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Abstract: Cobalt oxide-based in-plane microsupercapacitors (IPMSCs) stand out as a favorable choice
for various applications in energy sources for the Internet of Things (IoT) and other microelectronic
devices due to their abundant natural resources and high theoretical specific capacitance. However,
the low electronic conductivity of cobalt oxide greatly hinders its further application in energy storage
devices. Herein, a new manufacturing method of electric discharging machining (EDM), which is
simple, safe, efficient, and environment-friendly, has been developed for synthesizing Mo-doped
and oxygen-vacancy-enriched Co-CoO (Mo@Co-CoO) integrated microelectrodes for efficiently
constructing Mo@Co-CoO IPMSCs with customized structures in a single step for the first time.
The Mo@Co-CoO IPMSCs with three loops (IPMSCs3) exhibited a maximum areal capacitance of
30.4 mF cm−2 at 2 mV s−1. Moreover, the Mo@Co-CoO IPMSCs3 showed good capacitive behavior
at a super-high scanning rate of 100 V s−1, which is around 500–1000 times higher than most reported
CoO-based electrodes. It is important to note that the IPMSCs were fabricated using a one-step
EDM process without any assistance of other material processing techniques, toxic chemicals, low
conductivity binders, exceptional current collectors, and conductive fillers. This novel fabrication
method developed in this research opens a new avenue to simplify material synthesis, providing a
novel way for realizing intelligent, digital, and green manufacturing of various metal oxide materials,
microelectrodes, and microdevices.

Keywords: cobalt oxide; in-plane microsupercapacitors; electric discharging machining; integrated
microelectrodes; Mo@Co-CoO

1. Introduction

In recent years, the Internet of Things (IoT) has led to the broad application of small-
size devices, which have become an integral part of daily life [1–5]. IoT enables the
connection of sensors and devices through networks to facilitate data sharing and exchange.
It encompasses a wide range of fields, including smart home technology, industrial au-
tomation, healthcare, transportation, agriculture, and more. By interconnecting devices,
IoT offers society more efficient, intelligent, and convenient services [6–9]. Typically, these
sensors should transmit data both remotely and periodically to achieve a sustainable and
long-lasting autonomous power supply. Triboelectric nanogenerators, solar cells, and
wind power are widely used to power these devices. However, as these periodic energy
sources are not able to store energy themselves, they require an additional unit for storing
energy [10–12]. Lithium-ion batteries seem to be a good option due to their high specific
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energy density. Unfortunately, the cycle life of lithium-ion batteries has not yet been signifi-
cantly extended by modern technology, resulting in frequent replacement of lithium-ion
batteries and high maintenance costs. Moreover, the limited natural source of lithium on
Earth furtherly restricts its broad applications [13–16]. In contrast, microsupercapacitors
(MSCs) have garnered broad interest from researchers because of their satisfactory advan-
tages of low operation costs, high safety, fast charging/discharging rate, long operating
life, and high-specific energy density. The electrode materials utilized in the fabrication
of supercapacitors could be classified into three separate categories based on their energy
storage mechanisms [5,17,18]: (1) The predominant class is carbon-related materials utiliz-
ing the electric double-layer capacitance mechanism for energy storage. (2) A fast Faraday
redox reaction is involved in the energy storage mechanism of conducting polymers (like
polypyrrole (PPy) and poly(3,4-ethylene dioxythiophene) (PEDOT)) and transitional metal
hydroxides/oxides. (3) Composite materials display characteristics of both electrostatic
double-layer capacitance and redox reactions. Currently, the development of MSCs is
limited by their low energy density. Researchers have made significant efforts to raise the
specific energy density of MSCs through the synthesis of advanced composite materials,
nanostructured materials, foreign element doping materials, and vacancy-enriched materi-
als [19–22]. Among the various electrode materials, transition metal oxides with relatively
high theoretical capacitance and good cyclic stability have attracted lots of attention from
researchers [23–25]. For instance, RuO2 is a transition metal oxide known for its high
electrochemical activity, high electronic conductivity, high theoretical capacitance, and
excellent cycling stability [26–28]. However, the high cost, limited natural reserves, and
toxic properties of RuO2 greatly hinder its broad application in MSCs. As a result, research
has sought alternative materials with similar properties. Recently, a number of alterna-
tive metal oxides have been developed, including MnO2 [29,30], MoOx [31], VO0.2 [32],
FeOx [33–36], CoO [37], ZnO [38], and NiO [39,40]. Among these metal oxides, CoO is one
of the highly promising materials for MSCs as it demonstrates excellent chemical stability
and high capacitance in theory [37]. Nevertheless, they encounter certain obstacles in
their practical applications, such as poor electronic conductivity of CoO. To address these
challenges, researchers are investigating various approaches, such as designing nanos-
tructured materials, integrating CoO with high-electronic conductivity materials (such as
graphene and carbon nanotube) to form composite materials, introducing foreign element
doping, or creating vacancy-enriched materials [17,41–43]. For example, Zhou et al. [44]
synthesized CoO with well-aligned nanowire nanostructure on three-dimensional Nickel
foam coated with polypyrrole (PPy) to achieve CoO/PPy composite electrodes. Benefiting
from the synergistic effect of nanostructured CoO and the high electronic conductivity of
PPy, these CoO/PPy composite electrodes obtained an excellent capacitance of 2223 F g−1

with good rate performance and remarkable capacitance retention of 99.8% (2000 cycles).
Gao et al. [45] also prepared graphene/Co/CoO nanocomposite fork-finger electrodes
via laser direct writing. These electrodes showed a capacitance of 420.23 mF cm−2 with
superior capacitance retention of 86.56% after 10,000 cycles. These results demonstrate that
MSCs fabricated with CoO-based composite electrodes possess remarkable specific capaci-
tance and impressive cycling stability. Liu et al. [25] synthesized a novel Cu0/Cu+-codoped
CoO composite, which demonstrated a notable strengthening in the capacitive performance
of the CoO electrode, as evidenced by the observed enhancement in the capacitance and
cycling stability. This improvement is attributed to the introduction of metal element
doping, which greatly increased the electronic conductivity of CoO materials. Recently,
Feng et al. [46] prepared CoO-based electrode materials with dual defects—Cu doping
and oxygen vacancies. The results demonstrated that the CoO-based electrode gained a
remarkably high capacitance value of 1389 F g−1 at 1 A g−1 and good capacitance retention
of 101% (10,000 cycles). The enhanced capacitive performance of the CoO-based electrode is
attributed to the introduction of Cu doping and oxygen vacancies, which greatly improved
the electronic conductivity of CoO. Previous studies have shown that metal ion doping and
oxygen vacancies can modulate the structure and chemical reactivity of CoO, resulting in
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materials with excellent electrochemical properties. Although the aforementioned meth-
ods could enhance the electrochemical performance of CoO electrodes through metal ion
doping and oxygen vacancies, the fabrication steps are overly complex, often involve toxic
chemicals, and require specific synthetic environments, which greatly limit the potential
for their widespread application. In addition, up to now, there has been no report on the
synthesis of CoO with dual defects—oxygen vacancy and metal doping—for IPMSC appli-
cation. Therefore, there is a pressing necessity for the development of a streamlined and
expeditious manufacturing process to create high-performance CoO-based microelectrodes
with dual defects (oxygen vacancy and Mo doping) through a single-step approach for
IPMSC applications. It has been reported that electric discharging machining (EDM) is
a non-contact machining strategy triggered by an applied voltage across a narrow gap
between the machining tool and the machining part. This EDM technique allows for the
machining of conductive substrates regardless of their stiffness and strength and is used in
many applications, such as aviation, electronics, and automation [47,48]. Benefiting from
the numerically controlled systems, EDM facilitates machining workpieces with different
geometric patterns in a single step. Moreover, it has been proved that cobalt oxide can be
synthesized through a one-step EDM process [49]. However, up to now, there is no report
on the investigation of the electrochemical performance of cobalt oxide generated via EDM
for supercapacitor applications.

Herein, a convenient, simple, and environmentally friendly computer-aided EDM
processing method has been developed for synthesizing Mo-doped and oxygen-vacancy-
enriched Co-CoO–integrated microelectrodes without the utilization of extra conductive
agents, adhesives, and current collectors. This method efficiently constructs Mo@Co-
CoO IPMSCs with a customized structure in a single step. The Mo@Co-CoO IPMSCs3
achieved a maximum capacitance of 30.4 mF cm−2 at 2 mV s−1. Moreover, the Mo@Co-CoO
IPMSCs3 showed good capacitive behavior at a super-high scanning rate of 100 V s−1,
which is around 500–1000 times higher than those reported for CoO-based electrodes, which
normally operate within 100–200 mV s−1. This remarkable performance is attributed to the
dual defects of oxygen vacancies and Mo doping, along with the 3D binder-free integrated
electrode design, which significantly boosts the electrochemical performance of CoO-based
microelectrodes. It is important to note that the Mo@Co-CoO IPMSCs were fabricated
using one-step EDM without any assistance of other material processing techniques, toxic
chemicals, low conductivity binders, exceptional current collectors, and conductive fillers.
This fabrication method developed in this research opens a new avenue for simplifying the
material synthesis procedures and enables the one-step synthesis of various metal oxide
materials with metal ion doping and oxygen vacancies for different applications, such as
IPMSCs, batteries, and catalysts.

2. Material Sources and Experiments
2.1. Material Sources

The cobalt metal substrate was obtained from a company named Qing He Lisheng
Metal Materials (Xingtai, China). The molybdenum wire for electric discharge machining
was purchased from Jin Duicheng Molybdenum Mining of Guang Ming (Zibo City, China).
The KOH solution with a concentration of 1 M was obtained from Kell Chemical Technology
(Guangzhou, China).

2.2. Manufacturing of Mo@Co-CoO–Based Microelectrodes for IPMSCs

Mo@Co-CoO–based integrative electrodes were achieved by numerically machining
the cobalt metal substrate via the EDM technique. Thereafter, EDM was used to machine
these integrated electrodes into 3D Mo@Co-CoO–based IPMSCs with various geometries,
such as IPMSCs with one loop (named IPMSCs1), IPMSCs with two loops (named IPM-
SCs2), and IPMSCs with three loops (named IPMSCs3). Moreover, IPMSCs1 before EDM
treatment (named IPMSCsB1) was assembled for comparison. For IPMSCsB1, the surface
of the Co substrate was polished but not treated with EDM.
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2.3. Characterization for Materials and IPMSC Devices

The analysis of electrode surface morphology was conducted using scanning electron
microscopy (SEM) from the TESCAN brand (Brno, Czech Republic). The element distribu-
tion of the Mo@Co-CoO electrode was investigated with Energy dispersive spectroscopy
(EDS) using a TESCAN MIRA LMS system. The composition and valence state of the
electrode materials were examined using X-ray photoelectron spectroscopy (XPS) with a
Thermo Scientific K-Alpha instrument. X-ray diffraction (XRD) analysis was performed
with a Rigaku CuKα diffractometer to investigate the composition of the Mo@Co-CoO–
integrated electrode. Electron Paramagnetic Resonance (EPR) was carried out to prove
the oxygen vacancies in the Mo@Co-CoO electrode using a Bruker EMXplus–6/1 system.
Raman spectra were collected using a Horiba LabRAM HR Evolution spectrometer with a
532 nm excitation laser. The CHI660E, purchased from Chenhua Shanghai, China, was uti-
lized for the electrochemical characterization of cyclic voltammetry (CV) and galvanostatic
charge–discharge (GCD). The CV examination was carried out from 2 to 100,000 mV s−1

within 0–0.6 V, whereas the GCD investigation was conducted from 0.2 to 1 mA cm−2 at
the same voltage window. The KOH solution with a concentration of 1 M was utilized as
the electrolyte for electrochemical characterization.

3. Results and Discussion

Figure 1 demonstrates the simple machining procedures for Mo@Co-CoO electrodes
and microdevices utilizing a Co metal substrate as the starting material. The Co metal
substrate not only acts as a current collector for the devices but also is used as the main ma-
terial source for synthesizing CoO-based active materials for IPMSC applications. During
the EDM process, sparks generated between the Co metal substrate and the Mo metal wire
result in an ultrahigh temperature in the discharge channel, leading to the melting of the Co
metal substrate and the Mo metal wire (Figure 1b). When the EDM processing was turned
off, these melting materials were rapidly cooled down by the flowing deionized water
and solidified on the surface of the Co current collector, which finally formed binder-free
integrated Mo@Co-CoO electrodes for IPMSCs. Thereafter, these binder-free Mo@Co-CoO
electrodes were machined into various IPMSCs with customized patterns, designated as
IPMSCs1, IPMSCs2, and IPMSCs2 (Figure 1c–h). In comparison, the surface of the Co
substrate without EDM treatment was shaped into IPMSCsB1 with one loop (Figure 1i–k).

SEM examination was carried out to investigate the surface characteristics of the
Co metal substrate without and with EDM processing. The results show that the Co
substrate without EDM processing is very smooth (Figure 2a), whereas the Co substrate
machined using EDM becomes rough and grows plenty of microstructures enriched with
nanostructures (Figure 2b,c), offering lots of active sites for ion adsorption/desorption.
Elemental distribution analysis of the three elements—Mo, Co, and O—on the surface
of the machining electrodes was performed using EDS examination (Figure 3). It was
found that all these three elements, Mo, Co, and O, are uniformly distributed on the
electrode, confirming that the EDM strategy facilitates the synthesis of Mo@Co-CoO–
integrated electrodes with good surface quality. XPS study was used to further investigate
the composition of the Mo@Co-CoO–integrated electrodes (Figure 4). All the XPS spectra
were standardized by referencing the C1s peak at 284.8 eV. As shown in Figure 4a, the
XPS full survey spectrum confirms the presence of Co, Mo, O, and C as the predominant
elements in the Mo@Co-CoO electrode. The fitting results of the Co 2p and Mo 3d spectra
are displayed in Figures 4b and 4c, respectively. In Figure 4b, two characteristic peaks
observed at 780.8 eV and 796.5 eV can be assigned to Co 2p3/2 and Co 2p1/2 of the standard
CoO composition, while the satellite peaks at 787.1 eV and 802.9 eV further confirm the
formation of CoO [50,51]. In Figure 4c, the peaks at 233.0 eV and 236.1 eV stand for the Mo6+

3d5/2 and Mo6+ 3d3/2 orbitals, while the peaks at 232.2 eV and 235.4 eV can be assigned
to the Mo5+ 3d5/2 and Mo5+ 3d3/2 orbitals, confirming the successful incorporation of Mo
into the structure [51,52]. The O 1s spectrum (Figure 4d) was deconvoluted into three
peaks at 530.0, 531.5, and 533.0 eV, representing metal–O bonds, oxygen vacancies, and
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surface-adsorbed water, respectively [53,54]. Figure S1 presents the Raman spectrum of the
prepared Mo@Co-CoO electrode, indicating that the prominent Raman bands at 310 cm−1

and 829 cm−1 stand for the bending and stretching modes of Mo=O, respectively. The band
at 660 cm−1 is attributed to the symmetric stretching mode of Mo-O-Mo [51,55]. Moreover,
the band at 526 cm−1 is associated with the Co-O vibration mode [56]. These Raman results
further confirmed the Mo doping in the CoO electrode. In addition, the generation of
oxygen vacancies was further proved by EPR testing (Figure S2). The Mo@Co-CoO samples
gained a g-value of 2.0058, which is close to the free electron value of 2.0023. This EPR result
proved that unpaired electrons were successfully introduced into Mo@Co-CoO [46,57,58].
The presence of Mo doping and oxygen vacancies accelerates the electronic/ionic transfer
rates of the Co-CoO–integrated electrodes, thus boosting their capacitive performance.
Moreover, XRD was used to further reveal the chemical microscopic composition of the
Mo@Co-CoO electrode. In Figure S3, three prominent peaks were observed at 2θ values of
43.9◦, 51.2◦, and 75.2◦, corresponding to the (111), (002), and (022) planes of Co (JCPDS card
01-2927), respectively [59]. Additionally, weak peaks at 35.3◦, 41.5◦, and 60.2◦ represent the
(111), (200), and (220) planes of CoO (JCPDS card 43-1004) [49,51].
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mechanism of the Co substrate via EDM; (c–e) machining of Mo@Co-CoO integrated electrodes into 
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Figure 1. Schematic images for manufacturing IPMSCs: (a) machining process and (b) machining
mechanism of the Co substrate via EDM; (c–e) machining of Mo@Co-CoO integrated electrodes into
designed patterns; (f–h) schematic diagram of the fabricated microdevices IPMSCs1, IPMSCs2, and
IPMSCs3; (i–k) schematic fabrication process of IPMSCsB1.
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The CV studies of 3D binder-free IPMSC microdevices with various geometric shapes
(IPMSCs1, IPMSCs2, and IPMSCs3) machined via EDM and the reference sample (IPM-
SCsB1) without EDM treatment were conducted at scanning rates of 2–100,000 mV s−1.
Figure 5a shows the CV profiles of IPMSCs1 and IPMSCsB1 at 500 mV s−1. The results
demonstrate that the IPMSCs1 microdevice, machined via EDM, illustrated a much larger
current density than that of IPMSCsB1 without EDM treatment. This is attributed to the
synthesis of Mo@Co-CoO microelectrode materials, which are equipped with plenty of mi-
cro and nanostructures, facilitating efficient active sites for ion adsorption and desorption.
The CV curves of the IPMSCs1 device at varying scanning rates are shown in Figure 5b. All
CV profiles display a near box shape, which proved that the IPMSCs1 device achieves good
capacitive performance. Figure 5c further indicates that the IPMSCs1 microdevice exhibits
a much larger areal capacitance than that of IPMSCsB1. Moreover, comparative studies
between IPMSCs1 and IPMSCsB1 were conducted under super-high charging/discharging
conditions of 10, 20, 30, and 100 V s−1 (Figure 6). The results prove that the capacitance of
IPMSCs1 is almost 10 times higher than that of IPMSCsB1. This observed phenomenon
agrees well with the results presented in Figure 5.
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Moreover, as the EDM machine is equipped with a computer-aided design system,
it can efficiently design and fabricate IPMSCs with various geometries. Therefore, the
geometric effect on the electrochemical performance of IPMSCs was investigated (Figure 7).
Figure 7a shows the CV curves for the microdevices IPMSC1, IPMSC2, and IPMSC3. It
can be seen that the IPMSCs3 microdevice exhibits the largest CV area, while the IPMSCs1
microdevice exhibits the smallest one. All the CV curves behave nearly rectangle shapes,
indicating that the IPMSC microdevices machined via the EDM method achieve good elec-
trochemical performance. This is attributed to the EDM strategy, facilitating the design of
binder-free integrated microelectrode, as well as the introduction of Mo doping and oxygen
vacancies, both of which are helpful for accelerate the electronic/ionic transportation rates.
Figure 7c illustrates the derived capacitances of IPMSC1, IPMSC2, and IPMSC3 microde-
vices based on the corresponding CV curves. Among these three microdevices, IPMSC3
achieves the largest areal capacitance of 30.4 mF cm−2 (2 mV s−1), which is around 3 times
and 2 times higher than those of IPMSC1 and IPMSC2, respectively. The same phenomenon
was observed for IPMSC1, IPMSC2, and IPMSC3 microdevices at other scanning rates. This
enhancement in electrochemical performance is due to the decrease in electrode width,
which shortens the ion transport distance, resulting in the enhancement of their electrochem-
ical performance [60–62]. Moreover, Table S1 shows that the areal capacitance of IPMSC3 mi-
crodevices is higher than that of several reported supercapacitors, such as the V2O5//PANI-
based device (12.3 mF cm−2) [63], V2O5//rGO-based device (24 mF cm−2) [64], graphene-
PEDOT–based device (5.4 mF cm−2) [65], MXene-based device (23 mF cm−2) [66], Car-
bon nanotubes (CNT)-based device (6.1 mF cm−2) [67], activated carbon-based device
(5.1 mF cm−2) [68], carbon onion-based device (1.7 mF cm−2) [69], graphene-based de-
vice (0.08 mF cm−2) [70], another graphene-based device (2.3 mF cm−2) [71], and reduced
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graphene oxide (rGO)-based device (0.51 mF cm−2) [72]. Further examination of the
capacitive performance of the IPMSCs1, IPMSCs2, and IPMSCs3 microdevices under super-
high charging/discharging conditions of 10, 20, 30, and 100 V s−1 was carried out and
is presented in Figure 8. Figure 8a illustrates the CV profiles of IPMSCs1, IPMSCs2, and
IPMSCs3 manufactured via EDM at an ultrahigh testing condition of 30 V s−1. It can
be observed that the IPMSCs3 microdevice exhibits the largest CV area, while the IPM-
SCs1 microdevice exhibits the smallest one, which is in good agreement with the results
shown in Figure 7a. Furthermore, all the CV curves behaved nearly as rectangle shapes,
indicating that the IPMSC microdevices machined via the EDM technique achieve good
electrochemical performance at ultrahigh charging/discharging conditions. This improve-
ment is owing to the successful introduction of Mo doping and oxygen vacancies on the
binder-free Co-CoO–based integrated electrode, which are beneficial for enhancing the
electronic conductivity of CoO [46]. Figure 8b demonstrates that the Mo@Co-CoO IPMSCs3
microdevice exhibits good capacitive behavior at a super-high scan rate of up to 100 V s−1,
which is around 500–1000 times higher than that of reported CoO-based electrodes. These
include Cu-doped CoO electrodes prepared by combining the process of solvothermal and
calcination [46], CoO-CNT–based electrodes prepared via the hydrothermal method [37],
CoO nanoparticle-based electrodes fabricated through ball milling [73], and porous CoO
nanowall-based electrodes manufactured by combining the techniques of solvothermal
and annealing [74]. The high performance of the Mo@Co-CoO IPMSCs3 microdevice was
realized without using any help from high-cost conductive additives (such as CNT and
graphene), noble current collectors (like gold and silver), toxic chemicals, specific synthesis
environments, and low-conductivity binders. Moreover, the Mo@Co-CoO IPMSCs3 mi-
crodevice was manufactured using EDM through a one-step process, greatly simplifying
the fabrication procedures for IPMSCs. Figure 8c further proves that the Mo@Co-CoO IPM-
SCs3 obtained the maximum areal capacitance among the three microdevices—IPMSCs1,
IPMSCs2, and IPMSCs3—at all super-high applied scan rates of 10, 20, 30, and 100 V s−1.
This improvement is attributed to the reduction in electrode width and the 3D electrode
design, accelerating the ion transport efficiency.
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Figure 9a,b show the GCD curves of IPMSCs1, IPMSCs2, and IPMSCs3 at the applied
current densities of 0.4 mA cm−2 and 1 mA cm−2, respectively. The symmetric GCD
curves of IPMSCs1, IPMSCs2, and IPMSCs3 imply good capacitive behavior for all the
microdevices fabricated using the EDM technique. Compared with IPMSCs1 and IPMSCs2,
IPMSCs3 displays a longer discharge time, indicating that IPMSCs3 obtains better capacitive
performance. This improvement is attributed to the 3D microelectrode design, reducing
the ion transport distance due to its smaller electrode width. This phenomenon is in
good agreement with the results presented in Figure 7a. The related areal capacitances of
IPMSCs1, IPMSCs2, and IPMSCs3, gained from GCD profiles, are shown in Figure 9c. It can
be observed that the IPMSCs3 microdevices exhibited the maximum areal capacitance, and



Micromachines 2024, 15, 1294 9 of 13

it gained 14.7 mF cm−2 at 0.2 mA cm−2 and 6.5 mF cm−2 at 1 mA cm−2. In comparison, the
IPMSCs1 microdevice presented the minimum areal capacitance, and it gained 3.1 mF cm−2

at 0.2 mA cm−2 and 1.33 mF cm−2 at 1 mA cm−2. These results are consistent with those
presented in Figures 7c and 8c. Moreover, a good rate performance of 44.2% was achieved
for IPMSCs3 when the current density was increased from 0.2 mA cm−2 to 1 mA cm−2.
This improvement is because of the 3D Mo@Co-CoO–integrated microelectrode design,
the absence of low-conductivity binders, and the introduction of Mo dopants and oxygen
vacancies, facilitating fast electron transportation through the interface between the active
materials of CoO and the current Co collector, while also boosting the ion transportation
efficiency. Moreover, it needs to be noted that this good electrochemical performance
was gained for the Mo@Co-CoO IPMSCs3 microdevices without using any help from
high-cost conductive additives (such as CNT and graphene) and noble current collectors
(like gold and silver). The whole manufacturing process is free from toxic chemicals,
specific synthesis environments, and low-conductivity binders. This approach opens a new
avenue for simplifying the synthesized procedures for materials, providing a novel way
for realizing intelligent, digital, and green manufacturing of various metal oxide materials,
microelectrode arrays, and microdevices.
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4. Conclusions

In conclusion, a new manufacturing method using EDM, which is simple, safe, efficient,
and environment-friendly, has been developed for the one-step fabrication of Mo@Co-
CoO–integrated microelectrodes with Mo doping and enriched with oxygen vacancies
for efficiently constructing Mo@Co-CoO IPMSCs with customized geometric shape and
tailorable electrochemical performance. The results demonstrate that the Mo@Co-CoO
IPMSCs3, with the smallest electrode width, gained a maximum areal capacitance of
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30.4 mF cm−2 at 2 mV s−1. In contrast, the Mo@Co-CoO IPMSCs1, with the largest electrode
width, exhibited the minimum capacitance. This difference is owing to the reduction
in electrode width, boosting the ion transportation efficiency. Moreover, the Mo@Co-
CoO IPMSCs3 showed good rate performance and capacitive behavior at a super-high
scan rate of 100 V s−1, which is around 500–1000 times higher than those of reported
CoO-based electrodes. This improvement is because of the 3D Mo@Co-CoO–integrated
microelectrode design, the absence of low-conductivity binders, and the introduction of
Mo dopants and oxygen vacancies, which facilitate fast electron transportation through the
interface between the active CoO materials and the current Co collector, further boosting
ion transportation efficiency. It is important to note that all the IPMSCs were fabricated
using one-step EDM without any assistance of other materials processing techniques, toxic
chemicals, low-conductivity binders, exceptional current collectors, and conductive fillers.
This fabrication method, developed in this research, opens a new avenue for simplifying the
preparation of materials and microdevices, providing a novel way for realizing intelligent,
digital, and green manufacturing of various metal oxide materials, microelectrode arrays,
and microdevices.
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