization
(as observed in implants treated with TiO2 sandblasting). Deterioration in bone quality
around the implant increases the risk of complications due to unstable implant integration
with bone [58–60].
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The conducted studies provide insights into the surface characteristics and morphol-
ogy of BIC, as well as in vivo results from studies on rabbits. A detailed analysis confirmed
the positive effects of surface treatment on successful implantation. An irregular surface
improved the bone–implant interface quality. The BIC values achieved for etching and
TiO2 sandblasting were higher than those for Al2O3 before demineralization. After dem-
ineralization, the opposite effect was observed, indicating that TiO2 is a suitable alternative
to Al2O3 as a sandblasting abrasive. The results show that demineralization reduced BIC,
with the most significant impact seen in the TiO2 sandblasted implants.

This study aimed to highlight differences in bone-to-implant quality using various
surface treatment methods. The in vitro and in vivo studies were conducted on rabbit
implants and cannot be directly applied to human implants, which are larger. A series of
experiments is necessary to optimize the parameters and control the applied methods for
human application.

The limited sample number (n = 6) and size restricts the ability to generalize the
findings. Larger studies are necessary to validate these results and establish more robust
statistical conclusions. Future research should also focus on the long-term outcomes of these
surface treatments to determine their durability and effectiveness over time, particularly in
the face of challenges like demineralization. Employing advanced analytical techniques
and histological evaluations could provide deeper insights into bone–implant interactions
and the mechanisms driving the observed changes in BIC percentages.

The current study provides valuable preliminary insights into the effectiveness of
different surface treatments on dental implants; however, the ethical and methodological
limitations necessitate cautious interpretation of the results. Continued research with
larger sample sizes and comprehensive analyses is essential to optimize implant surface
technologies for improved clinical outcomes.

5. Conclusions

The high-resolution micro-CT analysis provided detailed insights into the effects of
different surface treatments on dental implant integration. The current study found that
while all surface treatments facilitated strong initial bone–implant contact, demineralization
significantly impacted the stability and variability of this contact. The data suggest that
surface treatments such as etching and sandblasting combined with etching generally lead
to higher initial BIC percentages compared to anodizing alone. Etching alone shows the
highest BIC percentage before demineralization, indicating its effectiveness in promoting
bone integration. The SEM images showed that all of the implants were demineralized, with
the best result obtained for the sample etched and sandblasted with Al2O3. Considering
the results of the in vivo studies, SEM image analysis, and bone-to-implant connection
metrics, etching and sandblasting with Al2O3 represent the most effective combined surface
treatment method.

These findings highlight the importance of surface treatment in enhancing implant
stability, particularly in conditions where bone quality is compromised. Further research is
recommended to develop and optimize surface treatments that improve long-term implant
integration in demineralized bone conditions.
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