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Abstract: Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale
in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely
used in blood flow studies, offering a platform for improving flow models and validating numer-
ical simulations. This review highlights recent advances in bioflow studies conducted using both
PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological en-
vironments. PDMS microchannels are used in studies of blood cell deformation under confined
conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also
plays a critical role in fabricating arterial models from real medical images, including pathological
conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies
and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in
PDMS research. In addition to these applications, this review critically discusses PDMS properties,
fabrication methods, and its expanding role in micro- and nanoscale flow studies.

Keywords: polydimethylsiloxane; PDMS applications; in vitro biomodels; microfluidics; blood flow;
biomedical engineering

1. Introduction

Polydimethylsiloxane (PDMS) is an elastomeric polymer known for its astonishing
properties, including biocompatibility, resistance to biodegradation, chemical stability, gas
permeability, good mechanical properties, exceptional optical transparency, and simple
fabrication [1]; being capable of replicating submicron features to create microstructures [2]
and being possible to change almost all properties easily as permeability with organophilic
nano-silica [3]; or changes in mechanical properties variating the cure agent concentra-
tion [4]. Furthermore, PDMS has hyperelastic behavior, also seen in biological tissues, and
variable elasticity, which is one of its most remarkable advantages; as a result, this elastomer
is attracting increasing attention in the biomedical field. As summarized in Table 1, PDMS’s
most relevant properties make it ideal for microfluidic devices and in vitro biomodels.
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Table 1. Most relevant PDMS properties for microfluidic devices and in vitro biomodels.

Property (Unity) Value References

Refraction Index 1.4 [5]
Thermal conductivity (W/m·K) 0.2−0.27 [6,7]

Young’s modulus (kPa) 360−870 [8]
Poisson ratio 0.5 [9]

Tensile strength (MPa) 2.24−6.7 [5,6]
Hardness (Shore A) 41−43 [10,11]

Hydrophobicity/contact angle (◦) ~108◦ ± 7◦ [12]
Melting Point (◦C) −49.9 to −40 [13]

These unique qualities have led to the widespread use of PDMS in a variety of applica-
tions, including micropumps [14], microvalves [11], optical systems [15,16], in vitro blood
studies [17,18], blood analogs [19], implants [20,21], and microfluidics [22,23]. PDMS is the
most frequently used material to fabricate biomedical microdevices, crucial for developing
systems like drug delivery, clinical diagnostics, and point-of-care testing [24]. The materials
employed in these systems should be optically transparent and biocompatible, allow for
fast prototyping, and be low-cost [25], which are present in PDMS.

Besides its applications in biomicrofluidics, PDMS has been extensively used in the
creation of in vitro biomodels to investigate blood flow and related phenomena in diseases,
including aneurysms and stenosis [26–31]. The PDMS biomodels have an exceptional
replication of the artery lumen and exceptional optical transparency, making them an ideal
choice for the application of optical techniques like particle tracking velocimetry (PTV),
particle image velocimetry (PIV), and confocal micro-PIV [32–35]. These experimental flow
studies have improved our understanding of cardiovascular diseases, validated numerical
methods, and examined the performance of stents and other medical devices [36–38].

Glass and polymers such as PDMS and polymethylmethacrylate (PMMA) are the
most frequently used materials to fabricate microfluidic devices and biomodels due to their
remarkable optical transparency. However, PDMS, due to its unique mechanical properties,
has become the most used material to produce devices [39–41]. Table 2 shows the main
advantages and disadvantages of PDMS, PMMA, 3D printing resins, and glass.

Table 2. Main advantages and disadvantages of the most common materials used in microfluidic
devices and biomodels [42–46].

Main Advantages Main Disadvantages

PDMS

Simple and low-cost fabrication, gas permeability,
biocompatibility, optical transparency, variable

elasticity, cell culture, easy fabrication (soft
lithography).

Can absorb hydrophobic molecules, hydrophobic
nature (can be modified), swelling in organic

solvents.

PMMA Low-cost fabrication compared to glass and silicon,
optical transparency.

Rigid, thermal degradation and thermal oxidative
degradation in the presence of oxygen,

permeability inability, can deform under high
pressure.

3D printing resins
Simple and low-cost fabrication, variable

mechanical properties, ability to create complex
geometries.

Inadequate optical transparency, low gas
permeability, surface roughness, limited material

choices depending on printer technology.

Glass Optical transparency, inert, excellent roughness,
and chemical resistance.

Rigid, fragile, expensive, difficult to reproduce
complex geometries.

Despite the advantages of PDMS shown in Table 2, this polymer has some limitations.
PDMS presents a hydrophobic surface [12,47,48], which can limit its application in some
biological samples [49]. The hydrophobicity of PDMS in microchannels increases the
flow resistance and makes it complex to wet the surface of the channels with liquids. In
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addition, PDMS tends to swell [6,23] when combined with specific chemicals. Moreover, it
is challenging to perform quantitative analysis of drugs due to the absorption of molecules
on the microchannels [50,51].

A considerable effort has been made to provide a hydrophilic character to the PDMS
surface [52–56]. To improve microchannel wettability and overcome PDMS hydrophobicity,
surface activation techniques are widely employed for PDMS surface oxidation. Additional
methods used to address PDMS hydrophobicity include corona discharges, UV/ozone
treatments, and oxygen plasma, which are frequently applied to PDMS surface oxidation to
enhance microchannel wettability. The primary advantages of these technologies are their
quick treatment times and ease of use; nevertheless, after a few minutes, contact with air
causes the PDMS surface to regain its hydrophobicity [57–59]. However, Gökaltun et al. [60]
have suggested an easy process that allows decreasing the hydrophobicity of PDMS for a
prolonged amount of time without affecting its mechanical or transparent qualities. They
have achieved this effect by employing copolymers made of polyethyleneglycol and PDMS
segments (PDMS-PEG). He et al. [61] developed a PDMS surface coated with a layer of gold
nanoparticles and PEG, using tannic acid as a reducing agent to enhance the properties of
PDMS, making it resistant to biofilm formation and bacterial adhesion while also providing
antibacterial effects through photothermal therapy (PTT). Lai and Chung [62] investigated
the PEG coating on PDMS to improve hydrophilicity, demolding, and transparency in
microfluidic chips. PEG1000 demonstrated better long-term hydrophilicity, higher trans-
parency (55–70%), and a smooth surface after demolding. These findings position PEG1000
as ideal for rapid prototyping and optical observation with backlighting.

This review reports the most recent bioflow studies performed in PDMS devices at
macro, micro, and nanoscale levels. Regarding the flow studies performed in microfluidic
devices, this review focuses on the flow through contractions, bifurcations, and crossflow
filters. Moreover, fabrication methods and PDMS biomodels obtained from medical images
to perform hemodynamic studies are also revised. Therefore, the present review brings
together the primary benefits, drawbacks, and difficulties associated with PDMS at various
scale levels. Moreover, it can benefit researchers looking to improve their knowledge
about this material and its applicability to perform blood flow studies, improve blood flow
models, and validate numerical simulations.

2. PDMS Applications in Microfluidic Contractions

The most popular method to manufacture microfluidic devices is the photolithography.
However, this microfabrication technique is expensive compared to the soft-lithography
method [63,64]. In addition, there are alternatives that use cleanroom-less techniques to
lower the cost of molds and microfluidic devices [65]. There are many different types
of microfluidic devices, but one of the most important is to evaluate the behavior of
pathological cells [66].

Blood cell deformability is a biomarker that may be used to distinguish between
healthy and diseased cells [66]. Hence, PDMS microfluidic devices have been developed to
enhance our knowledge and diagnose different diseases such as diabetes [67], malaria [68],
cancer [69], and end-stage kidney disease [70]. In contrast to the blood rheology studies
performed by rotational rheometers [71], cells flowing through PDMS microchannels have
contractions. The deformability of the cells is affected by both shear and extensional
flow, which represent the phenomena that happen in in vivo blood flow. Hence, due to
the progress in microfabrication [65,72,73], microflow visualization [74–78], and image
analysis techniques [77–80], several PDMS microfluidic devices containing abrupt and
hyperbolic constrictions have been proposed to investigate the deformability of blood cells
in conditions similar to in vivo microcirculation [66].

To the best of our knowledge, one of the earliest PDMS microfluidic constriction
channels to test blood cells’ deformability was performed by Shelby et al. [68]. They tested
the deformability of malaria-infected red blood cells (RBCs) flowing through constric-
tion microchannels, and it was found to be lower than that of healthy RBCs. After this
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deformability research assessment, many other PDMS microfluidic devices with constric-
tion microchannels were developed to investigate the flow behavior and deformability of
RBCs [81–84], white blood cells (WBCs) [85–87], and cancer cells [69,88]. These microfluidic
devices fall into one of two categories: structure-induced deformation microchannel (the
microchannel has a comparable or smaller dimension than the tested cells) or fluid-induced
deformation microchannel (the microchannel is greater than the tested cells) [66,73]. Fig-
ure 1 shows examples of healthy RBCs flowing and deforming in microfluidic devices with
fluid-induced and structure-induced deformation microchannels. It is clearly observed that
the geometry of the microchannel affects how the RBCs deform.
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Figure 1. RBCs moving through a PDMS microchannel that has (a) a smooth and (b) an abrupt
contraction, (c) rectangular PDMS microcapillary, (d) divergent region upstream of a rectangular
PDMS microcapillary, and (e) micropillars (adapted from [66]).

The RBCs in microfluidic devices with structure-induced deformation microchannels
are mostly deformed as a result of the walls’ high shear effects. Although these types of
microdevices are extremely popular, they have several drawbacks due to the tiny dimen-
sions of the microchannels (complexity of production, flow control, and visualizations of
microflows). A potential solution to these challenges is to make use of the fluid-induced
deformation microchannels. This approach is easier to fabricate and has the influence
of both shear and extensional flows. They can be classified as microfluidic devices with
abrupt, sudden, and hyperbolic constrictions [66,70]. An example of a PDMS device with
abrupt or sudden microcontraction is the work performed by Zhao et al. [81], who assessed
the RBCs deformation for different flow rates in a PDMS microchannel with a sudden
contraction. According to their findings, the RBC elongation tends to reach a maximum
value, and after that, the RBC stops deforming. More examples of PDMS devices with
abrupt or sudden microcontractions can be found in the review by Lima et al. [66,70].

Lima et al. [66] applied this finding to perform partial cell separation and deformability
assessment in one step. This work assessed RBC deformability at both smooth and abrupt
constriction microchannels (see Figure 1). More recently, Lima et al. [89] developed a
cheap and easy-to-use particulate blood analog. They compared the deformability of
both RBCs and micelles by a sudden-contraction microchannel. However, devices with
sudden constriction do not provide uniform extensional flows and, as a result, many PDMS
microfluidic devices with hyperbolic constrictions were used to determine the deformation
of both healthy [83,90] and pathological blood cells [70]. Hyperbolic constrictions can
generate homogeneous extensional flow. Therefore, it is possible to have a region with a
constant strain rate [91]. Figure 2 shows the deformation behavior of RBCs flowing through
hyperbolic PDMS microconstrictions at two different locations and flow rates.
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from [66,70]).

As mentioned, Zhao et al. [81] and others [66] reported that in sudden contraction
microchannels, the RBCs elongation achieves its maximal value, and they stop deforming
any further. However, Zeng and Ristenpart [92] reported that the RBCs do not deform as
they advance through the constriction of the microchannel. These conflicting results show
the need for gaining further insights into the blood rheological phenomena at a micro-scale
level, including cell-free layer (CFL), RBC motion, neighborhood interaction, orientation,
and deformability. Hence, besides the experimental data, it is also crucial to develop and
improve existing numerical flow models [93–99] in order to improve our understanding
of the flow behavior in microvessels and microchannels. For instance, Gracka et al. [100]
developed a multiphase numerical model with hybrid Euler–Lagrange and Euler–Euler
techniques. They successfully validated this model by comparing their numerical sim-
ulations with the CFL formation downstream of hyperbolic contractions obtained from
experimental data. Figure 3 shows the simulated RBC volume fraction distribution and
comparison with the experimental flow images. These results show the importance of
validating multiscale numerical models. Once validated, the numerical simulations can
optimize the design, reduce the fabrication costs of microfluidic devices, and obtain more
insights into the blood rheological properties at a micro-scale level, including the CFL
formation and RBC deformability.

Fluids known as blood analogs are frequently employed in hemodynamic research as
real blood presents safety concerns. Initially, glycerol and water combinations or xanthan
gum diluted in glycerine and/or water were used as simple blood analogs [19]. However,
these simple blood analogs do not allow for the research of different kinds of flow phe-
nomena at the micro-scale level, including cell margination, plasma skimming, and the
cell-free layer [65]. These well-known in vivo microscale phenomena do not happen when
blood analogs do not have microparticles with dimensions close to blood cells. As a result,
multiple studies have been conducted recently to create various types of particulate blood
analog fluids for biomedical applications. These studies include changes in stiffness, shape,
and size [89,101–107].

Pinho et al. [107] have suggested the use of particle blood substitutes comprising
polymethylmethacrylate (PMMA) suspended in a liquid carrier composed of Dextran 40
and xanthan gum. In contrast with the works performed with simple blood analogs, they
obtained cell-free layers downstream of microchannel contractions. The details about
solutions, geometries, and results can be found in those references or a recent review
by Sadek et al. [19]. However, these blood analogs using rigid microparticles have an
extremely high probability of blocking microchannels. Therefore, these analogs do not
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replicate microscale blood flow phenomena. One way to overcome this limitation is by
using flexible microparticles.
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Zhang et al. [108] manufactured PFOB/PDMS-TPE core-shell microparticles using
the porous glass membrane emulsification technique (SPG ME) with high production
yields. The particles took on a concave shape without the need for additional deformation
processes. By varying the pore size of the membrane and the composition of the dispersed
phase, it was possible to precisely control the size and shape of the microparticles, which
resemble human erythrocytes. They also showed high deformability and oxygen transport
capacity, making them promising microcarriers for biomedical applications, such as tissue
engineering.

In order to overcome these constraints, Choi et al. [109] and Lopez et al. [110] de-
veloped an easy emulsification technique to increase the production rate of the PDMS
microparticles. The production of PDMS microparticles in square section microchannels
using the blasting regime has been reported by Carneiro et al. [111]. The particles have
diameters ranging from 27 to 59 µm, a maximum coefficient of variation of 17%, and a
high droplet generation frequency (1.3 kHz), which enables the generation of thousands of
microparticles per second. The microparticles are appropriate for performing microflow
visualizations since they are free of impurities. However, parallelization is needed to
increase the amount of generated PDMS microparticles. Another method proposed by
Chen et al. [112] employed a 3D nested capillary microfluidic device to fabricate a large
number of monodisperse PDMS microcapsules that can flow and deform like individual
RBCs. However, this study did not show how they behave when they flow with a high
concentration of PDMS microcapsules.

In summary, research and development are still in their infancy regarding blood
analogue fluids that incorporate PDMS microparticles to simulate the behavior of blood
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cells. The production of monodisperse PDMS microparticles in large quantities, as well as
the rigidity, aggregation, and agglomeration of these particles in the microchannels, are
the most important problems that need to be solved for application in complex geometries
such as bifurcations, constrictions, and crossflow microfluidic filters. These complex
microchannels, including bifurcations, can also be manufactured with PDMS, and this is
the main object of analysis in the following section.

3. PDMS Applications in Microfluidic Bifurcations and Complex Geometries

One of the main advantages of PDMS is its ability to cultivate endothelial cells on
the surface of microchannels with circular geometries [113,114] and in rectangular cross-
section microchannels with complex geometries such as microvascular networks [115–118].
This ability has promoted its use to make organs-on-a-chip platforms [119]: vascular-on-
a-chip [120,121], heart-on-a-chip [122], kidney-on-a-chip [123], and lung-on-a-chip [124].
Moreover, PDMS combination with other materials [125], such as PMMA, allowed organs-
on-a-chip diversification: liver-on-a-chip [126] and heart-on-a-chip [127].

As mentioned, PDMS properties extend to gas permeability, submicron structure replica-
tion, and transparency [128,129]. These unique properties allow it to be used to manufacture
extremely complex geometries and devices at both macro and micro scale levels. Some
successful examples are the production of microneedles for drug delivery and microfluidic
systems [130], complex microchannel networks to mimic microvessels [131–135], and mi-
crofluidic devices to perform separation and sorting of blood cells [65]. Another astonishing
PDMS application happened during the COVID-19 period, where PDMS was used to fabricate
transparent face masks [136].

Geometries known as bifurcations and confluences can be found in sophisticated PDMS
microfluidic devices, including organ-on-a-chip systems. Therefore, it is crucial to gain
insights regarding the effect of these complex microgeometries on blood flow behavior. At
the microscale level, the blood cells flow through bifurcation channels depends on a number
of variables, including the size and dispersion of cells at the parent channel [137,138], the
hematocrit distribution [138–142], the deformability and aggregation of cells [143–146].

Generally, blood flow in microfluidic devices displays distinct rheological behaviors
and flow structures, including a high cell concentration in the core region and a CFL on
the walls. [147]. However, earlier studies performed in PDMS microfluidic platforms
manufactured by soft-lithography [148] and by xurography [149] have shown CFL at
the walls and the confluence apex region. Later, Bento et al. [150] investigated the CFL
formation in PDMS microfluidic devices with complex microchannel networks. These latter
works have shown that hematocrit significantly affects the CFL. Moreover, microchannel
networks with several convergent and divergent bifurcations are most likely to have CFLs
on the walls and immediately downstream of the confluence apex in the middle section of
the channels (see Figure 4). This study clearly shows that for hematocrits up to 15%, this
flow phenomenon happens in PDMS microfluidic devices with microchannel networks
and rectangular cross-sections. Further research is needed on whether this phenomenon
also happens in circular microchannels and in vivo microvessels.

The separation of microparticles and blood cells based on their size, shape, deforma-
bility, and density is another potential use for PDMS microfluidic devices [65,152,153].
This capability can be extremely valuable since it can be applied to the diagnosis of blood
pathologies.

According to the manipulating forces, these devices can be classified as active or
passive devices [65,154–156]. Passive devices are the most commonly used due to their
simplicity and lower manufacturing costs. For instance, Huang et al. [157], Choi et al. [158],
and Karimi et al. [159] applied sequential pillar filters to perform blood cell separation
and assessment. However, clogging and jamming appear at the pillar region when this
technique is applied [65,160].
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Therefore, several microfluidic devices, including crossflow filters, have been devel-
oped and optimized to minimize such problems [87,161–163]. Blood cells tend to travel
tangentially along the pillars when the crossflow effect is used, as opposed to the conven-
tional filtration procedures where the cells flow through the filter pillars and may cause
clogging and jamming. To the best of our knowledge, Chen et al. [162] conducted one of
the first studies to use PDMS crossflow pillars. In that work, they were able to separate the
WBCs and RBCs from the blood plasma by successfully avoiding cell jamming by using
layered filtering barriers [162]. Recently, Lima et al. further improved and optimized this
system. They produced PDMS microfluidic devices that separate and assess healthy and
pathological blood cells in one single step (see Figure 5a). Recently, this platform was used
to investigate the capacity of a multi-step crossflow microfluidic device to separate a blood
analog fluid produced by Brij L4 micelles [163] (Figure 5b).
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4. PDMS Applications of Biomodels for Hemodynamic Studies

Biomodeling is a technique that involves the creation of physical models from bi-
ological representations and has been employed using Additive Manufacturing (AM)
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technologies. Over time, biomodels have evolved considerably, acquiring characteristics
of flexibility, hollowness, and a more faithful representation of anatomy [164–166]. Cur-
rently, these models play a crucial role in optimizing surgical procedures, substantially
contributing to reducing surgery time and mitigating the risks involved. However, in recent
years, biomodels have assumed a preponderant role in studies of a hemodynamic nature.
In this context, they are a highly relevant tool as they provide an effective approach for
controlling experimental variables, as well as for validating and complementing numerical
investigations [167,168].

For these biomodels to be suitable for hemodynamic studies, they must adhere to the
following:

• Replicate the dimensions and reproduce the surfaces of real arteries.
• The lumen material must be easily removed during the manufacturing process and

must not interact with the transparent material used.
• The biomodel material must be transparent and have the same refractive index as the

experimental fluid.
• The manufacturing process must allow the construction of biomodels without dimen-

sional discrepancies.

4.1. Manufacturing Process of PDMS Biomodel

Initially, the materials used to manufacture biomodels were glass [169,170], latex [171],
and polymethyl methacrylate (PMMA) [172,173], but the rigidity, fabrication complexity,
and high costs have reduced the interest of these materials to produce biomodels. Thus,
PDMS has recently become the most used material [41] due to its good characteristics, such
as transparency and flexibility, for faithfully replicating the arteries through its casting,
which presents a very high resolution, reaching 6 µm × 6 µm [174,175].

Despite the advantages of using PDMS in biomodels, the manufacturing process is
challenging. To replicate complex geometries with high fidelity and resolution, the Additive
Manufacturing (AM) technique is the most used. However, it is still a challenge to print
PDMS directly on a 3D printer due to the material’s curing process and viscosity, making it
necessary to use a combined manufacturing process, which in this case is AM with PDMS
casting.

Figure 6 shows the process that has been used in the manufacture of PDMS biomodels.
After obtaining the stl models, the artery lumen is printed with the 3D printer. Then, this
physical model is placed in a container to generate semi-rigid models or inside a counter
mold to generate flexible models. It is worth noting that the printed material must be
destroyed at the end of the process, thus making the biomodel (phantom) completely
transparent.
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4.2. Hemodynamic Studies with PDMS Biomodels

Some works listed the process of manufacturing biomodels of aneurysms, bifurcations,
and stenoses. The intracranial aneurysm (IA) fabrication work used a combination of 3D
printers and soft lithography techniques. In this work, the dimensions and geometry of the
aneurysm model were based on clinical data for a common intracranial aneurysm [176],
this being a simplified model previously designed in CAD software (Solidworks). To
manufacture the biomodel, an ABS (Acrylonitrile Butadiene Styrene) mold was developed
and printed on a printer 3. The PDMS was mixed with the curing agent and poured into
the cavities of this mold so that the aneurysmal sac remained flexible. This technique made
it possible to study the deformation of the wall for different flow rates using Digital Image
Correlation (see Figure 7) [177].
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One of the difficulties in manufacturing PDMS biomodels is finding materials that
do not compromise the transparency of the PDMS and that are low-cost. Falk et al. [178]
implemented and tested polyvinyl alcohol (PVA) to develop cheap and specific models
made of the lost core casting technique; the models were measured and compared to the
geometry in stl format, and the differences were practically insignificant and with visual-
ization tests of particles, demonstrated that the model is suitable for experiments using
the PIV technique. Following the same previous criteria of finding materials that do not
compromise transparency and are accessible, the work of Souza et al. [30] demonstrated the
manufacturing process of IA biomodels, in which an SLA printer was used to manufacture
the lumen with high resolution in resin combined with a lost core molding technique (from
paraffin, beeswax and glycerin soap). To validate the materials used, tests were carried
out to analyze the dimensions of the biomodels in relation to the STL model and particle
visualization tests. With this, they concluded that the biomodels made with beeswax and
glycerin soap showed high transparency and good reproducibility, making them suitable
for different experimental flow tests. Recent work by Sandy Karam et al. [179] developed
an intracranial aneurysm geometry with the aid of a DLP printer and a resin that dilutes
in water. The patient-specific IA biomodel was scanned using a Micro-CT to evaluate
the geometry and dimensions and finally tested for transparency. They reached the con-
clusion that the produced samples could be utilized in in vitro research since they could
successfully reproduce compatible and optically transparent aneurysms.
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PIV is a modality frequently used to study flow in vitro, both for aneurysms and for
coronary arteries and stenoses. PIV is an experimental method that measures the velocity
field inside the region of interest by tracking the displacement of trace particles over time
using high-speed cameras. The study by Ford et al. [180], for more direct validation,
compared the detailed and predicted computational fluid dynamics (CFD) velocity fields
with those measured using PIV. The tests were carried out on two anatomically realistic
flow phantom biomodels; one was a giant aneurysm of the internal carotid artery, and
the other was an aneurysm of the tip of the basilar artery, and both were constructed
with a transparent silicone elastomer. The study demonstrated a good general agreement
between PIV and CFD, showing the effectiveness of PIV in validating numerical models.
The technique was also used to study risk factors related to aneurysm geometries. Li
et al. [36] used PIV to measure the velocity of a blood-like fluid and were able to predict
the effects of flow diversion caused by stent treatment. The study compared flow behavior
with predictions from a CFD model. In their study, Brindise et al. [32] conducted one of the
initial investigations on pulsatile volumetric particle velocimetry. They used two aneurysm
models that were tailored to individual patients. This study employed a novel approach by
using in vivo measurements, in vitro investigations, and in silico modeling. Specifically,
in vivo 4D flow MR was used as boundary conditions for CFD and particle velocimetry.

Doutel et al. developed a method for manufacturing PDMS biomodels through rapid
prototyping using lost core casting and sucrose. Models produced with sucrose casting
allowed for excellent optical access for flow visualization and velocity field measurement
using Micro-Particle Image Velocimetry (uPIV) [31]. In another study [18], employing the
aforementioned process and a methodology for creating irregular stenoses [181], researchers
examined the effects of geometry on in vitro and in silico blood flow. The researchers con-
ducted a comparison between idealized models and patient-specific models of a coronary
artery that was free from any disease. Additionally, they examined two derived models,
one planar and one non-planar. The study found that when considering the individual
patient’s anatomy, there was an uneven narrowing of the blood vessels, whereas in ideal sce-
narios, the narrowing was uniform and balanced. The importance of using patient-specific
models in hemodynamic studies whenever possible was emphasized. The significance of
eccentricity was also highlighted as a substantial parameter, as alterations along arterial
branches resulted in asymmetric flow patterns. Moreover, the research findings indicate
that non-planarity does not affect the development of stenosis, but it does have a significant
influence on helicity. When the flow direction was altered to match the curvatures caused
by non-planarity, there was a noticeable rise in helical flow.

In a research led by Jewkes et al. [182], 3D models of a healthy and stenotic porcine
coronary artery were manufactured based on morphometric measurements. The study
used two distinct printers to produce the resin and PDMS models (initially printed in wax).
These models were then compared based on several criteria, including layer thickness,
anatomical accuracy, and model production time. While resin may offer greater anatomical
precision, the PDMS technique demonstrated superiority for functional testing objectives.
During hemodynamic experiments using PDMS models, researchers detected the existence
of helical flow patterns in the healthy models and identified the presence of recirculation
zones in all biomodels. It is important to mention that these regions of recirculation were
more noticeable in the models with stenosis. Although this study offers vital insights into
the manufacturing process, there are various limitations, including the use of water as the
working fluid and the recording of flow measurements using a cell phone. These aspects
may compromise and diminish the accuracy of the results.

Interesting studies on stenotic bifurcation carotid arteries were conducted by Kefayati
et al. [183–185], combining Particle Image Velocimetry (PIV) analysis with CFD simulations.
Initially, researchers crafted life-sized flow phantoms of the carotid artery using PDMS
(Sylgard® 184, Dow Corning Canada, Inc., Calgary, AB, Canada; refractive index 1.41–1.43)
through a lost-core casting technique. Three different artery configurations were considered
for the study: a healthy carotid artery (normal, disease-free model) and 50% and 70%
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stenotic arteries [183]. The primary objective of the first study was to investigate transitional
flows in the three fabricated models using PIV and Orthogonal Decomposition (POD),
identifying the transition to complex flow in stenotic conditions. In another study [184],
the authors explored not only the severity of stenosis (30%, 50%, and 70%) but also plaque
eccentricity and ulceration, noting an increase in turbulence with greater stenosis severity
and significant effects of eccentricity and ulceration. In a subsequent work [185], the authors
analyzed the effects of these features (severity, eccentricity, and ulceration) on shear stress
levels, highlighting increases associated with stenosis severity and notable differences
between concentric and eccentric plaques. These three studies suggest that, beyond the
severity of stenosis, other parameters may influence the risk of stroke, presenting serious
clinical implications.

Choi et al. [186] conducted a significant in vitro study comparing constrictions in
the neck arteries, both rigid and flexible, using a PIV method. They crafted a flexible
constriction model through 3D printing, replicating real conditions of pulsatile blood
flow. To simulate the thin fibrous layer, they carefully adjusted the composition of PDMS,
controlling proportions, temperature, and curing time. While studying the effect of stenotic
deformation on the pulsatile waveform and pressure drop, researchers observed that the
flexible constriction changes its shape in response to alterations in inflow. This shape change
results in an increased jet velocity and, consequently, a higher production of turbulent
kinetic energy (TKE) compared to rigid models. This occurrence resulted in a phase delay
in the highest point position of the waveform linked to the decrease in pressure across the
stenosis. The findings indicate that it is possible to use the pressure drop waveform as a
means of identifying susceptible flexible constrictions.

5. PDMS Applications with Nanoparticles and Nanofluids

Nanoparticles (NPs) and nanofluids (NFs) are gaining increasing interest in the
biomedical scientific community due to their astonishing features at the nanoscale level:
superparamagnetism, high surface-to-volume ratio, biocompatibility, and low toxicity,
among others [187]. Static flow conditions at conventional plates tend to promote NPs sedi-
mentation, and the results may not represent the in vivo environment. In contrast, using
PDMS microfluidic devices makes flow conditions more realistic. Therefore, this approach
is the most appropriate and accurate way for evaluating NPs in vitro. Hence, PDMS mi-
crofluidic devices have been developed to test NPs’ haemocompatibility, transport, toxicity,
accumulation, and performance for drug delivery [188,189].

PDMS microfluidic models of human microvessels are frequently used to investigate
NPs margination [190–192], shear stress effect on NPs accumulation [193,194], and interac-
tions between blood cells and NPs [195,196]. Organ-on-a-chip models have also been used
to evaluate the NPs’ transport. Additional information about this subject can be found in
Zhu et al.’s review [189].

NPs toxicity has been evaluated by employing small organisms in microfluidic systems:
zebrafish [197,198], C. elegans [199], and fruit flies [200]. For instance, the changes in C.
elegans body length and width or their gene expression in a PDMS device can be employed
to evaluate silver NPs toxicity [199].

As mentioned, PDMS organ-on-a-chip platforms are frequently used to evaluate
the NPs’ efficacy. Agarwal et al. [201] employed a PDMS-glass microfluidic device and
formed a 3D vascularized tumor model to test the anticancer efficacy of free DOX and DOX
encapsulated in NPs. Other examples can be found in two review papers (Zhu et al. [189]
and Ahn et al. [202]). In summary, these studies have shown that PDMS microfluidic
devices have great potential to mimic the in vivo environment of human organs. This
possibility enables researchers to test and predict the safety and efficacy of therapeutic
drug candidates prior to clinical tests. In addition, the continuous progress in this field will
accelerate the clinical adoption of NPs.

Most of the time, NPs for clinical applications are administered into the blood flow.
As a result, it is crucial to test NPs haemocompatibility. Once the NPs are in contact with
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blood cells, they should not introduce any significant changes into the cells [203]. The
conventional methods to evaluate NPs haemocompatibility involve the hemolysis analysis
of RBCs [203,204], leukocyte phagocytosis and inflammation [205], platelet activation [206],
and plasmatic coagulation test [207]. However, these methods have limitations and cannot
assess multiple parameters such as transit time, recovery time, and cell deformability.
Hence, Rodrigues et al. [208] developed the first PDMS high-sensitivity microfluidic device
to identify small rigidity modifications of RBCs in the presence of NPs. They combined
high-speed video microscopy with a hyperbolic constriction microchannel, and they were
able to assess the impact of magnetic NPs on the human RBCs’ deformability. In contrast
to other conventional hemocompatibility methods (such as the hemolysis analysis), they
showed that a small number of NPs can affect the RBC rigidity. Furthermore, compared to
conventional methods, this tool has demonstrated a higher sensitivity in detecting slight
mechanical changes in the deformability of RBCs. Figure 8 shows a schematic diagram of
this method.
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Figure 8. Representation of the procedure for evaluating the hemocompatibility of RBCs in contact
with MNPs. The a and b represent the major and minor lengths of the ellipse, respectively. A
high-speed video microscopy system and a PDMS microfluidic device with a hyperbolic constriction
microchannel make up the microfluidic methodology, adapted from [208].

A study conducted by Rodrigues et al. [208] employed a method to assess how RBCs
mechanically respond to magnetic iron oxide (Fe3O4) nanocarriers. The results have shown
that the maximum deformability achieved by the RBCs in contact with magnetic iron oxide
NPs was lower than healthy cells. This study is essential for further understanding how
cell–NP interactions occur in RBC disorders, and, as a result, it will open new avenues for
developing novel nanocarriers as drug delivery systems.

Nanotechnology progress has resulted in the development of a novel type of heat
transfer fluid called NFs. In general, this fluid consists of nanoparticles that are evenly
distributed in a base fluid. Adding NPs to the base fluid is claimed to enhance the thermal
properties of the NF. Consequently, it has become the subject of research for numerous
applications, including drug delivery and hyperthermia. An innovative NF was developed
by Lima et al. [209], employing a flow-focusing technique. The researchers created magnetic
PDMS microparticles by combining magnetic iron oxide nanoparticles with the elastomer
pre-polymer. This NF has the potential to address critical issues related to the minimization
of cluster formation and enhance the stability of the NFs. Figure 9 illustrates numerous
trajectories of magnetic PDMS microparticles, exhibiting an upward trend in velocity as the
microparticles approach the magnetic needle.
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6. Conclusions

During the last 20 years, the use of PDMS to develop devices at both macro and micro
scale levels has become a popular material due to the advantages it offers over conventional
materials, including low cost, excellent optical transparency, easy-to-manufacture, and the
ability for portable point-of-care devices. In addition, a distinctive advantage of the PDMS
is its permeability to gases and, in this way, the ability to culture cells in closed channels,
a task impossible to achieve in glass and other polymeric channels. The most critical
limitation of PDMS is its hydrophobic nature, which increases the flow resistance and may
limit some bioflow transport phenomena applications. Hence, in order to overcome such
limitations, simple, fast, and effective treatments have been proposed to modify the surface
of the PDMS into hydrophilic.

Despite being in its early stages of development, organ-on-a-chip models will advance
further and become the most suitable method for assessing multifunctional drug delivery
nanoparticles in the near future. In this way, PDMS will play a crucial role by integrating
microfluidics in nanoparticle drug delivery testing.

Recent works performed with PDMS hyperbolic-shaped microchannels have demon-
strated that by using this approach, it was possible to detect small mechanical changes in
the RBCs’ deformability, a task not possible by using conventional methods.

The successful use of PDMS microchannels to replicate the circulatory system shows
promise as a suitable application for investigating cardiovascular disorders. The exceptional
hyperelastic properties and transparency of PDMS make it the preferred material for these
specific applications. However, the hydrophobic characteristic of PDMS can also be a
limitation, both in terms of blood flow and when attempting to cultivate endothelial cell
cultures on its surfaces. Moreover, PDMS is crucial in the context of medical implant
applications, primarily because of its biocompatible and hydrophobic characteristics. These
attributes facilitate the creation of antimicrobial coatings for implants, which is an essential
criterion in implant development. PDMS can also facilitate the creation of smooth surfaces
using microfabrication techniques, which helps implant osseointegration in the body.

In summary, PDMS continues to offer innumerous opportunities to make significant
advancements and developments in biomedical applications. As future work, it is im-
portant to continue investigating more methods to reduce the PDMS hydrophilic nature.
Hence, it is crucial to create new techniques or enhance those that already exist in order
to achieve a higher permanent hydrophilicity of PDMS. In this way, the formation of air
microbubbles within PDMS microfluidic devices is more unlikely to appear.
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