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Abstract

Alzheimer’s disease (AD) is a complex disease with its genetic etiology not fully understood. Gene network-based methods have been
proven promising in predicting AD genes. However, existing approaches are limited in their ability to model the nonlinear relationship
between networks and disease genes, because (i) any data can be theoretically decomposed into the sum of a linear part and a nonlinear
part, (ii) the linear part can be best modeled by a linear model since a nonlinear model is biased and can be easily overfit, and (iii)
existing methods do not separate the linear part from the nonlinear part when building the disease gene prediction model. To address
the limitation, we propose linear model-integrated graph convolutional network (LIMO-GCN), a generic disease gene prediction method
that models the data linearity and nonlinearity by integrating a linear model with GCN. The reason to use GCN is that it is by design
naturally suitable to dealing with network data, and the reason to integrate a linear model is that the linearity in the data can be
best modeled by a linear model. The weighted sum of the prediction of the two components is used as the final prediction of LIMO-
GCN. Then, we apply LIMO-GCN to the prediction of AD genes. LIMO-GCN outperforms the state-of-the-art approaches including GCN,
network-wide association studies, and random walk. Furthermore, we show that the top-ranked genes are significantly associated with
AD based on molecular evidence from heterogeneous genomic data. Our results indicate that LIMO-GCN provides a novel method for
prioritizing AD genes.
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Introduction
Alzheimer’s disease (AD) is a complex neurodegenerative dis-
order. AD is highly genetic, with estimated heritability ranging
between 60 and 80% [1]. However, its genetic etiology remains not
fully understood. Predicting novel AD risk genes plays an essential
role in advancing our understanding of AD mechanisms. Genome-
wide association studies (GWAS) represent a major approach for
identifying risk variants or genes. So far, a number of AD risk
genes have been identified, including ABCA7, BIN1, TREM2, and
CR1. For example, Jansen et al. performed a GWAS meta-analysis
and identified 29 risk loci involving potential causative genes,
such as ADAMTS4, CLNK, KAT8 [2]. The identified genes are found
to be strongly expressed in immune-related cell types such as
microglia and are enriched in pathways including lipid processing
and degradation of amyloid precursor proteins. Very recently,
Bellenguez et al. developed a two-stage GWAS with diagnosed or
proxy AD cases and matched controls. A total of 49 new risk loci
such as SORT1 and ANK3 are identified [1].

GWAS aim at identifying genetic variation associated with
diseases, without considering the information of other types of
genomic data such as transcriptomic and proteomic data. Func-
tional Gene Networks (FGNs), which can integrate heterogeneous

genomic data, were utilized to predict disease genes [3–8]. For
example, Krishnan et al. proposed a machine learning approach
that utilized a brain-specific FGN to predict the associated genes
of autism spectrum disorder (ASD) [6]. In this approach, they
first constructed a brain-specific FGN that models the interaction
among genes and then used a linear support vector machine
to learn the relationship between networks and disease genes
from a training set of ASD risk genes. To capture the nonlinear
relationship between FGNs and disease genes, a tree-based model
was used to build disease gene prediction model in our previous
work(Lin et al., 2022). As a nonlinear method that can also uti-
lize the structural information of networks, graph convolutional
network (GCN) can be used for disease gene prediction and was
proven to be competitive [9–12].

The way to model the data nonlinearity plays a key role in
the performance of disease gene prediction models. We reason
that the above methods still have limitations in their ability to
model the nonlinear relationship between FGN and disease genes,
because (i) any data can be theoretically decomposed into the sum
of a linear part and a nonlinear part, (ii) the linear part can be best
modeled by a linear model because a nonlinear model is biased
and can be easily overfit, and (iii) the above methods simply use
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a nonlinear algorithm to build a model without separating the
linear part from the nonlinear part. To address the limitation, we
propose linear model-integrated GCN (LIMO-GCN), which com-
bines a GCN and a linear neural network to separately model the
nonlinear and the linear part in real-world data. The motivation of
this method is 2-fold. First, GCN is by design a nonlinear method
and is naturally suitable to exploit the nonlinear graph structure
of gene networks. Second, the linear neural network is used to best
handle the linearity.

In this work, we first describe the algorithm of LIMO-GCN.
Second, we apply LIMO-GCN to build a model for predicting
AD genes. We benchmark our method with the state-of-the-art
approaches used for predicting AD risk genes. The experiments
show that our method performs better through cross-validation.
Third, to prioritize novel AD genes, the developed model is used
to score all other genes that are not in the training set. We show
that the top-ranked genes are significantly associated with AD
based on various molecular evidence, including GWAS, known AD
pathways, and biological processes. Taking together, our results
show that the proposed method could be valuable for prioritizing
AD genes.

Materials and methods
Data collection and preprocessing
AD risk genes
In this work, we use a curated set of AD risk genes obtained from
our previous study [7]. Briefly, these genes are hand-curated high
risk AD genes, which are from multiple disease gene databases,
including OMIM [13], GWAS Catalogue [14], AlzGene [15], AlzBase
[16], and DisGeNet [17]. The dataset contains 147 positive (AD-
associated) genes. The genes are publicly available from https://
github.com/genemine/ADBrainNexus.

Genes not associated with AD
After removing all possible AD-associated genes from disease
gene databases(OMIM, GWAS Catalogue, AlzGene, AlzBase, Dis-
GeNET, and OpenTarget [18]), we collected 3866 genes as negative
(non-AD associated) reservoir.

In previous papers, some opted to model the same number of
negative samples (random genes or genes not associated with AD)
with that of positive samples (AD risk genes) [19, 20], while others
considered using all irrelevant genes as negative samples [21, 22].
However, there is no conclusion on which approach is superior.

In this paper, we test the different ratios of positive and nega-
tive samples at 1:1,1:5,1:10,1:20, and also consider all 3866 irrele-
vant genes as negative samples. We select the optimal negative
sample number by comparing the counts of positive samples
among the top K (100, 200, 500, 1000) genes.

Adjacency matrix and feature matrix
The feature matrix of the genes includes protein–protein inter-
action networks from STRING database [23], AD-specific FGN
(ADFGN) [7], and molecular signatures [24] like chemical and
genetic perturbations and molecular function from the Human
Molecular Signatures Database (MSigDB) [24]. Pathways with size
smaller than 5000 are considered to build the feature matrix. For
the PPI data from STRING database, we obtained the interaction
strength score (which is not a binary value but a continuous
value), and used this score in the feature matrix construction. The
molecular signatures in the MSigDB database are digitalized into
a matrix of 0 or 1, with 1 meaning that the gene is annotated to
the corresponding signature and 0 not. There are 15505, 15485,

and 5237 features generated from STRING, ADFGN, and MSigDB,
respectively.

GCN requires as input an adjacency matrix. In this work, the
adjacency matrix is obtained from the ADFGN constructed in our
previous network[7]. After removing those genes with all edge
weights lower than 0.05, there are totally 15 485 genes in the
ADFGN. We use ADFGN as the adjacency matrix.

Methods
The architecture of LIMO-GCN is designed to contain two com-
ponents: a linear model that learns the data linearity and a GCN
that learns the data nonlinearity. The motivation of LIMO-GCN
is 2-fold. First, the real-world data can be thought of as the sum
of a linear part and a nonlinear part. Second, we assume that
the linear part could be better modeled by a linear model rather
than a nonlinear model. So, we use a linear layer to learn a linear
model and a GCN to learn a nonlinear model. The outputs of these
two models are combined as the final output of LIMO-GCN. The
corresponding framework of LIMO-GCN is shown in Fig. 1.

The inputs of LIMO-GCN are described as below. LIMO-GCN
requires a network as input in addition with a feature matrix.
Given a gene network, let A and D denote the adjacent matrix and
degree matrix, respectively. Let Xdenote an n×p feature matrix of
n genes in rows and p features in columns. Let y denote a n × 1
vector of prediction scores, where higher scores for genes suggest
a stronger association with AD. The algorithm of LIMO-GCN is
described in detail in the following.

Modeling data linearity using a linear model
A linear neural network is introduced to learn the linear relation-
ship between X and y. The input layer contains p neurons. The
network transforms the input data to a lower dimensional latent
space and outputs a probabilistic value y1. The larger the value is,
the more likely the input gene is associated with AD.

Modeling data nonlinearity using a GCN
FGNs are graph structured data, with nodes representing genes
and edges representing co-functional probability between two
genes. GCN is designed to model graph data and has been proven
powerful in the field of classification tasks such as image clas-
sification [25], text classification [26], disease classification [27].
Therefore, we choose GCN to model the data nonlinearity.

GCN takes a network represented by the adjacency matrix A
and a feature matrix X as input. Given these two inputs, GCN is
applied to learn low-dimensional embedding of each gene. In a
GCN layer, the input feature vector of a given gene is computed
as the sum of the weighted combination of its neighbors defined
in A, thus achieving the effects of utilizing neighbor information.
Mathematically, this process can be expressed as follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W(l)

)
(1)

where Ã = A + I, which is the adjacency matrix of graph, I is
an identity matrix, D is a diagonal matrix, W(l) is the trainable
weight matrix of the lth layer, and σ is the activation function. H(l)

is the matrix of activations of the lth layer, when l = 0, H(0) = X.
Based on the above formula, it can be found that using a single
GCN layer contains the first-order neighbor information, and
using two GCN layers will incorporate the information of second-
order neighbors, and so far. As graph convolution is essentially a
smoothing process, too many layers may result in over-smoothing,
i.e. loss of sample-specific information. In this work, we choose to
use two GCN layers, which is a common practice in this field.
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Figure 1. Framework of LIMO-GCN. (A) The input of LIMO-GCN. It contains an adjacency matrix generated from AD-specific FGN and a feature matrix
X, which is comprised of PPI from STRING database and molecular signatures from MSigDB. (B) The linear model of LIMO-GCN. (C) The GCN model of
LIMO-GCN. (D) The output of vector y is taken as predicted score. Gene with a darker color indicates a higher association score with AD.

The GCN layer is followed by a fully-connected (FC) layer for
classification. For each gene, the FC layer finally outputs proba-
bilistic value y2, measuring the likelihood that the input gene is
associated with AD.

Integration of linear model and GCN
LIMO-GCN computes the final output, denoted by y, as the
weighted sum of y1 from the linear model and y2 from GCN as
following:

y = αy1 + (1 − α)y2 (2)

where α is a weight parameter in the range of [0, 1], which needs
to be specified by the user. α = 1 indicates using linear model,
α = 0 indicates using only GCN model, and α ∈ (0, 1) means
the combination of a linear model and a GCN. In LIMO-GCN, we
choose the cross entropy with L1 loss as the loss function for
training the model. The loss function can be expressed as follows:

loss(f (x), y) = −λ

n∑
i=1

log
(
f (x)[y]

) + (1 − λ)

n∑
i=1

∣∣f (x) − y
∣∣ (3)

We implemented LIMO-GCN using the pyTorch framework [28].
The LIMO-GCN is developed with GCNs in PyTorch [29] by com-
bining the module of linear neural network. The source codes
are publicly available on GitHub (https://github.com/CuixiangLin/
LIMO-GCN).

Benchmark methods
We compare LIMO-GCN with state-of-the-art methods for predict-
ing AD genes. These methods include random walk with restart on
multiplex-heterogeneous graphs (RWR-MH) [30], GenePlexus [31],
ADFGN modeled by ridge regression (ADFGN-RR) [7], GCN-GENE
[11], Gene set integration (GSI) [19], DISHyper [32] methods are
described below.

RWR-MH extended the RWR algorithm from single network
to multiplex and heterogeneous networks [30]. GenePlexus [31]
is a web server for disease gene prediction based on network-
based machine learning method. It provides researchers options

of networks including BioGRID, STRING, STRING-EXP, and GIANT-
TN. The corresponding tool PyGenePlexus was then developed for
users to train model on their need [33]. ADFGN-RR constructs an
AD brain-specific functional gene network (ADFGN) by integrat-
ing AD brain omics data and uses ridge regression to score the
association between genes and disease [7]. GCN-GENE [11] was
proposed to predict disease-related genes by utilizing GCN. Gene
set integration (GSI) utilizes biological data like pathways and
annotated gene set to predict brain disease genes [19]. DISHyper
integrates annotated gene sets to predict disease genes based on
hypergraph [32].

Evaluation metrics
We employ 5-fold cross-validation to obtain the prediction results.
To ensure a fair comparison with state-of-the-art methods, we
maintain consistency in the training and test sets across these
methods. The prediction results for unknown genes are derived
from the average of the results from the 5-fold cross-validation.
For labeled genes, we model the training set, predict scores for
the test set, and then aggregate the predicted results from the five
test sets.

We first use AUROC (area under receiver operating charac-
teristic curve) and area under precision recall curve (AUPRC) to
evaluate the effectiveness of different prediction methods. The
ROC curve is drawn with true positive rate (TPR) as the y-axis and
false positive rate (FPR) as the x-axis. The PR curve is drawn with
precision as the y-axis and recall as the x-axis. The definitions of
TPR, FPR, precision, and recall are as follows:

TPR = TP
TP + FN

(4)

FPR = FP
FP + TN

(5)

Precision = TP
TP + FP

(6)

Recall = TPR (7)

where TP is true positive, FP is false positive, TN is true negative,
and FN is false negative.

https://github.com/CuixiangLin/LIMO-GCN
https://github.com/CuixiangLin/LIMO-GCN
https://github.com/CuixiangLin/LIMO-GCN
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https://github.com/CuixiangLin/LIMO-GCN


4 | Lin et al.

Second, we compare their performance through precision@K,
which is defined as below.

precision@K = TP
K

(8)

In addition, we test the top K genes for enrichment in AD risk
genes using the binomial test. The P-value of Fisher’s exact test is
shown below.

p(r) = n! pr(1 − p)(n−r)

r! (n − r)!
(9)

. n: the sample size (e.g. all genes in the genome or all genes
tested in the experiment).

. p: the expected proportion (p= K
n ).

. r: the number of AD risk genes ranked in top K.

The evaluation metrics above are aimed at containing known
AD risk genes in the whole prediction. We also evaluate the asso-
ciation with AD of top-ranked genes after excluding known AD
risk genes. The assessment methods encompass various types of
evidence, including novel genes (not included in training datasets)
from DisGeNET, novel genes from GWAS, associated SNPs with AD,
literature evidence, differential expression, differential methyla-
tion, alterations in cognitive function, and clinical severity.

Results
Comparison of LIMO-GCN with the
state-of-the-art methods
We test our model using different proportions of 1:1, 1:5, 1:10, 1:20,
and all negative samples.

For each proportion, we select 20 sets of negative samples
randomly from 3866 negative samples, and take the average of
the number of AD risk gene predicted in the corresponding topK.
We compare the results according to numbers of AD risk genes
in the top K (100, 200, 500, 1000) ranked genes. The results imply
that considering all negative samples into our model is superior
among all tests(Fig. 2). Besides, we also test the state-of-the-art
methods using the different ratios (Supplementary Fig. 1). Take
KAD in top-500 genes for example, GSI and GenePlexus achieve the
best performance when the ratio is 1:10. For ADBN-RR, it is 1:20.
For DISHyper and GCN-GENE, they achieve the best performance
when the ratio is 1:1. Among methods and all ratios, the best
performance is achieved by LIMO-GCN at the ratio of 1: all.

We compare LIMO-GCN with the state-of-the-art methods in
predicting AD genes. First, we compare the prediction perfor-
mance of the proposed method with benchmarking methods
including RWR-MH, GenePlexus, ADFGN-RR, GSI, GCN-GENE, and
DISHyper using AUROC and AUPRC. The AUROC and AUPRC of
LIMO-GCN are 0.943 and 0.728, respectively. We also compare
the model performance of LIMO-GCN under the parameters of
α=0, 0.9, 1 and λ=0.4. The results of LIMO-GCN (α=0.9, AUROC=
0.943, AUPRC= 0.728) outperform when the model only contains
GCN module only (α=0, AUROC= 0.806, AUPRC= 0.264) and linear
module only (α=1, AUROC= 0.940, AUPRC= 0.704). Besides, the
results also indicate that LIMO-GCN has better performance than
GCN-GENE, GSI, ADFGN-RR, DISHyper, RWR-MH, and GenePlexus
(Fig. 3A and B).

The results in Fig. 3A and B can be used to illustrate the
advantage of separating linear and nonlinear part of the data.
First, taking GCN-GENE (a nonlinear method) and GSI (a linear

Figure 2. The performance of different proportions of negative samples in
model.

method) as examples, their performance is not as good as LIMO-
GCN which models the linear and nonlinear part in the data sep-
arately. Furthermore, specifically for LIMO-GCN, we also provide
the results of both the linear model (i.e. LIMO-GCN with α=1) and
the fully nonlinear model (i.e. LIMO-GCN with α=0) (Fig. 3A and
B); it can be found that neither the model with α=0 nor the model
with α=1 performs better than LIMO-GCN. This result shows that
separating the linear part and the nonlinear part is useful for
improving disease gene prediction.

Second, we evaluate their performance using No. of AD risk
genes in topK and precision@K. No. of AD risk genes in top 100 for
LIMO-GCN, DISHyper, RWR-MH, GenePlexus, ADFGN-RR, GSI, and
GCN-GENE is 37, 26, 8, 12, 11, 15, and 9, respectively. The results
of No. of AD risk genes in topK and precision@K show that LIMO-
GCN outperforms the other methods (Fig. 3C and D).

Third, we evaluate their performance through enrichment
analysis of top-ranked genes in AD risk genes. The enrichment
analysis of top-ranked genes indicates that the top-ranked genes
predicted by LIMO-GCN are more significantly enriched in the
AD risk genes compared to the results predicted by the other
methods (Table 1). We first check the numbers of AD risk genes in
top 50, top 100, top 200, and top 1000 genes in the predicted results
(It should be noted that the scores of labeled genes are derived
from the prediction of the test set. Supplementary Table 1). We
observe that there are 24 genes labeled AD risk genes in top 50.
Among these genes, APOE, APP, PSEN1, CLU, and BIN1 rank in
the top five. We set 0.01 as the expected proportion according to
the given condition(147 AD risk genes versus 15 485 genes). We
then conducted binomial tests for these four types of top K. Their
corresponding results are shown in Table 1.

Influence of parameters on LIMO-GCN
performance
We first test the influence of the parameters of LIMO-GCN in
predicting AD-associated genes by using all negative samples
(Fig. 4). LIMO-GCN has two important parameters α and λ. α is the
weight to combine the linear module and the GCN module. α is in
the range of [0, 1]. λ is a parameter to balance cross entropy and L1
loss in our loss function. In our study, we conducted experiments

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
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Figure 3. Comparison of LIMO-GCN (α=0, 0.9, 1 with λ=0.4) with the state-of-the-art methods. (A) The area under the ROC curves of LIMO-GCN and other
methods. (B) The AUPRC of LIMO-GCN and other methods. Comparison from No. of AD risk genes in topK and Precision@K. (C) Comparison of No. of AD
risk genes in topK (KAD stands for the number of AD risk genes in top K ranked genes.). (D) Comparison of Precision@K of LIMO-GCN and other methods.

by varying the parameter α in steps of 0.1 and λ in steps of 0.2
(λ,α ∈ [0,1]). We perform the experiments at default setting of
learning rate, weight decay, number of hidden units, and drop out
at 0.0001, 0.0001, 128, and 0.8, respectively.

Different values of α and λ are tested and the results of all
experiments are shown in Fig. 4A–C. First, we fix the value of λ

to observe the performance of models with the change of α from
0 to 1. Taking λ = 0.2 for example, the AUROC increases when α

is from 0 to 0.9 and then drops. When α = 0 (the model takes the
module of GCN only), its AUPRC score is 0.223. When α = 1(the
model only contains fully linear layers), its AUPRC score is 0.589.
Second, we fix the value of α to observe the change of performance
in different λ. We observe that there is poor performance when
both λ is 0 and 1. And when the value of λ approximates into the
range of 0.4 and 0.6, the model performs better than λ in the other
values. For the evaluation metric of AUROC, AUPRC, and KAD(K =
100), the model performs best when λ = 0.4 and α = 0.9, the AUROC
and AUPRC are 0.943 and 0.728, respectively.

Then, the performance of different ratios (1:1, 1:5, 1:10, 1:20)
between positive and negative is also tested (Supplementary
Fig. 2). Based on these results, we find that the best results are
most often achieved at the above used optimal α and λ values (i.e.
λ= 0.4 and α=0.9) are close to the optimal values.

By systematically varying parameters, we can observe how
different values affect the results and identify the optimal value
that yields the best performance. This approach helps us to
understand the sensitivity of our method to the parameters and
provides insights into its influence on disease gene prediction.
Through these experiments, we aim to gain a comprehensive
understanding of the relationship between parameters and

prediction performance, enabling us to make informed decisions
about the parameter selection in our method.

LIMO-GCN predicts AD risk genes more
accurately based on four independently collected
AD-associated gene sets.
We collect four AD-associated gene sets as validation data that
do not contain any of the AD risk genes (liked those used earlier
in Figs 2 and 3) used to build the prediction modeling. There
are 123 genes (score >0.3) associated with AD from DisGeNet. In
addition, 190, 115, and 95 AD-associated genes were reported in
three recent GWAS studies [1, 34, 35]. After removing those that
are already in the training data, 65 (DisGenet), 92 (Sherva et al.),
60 (Dalmasso et al.), and 49 (Bellenguez et al.) novel risk genes are
finally obtained, respectively. These novel genes can be used as
independent data for validating the predictions of LIMO-GCN. We
can observe that they share very few novel genes between genes
from DisGenet and genes from GWAS studies (Fig. 5A). Besides, we
find that Sherva et al.’s GWAS [34] focused on the rate of cognitive
decline in AD, whereas the other two studies focused on AD
diagnosis [1, 35]. This might be the reason of Sherva et al.’s GWAS
sharing few genes with the other two studies. Novel genes from
the study by Sherval et al. [34] only share ADAM17 and ADAMTS1
with genes from DisGenet. MAF is the only gene shared together
by novel genes from these three GWAS studies. We observe that
there are 65 genes overlapped with these four independently
collected AD-associated gene sets together (Fig. 5A).

We then evaluate the association of the top-ranked genes
with AD using the decile enrichment test [4], which is based
on binomial test, to validate the association of the top-ranked

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
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Figure 4. (A) AUROCs of LIMO-GCN in different parameters (the results are generated by using all negative samples). Comparison of different parameters
influencing on LIMO-GCN performance. We systematically varied these parameters to understand their impact and identify the optimal settings for
our disease gene prediction task. α indicates the weight of GCN modules in the model. λ is to balance the loss function by combining L1 loss and
cross-entropy loss. (B) AUPRCs of LIMO-GCN in different parameters. (C) No. of AD risk genes (KAD) in training data among top 100 ranked genes under
different parameters.

Figure 5. Top-ranked genes predicted by LIMO-GCN are more accurate based on four independent AD-associated gene sets. (A) The Venn diagram shows
the overlap among four independent AD-associated gene sets. (B) Enrichment analysis on top ranked genes obtained by different prediction methods in
novel genes from DisGenet. (D) Enrichment analysis on top ranked genes obtained by different prediction methods in 92 novel GWAS genes identified
by Sherva et al.. (E) Enrichment analysis on top ranked genes obtained by different prediction methods in 60 novel GWAS genes identified by Dalmasso
et al.. (F) Enrichment analysis on top ranked genes obtained by different prediction methods in 49 novel GWAS genes identified by Bellenguez et al.

genes with AD. The result reveals that the top-ranked genes
(top 1000 genes after eliminating labeled genes) are significantly
enriched in the independent validation sets of novel genes (P-
value = 6.58 × 10−21,Fig. 5B; P-value = 2.94 × 10−7, Fig. 5C; P-value
= 1.31 × 10−6, Fig. 5D; P-value =1.20 × 10−6, Fig. 5E). Besides, we
also compare with the results obtained by the other methods.
It shows that the top-ranked genes obtained by LIMO-GCN
are more significantly enriched in the novel genes than the
other methods (Fig. 5). In detail, we provide detail information
of some genes in the top-ranked GWAS genes by our method
(Table 2).

We investigate the predictive power of LIMO-GCN on indepen-
dent genes from GWAS studies and DisGeNet in the perspective of
AUROC and AUPRC. First, we select the GWAS summary statistics
of the Bellenguez C GWAS study [1] as a GWAS predicted method
for comparison (the GWAS summary statistics of the other two
GWAS studies are not available). For the other two GWAS studies
[34, 35], the significant associations are used to generate an
independent dataset of AD-associated genes (with any gene that
is in the training data removed). In this way, we collect 151
genes with suggestive association evidence with AD and randomly

select 151 genes (not in training set) as negative samples. After
repeating the selection of negatives for 100 times, we calculate
AUROCs and AUPRCs for all these methods (Supplementary Fig.
3A and B). Among these methods, LIMO-GCN achieves the best
performance. Second, we also compare the predictive power of
the methods in predicting another set of 65 AD-associated genes
collected from DisGeNet as positives, and we randomly select 65
genes as negatives for 100 times (Supplementary Fig. 3C and D).
The result indicates that LIMO-GCN performs better in predicting
AD-associated genes from DisGeNet too.

The predicted genes by LIMO-GCN show
significant association with AD-associated
biological processes and AD traits
To gain the biological function, we perform GO enrichment anal-
ysis of the top-ranked genes by PANTHER [36]. The genes in the
top-ranked list are enriched in AD-associated biological processes
[7, 37] (Supplementary Table 2). The most significant enriched AD-
associated biological processes [37] include immune response-
regulating signaling pathway (GO:0002764, FDR = 1.41 × 10−84),
modulation of chemical synaptic transmission (GO:0050804,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
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Table 2. The genes supported by independent GWAS

Gene Score SNP P-value

EGFR 0.9971 rs76928645 2.0 × 10−10

LDLR 0.9934 rs2569540 1.0 × 10−9

GRB2 0.9894 rs55994995 1.0 × 10−6

SORT1 0.9886 rs141749679 8.0 × 10−9

TLR4 0.9792 rs1927914 1.0 × 10−6

HLA-DQA1 0.9718 rs6605556 7.0 × 10−20

SCN2A 0.9709 rs111535588 5.0 × 10−8

CTSB 0.9556 rs1065712 2.0 × 10−9

GRN 0.9488 rs5848 2.0 × 10−20

ADAM17 0.9446 rs72777026 3.0 × 10−8

MME 0.9381 rs61762319 2.0 × 10−11

MAF 0.9267 rs450674 3.0 × 10−8

SPI1 0.9212 rs10437655 5.0 × 10−14

ABCB1 0.9177 rs28381924 5.0 × 10−8

MSR1 0.9139 rs6985143 3.0 × 10−8

BLNK 0.9035 rs6584063 7.0 × 10−11

LILRB2 0.9004 rs587709 4.0 × 10−11

Note: These genes are not included in training data.

FDR = 1.11 × 10−67), regulation of trans-synaptic signaling
(GO:0099177, FDR = 1.50 × 10−67), cognition (GO:0050890, FDR =
1.72×10−33), learning or memory (GO:0007611, FDR = 1.28×10−31),
response to amyloid-beta(GO:1904645, FDR = 6.47 × 10−29), etc
(Supplementary Table 2).

In addition, we evaluate the association of the set of top-ranked
genes with AD traits including CERAD, Braak Stage score, and
CDR (clinical dementia rating scale) using an eigengene-based
approach, which is to evaluate how a set of genes are associ-
ated with diseases/traits [7, 38]. The results show that the top
ranked genes are significantly associated with the three AD traits:
the CERAD, Braak Stage score, and CDR score (Supplementary
Fig. 4).

Functional module analysis
Motivated by the observation that disease-associated genes often
form modules [39], we investigate the functional module for top-
ranked genes using a previously established approach [6]. First,
we extract a subnetwork from ADFGN by including only the
curated AD risk genes and the first decile ranked genes. Second,
we identify network modules by applying the GLay community
detection algorithm using Cytoscape. In this work, we consider
those modules with more than 25 genes. In this way, we obtain
five major modules, called M1, M2, M3, M4, and M5 (Fig. 6), which
contain 616, 140, 191, 184, and 35 genes (Supplementary Table 3),
respectively.

The genes in M1 are significantly enriched in familiar AD-
associated pathways, which include immune response, cellular
response to amyloid-beta, cognition, learning or memory, MAPK
cascade, circadian rhythm, response to insulin, angiogenesis, and
axonogenesis. The immune response plays a significant role in the
pathogenesis and progression of AD [40]. In response to amyloid-
beta plaques, microglia become chronically activated [41]. Under-
standing the complex interplay between the immune response
and AD is crucial for developing effective therapeutic strategies
aimed at modulating neuroinflammation and protecting neu-
rons from immune-mediated damage. The second module (M2) is
about vesicle-mediated transport in synapse and synaptic vesicle
recycling. Synaptic vesicle recycling is essential for maintain-
ing synaptic transmission and plasticity, and its dysfunction has

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
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Figure 6. The functional modules enriched in the top-ranked genes. First, a subnetwork is extracted from ADFGN by including only the curated AD risk
genes and the top-ranked genes. Second, the functional modules are obtained by applying the GLay community detection algorithm using Cytoscape.
The five major modules are labeled with M1, M2, M3, M4, and M5, respectively. Some of the most significant enriched functions for each module are
listed.

been implicated in AD [42]. Researchers observed that synap-
tic activity influences amyloid-beta levels in the brain inter-
stitial fluid, suggesting a link between synaptic vesicle recy-
cling and amyloid-beta metabolism [42].The M3 module shows
significant enrichment in transport across blood-brain barrier
(BBB), regulation of amyloid-beta formation, response to acetyl-
choline, glutamate receptor signaling pathway, and blood circu-
lation. AD is associated with increased BBB permeability, which
can allow potentially harmful substances to enter the brain and
contribute to neuroinflammation and neuronal damage [43]. BBB
dysfunction can lead to impaired clearance and increased influx
of amyloid-beta, contributing to its accumulation in the brain.
Understanding these mechanisms provides valuable insights for
developing therapeutic strategies to protect BBB integrity and
enhance amyloid-beta clearance in AD [44]. Acetylcholine is a
neurotransmitter that plays a crucial role in various brain func-
tions, including learning, memory, and attention. AD patients
tend to have low levels of acetylcholine [45]. Module 4 (M4) is
significantly enriched in cytokine-mediated signaling pathway,
response to chemokine, and amyloid-beta clearance. Cytokines
are involved in the neuroinflammatory response and can influ-
ence the clearance of amyloid-beta plaques, which are a hallmark
of the diseaseAlterations in chemokine receptor expression have
been observed in the brains of AD patients, indicating a dys-
regulation of chemokine signaling in the disease [46]. The path-
ways enriched in M5 include sulfur compound metabolic process,
DNA modification, DNA methylation, methionine biosynthetic
process, and homocysteine metabolic process. Sulfur-containing
compounds have been studied for their potential effects on AD.
Researchers focus on the therapeutic potential of sulfur com-
pounds, including their antioxidant and metal-chelating proper-
ties in the treatment of AD [47]. Sulfur compounds have been
shown to influence DNA modification and DNA methylation.
Studies show that both methionine and homocysteine are risk
factors of AD [48, 49]. These findings indicate that the genes
in each module are associated with AD. Further research and

investigation are needed to fully understand the implications of
these enriched biological processes in AD.

Case studies on top-ranked genes
In this section, we conduct case studies on top-ranked genes,
including those with AD genetic variation records from GWAS and
without such association.

We first investigate the AD-relevance of the top-ranked genes
with AD genetic variation through transcriptomic analysis. These
genes are EGFR [1], GRB2 [34], TLR4 [50], and MAPK1. To reveal
their association with AD, we perform transcriptomic analysis
by utilizing independent data from the Mount Sinai Brain Bank
(MSBB) study [51]. First, we conduct significant test of correlation
between gene expression and phenotypes including Braak stage
score, CDR, and CERAD. Next, we perform t-test of methylation
level of corresponding CpG sites of genes between control and
AD patients from MSBB study. The results show that these three
genes have significant correlation with neuropathological and
clinical traits (Fig. 7). For example, EGFR shows higher expres-
sion in AD patients and its corresponding methylation CpG sites
including cg15261730 and ch.7.1264585R appear in lower level
in AD patients (Fig. 7A). In addition, GRB2, TLR4, and MAPK1
are also significantly associated with AD phenotypes and their
corresponding CpG sites show significant higher or lower levels
(Fig. 7B–D).

For genes with high rankings and no AD genetic variation
records from the GWAS database, we selected the top 10
candidates (TNF, ALB, MMP9, AKT1, JUN, STAT1, CD4, FYN,
INS, TNFAIP3) for AD neuropathological analysis and literature
validation (Supplementary Table 4). We first analyze these genes
for association with AD from neuropathological traits of MSBB.
We observe TNF, ALB, and INS are not in the gene list of MSBB
and the other seven genes show their relevance with AD at least
one neuropathological trait (Supplementary Figs 5, 6 and 7). Then
we conducted literature validation analysis on these genes of
their association with AD (Supplementary Table 4). For example,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae611#supplementary-data
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Figure 7. The association analysis of EGFR2, GRB2, and TLR4 with AD from neuropathological traits and methylation perspectives. (A) Significant test of
correlation between EGFR gene expression and Braak Stage score, CDR, CERAD, and differential methylation of cg15261730 and ch.7.1264585R, which
are EGFR CpG sites. (B) Significant test of correlation between GRB2 gene expression and Braak Stage score, CDR, CERAD, and differential methylation of
cg20863284 and cg24004692, which are CpG sites of GRB2. (C) Significant test of correlation between TLR4 gene expression and Braak Stage score, CDR,
CERAD, and differential methylation of cg02515422 and cg08902905, which are TLR4 CpG sites. (D) Significant test of correlation between MAPK1 gene
expression and Braak Stage score, CDR, CERAD, and differential methylation of cg00014104 and cg00560428, which are MAPK1 CpG sites.

TNF has been implicated in the pathogenetic processes of AD
[52–54] and elevated levels of TNF have been detected in the
serum and cerebrospinal fluid (CSF) of AD patients [55]. Besides,
TNF inhibitors may slow cognitive decline and enhance daily
activities in patients with AD [56].

Discussion
We develop a GCN-based method, namely LIMO-GCN. The feature
of this method is that it is able to simultaneously learn the linear-
ity and nonlinearity of the data. The motivation is the linearity
in a data could be better modeled by a linear model rather than
a nonlinear model because a nonlinear model is theoretically
biased from linear model. Using this approach, we train a model to
predict AD risk genes. Using a curated dataset of AD risk genes, we

show that LIMO-GCN outperforms conventional GCN and other
state-of-the-art approaches in predicting AD genes based on 5-
fold cross-validation. We focus on the top-ranked genes after
excluding any gene in the training data. The predicted genes are
found to be more significantly enriched in AD-associated path-
ways. Besides, these genes are significantly enriched in risk genes
identified in recent GWAS. The comparison with other methods
indicates that our prediction is more convincing. Furthermore,
we also provide functional module analysis showing that the
predicted genes are functionally clustered and associated with AD
biological processes.

Despite the performance, LIMO-GCN has the potential to be
improved. First, the feature data we currently considered include
the ADFGN network and biological processes. More feature data
can be included to better characterize genes. Second, regarding
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the method to integrate the knowledge in gene sets, we encode
each gene set simply into a binary vector without considering the
relationship between gene sets, such as GO terms and biological
pathways. In the future, more advanced methods such as biolog-
ical knowledge graph-based methods [57–59] can be considered
to make better use of gene sets. Third, the weight parameter
of the linear layer needs to be optimized by users. Designing a
method that can automatically select an optimal weight would
be interesting.

Although we focus on the prediction of risk genes, LIMO-
GCN can be directly extended to make more fine-grained predic-
tion, such as risk single nucleotide polymorphisms (SNPs). Public
domains have accumulated an abundant data for obtaining SNP
networks and SNP features, making it currently feasible to study
the prediction of risk SNPs. As SNP-level predictions complement
gene-level predictions, we anticipate that simultaneous predic-
tion at both SNP-level and gene-level may be interesting and may
enhance the performance of each other. We plan to study this
question in the future.

Although LIMO-GCN is applied to AD in this work, it can be
readily applied to other complex diseases like Parkinson dis-
ease and obesity as well, given the availability of disease risk
genes and related biological networks and the nonlinear relation-
ship between the biological network and risk genes. For exam-
ple, GWAS have identified a number of risk genes for ASD and
schizophrenia, making our proposed method readily applicable
to these diseases. We envision that LIMO-GCN could become a
valuable approach for understanding disease genetics and will be
gain more and more applications in the future.

Key Points

• We propose LIMO-CGN, which models both data linearity
and nonlinearity by integrating a linear model with GCN,
and it outperforms state-of-the-art methods.

• Multiomics datasets including PPI networks and molec-
ular signatures improve the performance.

• LIMO-GCN predicted novel candidate genes for AD accu-
rately. The association of top-ranked genes with AD was
validated using genetic, transcriptomic, and proteomic
data from multiple external datasets.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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