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Abstract: In order to implement multiple electromagnetic (EM) wave front control, a reconfigurable
multifunctional metasurface (RMM) has been investigated in this paper. It can meet the requirements
for 6G communication systems. Considering the full-space working modes simultaneously, both
reflection and transmission modes, the flexible transmission-reflection-integrated RMM with p-i-n
diodes and anisotropic structures is proposed. By introducing a 45◦-inclined H-shaped AS and
grating-like micro-structure, the polarization conversion of linear to circular polarization (LP-to-CP)
is achieved with good angular stability, in the transmission mode from top to bottom. Meanwhile,
reflection beam patterns can be tuned by switching four p-i-n diodes to achieve a 1-bit reflection phase,
which are embedded in the bottom of unit cells. To demonstrate the multiple reconfigurable abilities
of RMMs to regulate EM waves, the RMMs working in polarization conversion mode, transmitted
mode, reflected mode, and transmission-reflection-integrated mode are designed and simulated.
Furthermore, by encoding two proper reflection sequences with 13 × 13 elements, reflection beam
patterns with two beams and four beams can be achieved, respectively. The simulation results
are consistent with the theoretical method. The suggested metasurface is helpful for radar and
wireless communications because of its compact size, simple construction, angular stability, and
multi-functionality.

Keywords: metasurface; multifunctional; reconfigurable; transmission-reflection integrated;
full-space

1. Introduction

A metasurface (MS) is a surface with periodic or aperiodic structures, consisting of
subwavelength elements, which possess the unique ability to control the amplitude [1,2],
phase [2,3], and polarization states [4,5] of incident electromagnetic (EM) waves. They have
some advantages such as a lower profile, low insertion loss, and easy integration with other
circuits [6,7]. With the help of innovative techniques for modulating electromagnetic waves
and a variety of useful applications, including diffusion, anomalous reflection and refrac-
tion [8,9], radar cross-section reduction [10,11], beam scanning [12–14], focusing [15,16],
polarization conversion [17–19], and holography [20], researchers have flexibly designed
MSs based on the generalized Snell’s law [21]. Nonetheless, passive unit cells make up the
majority of these designs. Their functions are set once they are produced, and they can only
be used for a limited number of pre-planned uses. As a result, they are unable to meet the
growing needs for communications and multifunctional devices.

Compared with passive MSs whose functions are fixed [22], reconfigurable MSs pos-
sess a stronger superiority [23,24]. Versatile features are expected because of their dynamic
status changes. Therefore, the reconfigurable multifunctional metasurfaces (RMMs) can be
controlled by electrical, optical, mechanical, and thermal means, which have been devel-
oped. These RMMs control EM waves from microwave to terahertz bands; furthermore,
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they are useful in a variety of applications, including antenna design [25], polarization
conversion [26–29], and beam steering [30–32]. In the meantime, tunable MSs have been
designed using functional materials such as liquid crystals [33], graphene [34,35], and
vanadium dioxide (VO2) [36]. For example, using the insulator-to-metal transition feature
of VO2, the researchers in [36] created a switchable MS that can accomplish broadband
absorption and reflection. However, these RMMs mostly operate in either the trans-
mission or reflection mode to regulate EM waves in half-space, and the other space
is unutilized. Nonetheless, RMMs in full-space will possess a wider prospect, particu-
larly with the growing demands for highly integrated and more powerful devices in 6G
communication systems.

Driven by the imperative demand for both design integration and miniaturization
for 6G applications, based on the earlier research in [37], we further present a flexible
transmission-reflection-integrated RMM with p-i-n diodes and an anisotropic structure
(AS), which can convert the x-polarized EM waves to circular polarization (CP) in the
transmission mode from top to bottom, and control reflection beam patterns of the y-
polarized EM waves in the reflection mode from bottom to top. The suggested unit cell for
the MS is made up of five delicately designed metal patterns separated by four substrate
layers. The upper three metal patterns complete the polarization conversion of linear-to-
right hand circular polarization (LP-to-CP). By integrating four p-i-n diodes into metal layer
5, 1-bit tunable reflection phases are realized, which can control the y-polarized EM wave
reflection patterns from bottom to top. To verify its adjustable property, a 13 × 13 array is
designed, which can reflect beam patterns with two beams and four beams in reflection
mode through the modulation of the switchable status on p-i-n diodes. Unlike previous
research, our designs provide a feasible way of realizing adjustable multifunctional MSs
operating in full space, which possess good angular stability and can result in many
fascinating applications in wireless communications and radar.

2. Metasurface Unit Cell Design

Through rigorous structural design, numerous functionalities can be extracted from a
single geometric structure, evoking unique reactions, as described in Figure 1. The RMM
unit cell structure is depicted in Figure 2, where five metal layers, divided by four substrates,
make up the RMM unit cell. Metal layers 1 to 3 are etched onto the Arlon AD255A (tm)
substrate with εr = 2.55 and tanδ = 0.0015. Additionally, the F4B substrate is etched with
the patterns of metal layers 4 and 5, which exhibit εr = 2.65 and tanδ = 0.0015. In order to
produce orthogonally polarized waves when the incoming waves are linearly polarized,
the element structure must be asymmetric along the incident wave’s polarized direction.
Meanwhile, the structure needs to be symmetrical in the direction along a 45◦ angle, which
can enhance the polarization conversion ratio [38]. As described in Figure 2c, the pattern
of metal layer 2 is a 45◦-inclined H-shape, which completes the polarization conversion
of LP-to-CP. As depicted in Figure 2b,d, the polarization grids on metal layers 1 and 3 are
along the y- and x-directions, respectively, which improve the conversion attributes of the
x-polarized EM waves and enhance polarization conversion purity. In conjunction with
the metal grating on metal layer 3, four open trapezoid patches on metal layer 5 work
as an artificial magnetic conductor (AMC). The two dc bias signal lines are designed on
metal layers 4 and 5, as presented in Figure 2e,f. To isolate the high-frequency signals, two
crescent-distributed capacitors and symmetrically distributed inductances are integrated
into the bias layer of metal layer 4. In the meantime, the bias layer on metal layer 5 adopts
the four inductors with L = 270 nH to choke RF currents. Through four metallized via-holes,
the bottom trapezoid patches and the bias layer of metal layer 4 are connected. Four
red square components on metal layer 5 are p-i-n diodes, which connect with a pair of
symmetric trapezoids, respectively, as shown in Figure 2f. The proposed RMM is simulated
and analyzed using the software Ansys HFSS 2018, the Floquet port, and periodic boundary
conditions. The unit designated in Figure 2 has its optimal parameters shown in Table 1.
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Table 1. Dimensions of the proposed unit cell (unit: mm).

Parameter px py g w g1 x1 y1

Value 18 18 4.05 1.35 0.33 5.5 1

Parameter h1 h2 h3 h4 dl1 dl2 dw

Value 3.175 0.813 0.254 1.524 9 9 2.7

Parameter a b r Rx rx Ry ry

Value 0.1 1 0.1 4.2 1.66 2.5 3.46

The p-i-n diode used is MADP-000907-14020 from MACOM, Lowell, Massachusetts,
USA. According to the data sheet, the forward-biased diode can be analogous to a series
RL circuit with resistance R = 7.8 Ω and inductance L = 30 pH, as described in Figure 3a.
Meanwhile, the reverse-biased diode can be analogous to a series LC circuit with resistance
L = 30 pH and capacitance C = 28 fF, as depicted in Figure 3b.
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Analysis of the RMM in transmitted and reflected modes is carried out independently.
The parts below provide a thorough analysis.

3. Transmission Mode

When the x-polarized incoming waves are impinged on the RMM from top to bottom,
the transmitted wave will be converted in polarization due to matching electric fields
being excited. In the meantime, the RMM operates in transmission mode, and works as
a polarizer.

3.1. Working Principle

To realize the polarized conversion of LP-to-CP with an x-polarized incoming wave
impinging on the RMM, the element structure should be asymmetric along the x-direction
and embrace a 45◦-inclined H-shape, which can translate the x-polarized wave into two
perpendicularly polarized waves and produce different accumulations of phases. As

depicted in Figure 4, the x-polarized incoming wave
⇀
E i can be divided into the tangential

(u) and normal (v) directions at the center point of the inclined H-shape, and can be
written as

⇀
E i = x̂Eixe−jkz = ûEiue−jkz + v̂Eive−jkz (1)

where Eiu = Eiv = Eix/
√

2; k is the wavenumber; and x̂, û, and ν̂ are the unit vectors with
respect to the x-axis and u- and v-directions, respectively. The transmitted fields can be
written using

⇀
E t = [û(TuuEiu + TuvEiv) + v̂(TvuEiu + TvvEiv)]e−jkz (2)

where Tuu = |Tuu|ejφuu , Tvu = |Tvu|ejφvu , Tuv = |Tuv|ejφuv , and Tvv = |Tvv|ejφvv are transmis-
sion coefficients.
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When |Tvu| = |Tuv| = 0, |Tuu| = |Tvv|, and ∆φ = φuu − φvv = π,

⇀
E t = (v̂ − û)Tvv

(
Eix/

√
2
)

e−jkz = ŷEtye−jkz (3)

which implies that the EM waves are converted from the x-polarized waves to the y-
polarized ones. When the phase differences ∆φ = φuu − φvv = 0, the polarization of
the transmission wave is still along the x-direction. If ∆φ = ±90◦, the incoming linearly
polarized waves are transformed into circularly polarized waves, which can be described
as follows:

⇀
E t =

(
x̂Etx + ŷEty

)
e−jkz

=
(

x̂|Txx|ejφxx + ŷ
∣∣Tyx

∣∣ejφxx±π/2
)

Eixe−jkz (4)

where Txx = |Etx/Eix|ejφxx and Tyx =
∣∣Ety/Eix

∣∣ej(φxx±π/2) are transmission coefficients
of co- and cross-polarized components under the x-polarized incident wave. It is clear
from Equation (4) that the phase differences ∆φ and the co-polarized and cross-polarized
transmission coefficients (Txx and Tyx) can be used to identify the state of polarization
for the transmitted field. When |Txx| =

∣∣Tyx
∣∣, if ∆φ ≈ 90◦ and ∆φ ≈ −90◦, a polar-

ized conversion of LP-to-LHCP and LP-to-RHCP is achieved, respectively, whereas when
|Txx| ̸=

∣∣Tyy
∣∣, an elliptic polarization wave is generated.

From Equation (4), it is concluded that controlling polarization can be accomplished
through altering ∆φ, which is mostly decided by the structure of resonant unit cells. ∆φ is
a function of frequency when metasurfaces are unreconfigurable structures, meaning that
distinct polarized conversion functions will be generated at distinct frequencies [37].

3.2. Simulation Results

We further discuss circular polarization conversion through the axial ratio (AR). The
transmission coefficients of two waves with orthogonal polarization under an x-polarized
incoming wave can be used to determine the AR parameter, which is crucial for assessing
the electromagnetic waves’ level of circular polarization.

AR =

√[
T2

xx + T2
yx +

√
T4

xx + T4
yx + 2

(
TxxTyx

)2cos(2∆φ)

]
√[

T2
xx + T2

yx −
√

T4
xx + T4

yx + 2
(
TxxTyx

)2cos(2∆φ)

] (5)

From the previous analysis, we are aware that in order to produce circularly polarized
waves, the two orthogonal components of the transmitted electric field must have a phase
difference of ∆φ = ±90◦ and equal amplitude, i.e., |Txx| =

∣∣Tyx
∣∣. If the AR is less than 3 dB,

it is roughly circular polarization in practice.
The full-wave simulations are used to examine the RMM’s transmission magnitudes

and phase discrepancies in order to verify our design. In Figure 5, the simulated co-
polarized and cross-polarized transmission magnitudes and phase differences are displayed
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when the diode is forward-biased. It is evident that |T xx| and
∣∣Tyx

∣∣ are over −10 dB and
nearly equal within the working frequency ranges of 7.65–7.7 GHz and 6.1–6.6 GHz, and
that the phase differences are close to 270◦, which indicates the transmission of RHCP
waves. When the diode is reversebiased, Figure 6 displays the simulated co-polarized
and cross-polarized transmission magnitudes and phase discrepancies. Thus, an excellent
circularly polarized transmission wave is achieved in the two bands of 6.5–6.6 GHz and
7.65–7.7 GHz in both the ON and OFF states.
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In order to look into the impact of oblique incidence on transmission performance,
the variation in transmission performances is investigated for different obliques under
the x-polarized EM waves from top to bottom. Figures 7 and 8 present the co- and cross-
polarized transmitted magnitudes and phase differences versus operating frequency at
oblique incidence with the incidence angles θ = 0◦, 15◦, and 30◦ in the ON and OFF states,
respectively. It is obvious from Figures 7 and 8 that the curved lines of the simulated co- and
cross-polarization transmission magnitudes and phase differences are nearly coincident
with those under normal incidence in the ON and OFF states, respectively, which shows
the great angular stability in transmission mode in the ON and OFF states.
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4. Reflection Mode

When the y-polarization incident wave is impinged on the RMM from bottom to
top, by switching the p-i-n states and designing the discontinuous reflection phases, the
wavefront of EM waves can be freely tailored, opening a wide range of new phenomena
and applications, including beam patterns with two beams and four beams. Meanwhile,
the RMM works in reflection mode and acts as a reflector.

4.1. Performance Analysis

According to the analysis above, we can determine that four open trapezoidal patches
on metal layer 5 serve as an AMC in conjunction with the metal grating on metal layer 3,
which acts as the ground of the AMC. To verify this, the simulated reflection performances
are analyzed. An AMC can be generated by impinging y-polarized EM waves on the MS
from bottom to top almost in the frequency range of 14–16 GHz, which can be used for
stealth materials in radars [39] or high-gain antennas [40]. Figure 9 presents reflection
coefficients, phases, and phase differences of the proposed flexible regulated MS under the
y-polarized normal incidence in the ON and OFF states within a bandwidth of 14–16 GHz.
As shown in Figure 9a, folded reflected phases are almost in the range of −90◦~+90◦, and
most of the incident waves are reflected with reflected coefficients (

∣∣Ryy
∣∣ =

∣∣Ery/Eiy
∣∣)
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greater than −10 dB in each state in the operating band, which indicates that the proposed
MS works as an AMC. Furthermore, it is obvious from Figure 9b that the reflection phases
are discernibly distinct in every state, and the phase discrepancies between adjacent states
fall in the range of (180◦ − 10◦, 180◦ + 10◦) around 15.15 GHz, 15.54 GHz, and 15.8 GHz,
by switching simultaneously the four p-i-n diodes on metal layer 5 to operate in the
ON/OFF states. Therefore, 1-bit coding elements can be obtained at 15.15 GHz, 15.54 GHz,
and 15.8 GHz, meaning that the gradient reflection phase distribution of θ and θ + 180◦

can be produced by the suggested metasurface working from state 1 to state 2. As a
result, the element configuration in each state can be thought of as a fundamental digital
element. Two different element configurations yield 1 bit, simulating the state 1 and state
0 units, respectively.
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Figure 9. Simulated reflection coefficients of the presented MS in the ON and OFF states: (a) reflection
coefficient; (b) reflection phase and reflection phase differences between p-i-n diode ON and
OFF states.

Subsequently, the performance of reflection is analyzed for various oblique incidences
in reflection modes. The reflection magnitudes and phases versus operating frequency with
variable incident angles θ in the ON and OFF states are shown in Figures 10 and 11. From
these figures, it is concluded that the reflection performance is almost stable up to 30◦ in
the ON state and 20◦ in the OFF state in the band of 14–16 GHz, which implies that the
proposed RMM possesses better stability at oblique incidence in the reflection mode. The
above findings have conclusively demonstrated that the suggested RMM can still operate
as a digital coding MS at 20 degrees of oblique illumination in each state. Greater incident
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angles cause the EM wave to take an extra path between the ground (metal layer 3) and the
bottom, which increases the phase difference, resulting in destructive interference [38],

∆ϕ = ϕoblique − ϕnormal = 2
√

εrkd

 1√
1 − sin2 θ

εr

− 1

 (6)

where θ represents the incident angle with respect to normal incidence, k signifies the
vector of wave propagation in free space, d indicates the thickness of the substrate, and
εr = 2.65. Reflection performance degrades severely for incidence angles more than 30◦ in
the ON state and 20◦ in the OFF state. Folded reflection phases are out of −90◦–90◦. It is
obvious from Equation (6) that higher-order modes or grating lobes are the cause of the
performance deterioration. It can be concluded from the above analysis that the overall
trend in the reflection performance under oblique incidence also meets the majority of
large-angle incidence design criteria despite not being as stable as the transmission mode.
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4.2. Reconfigurable Reflection Coding MSs

These coding particles could be arranged to form a coding metasurface with various
encoding sequences in two dimensions, which possesses different reflection patterns.
According to array theory, the radiation pattern of a given encoding sequence, which is
made up of N × N equal-sized unit cells with dimension D, can be analytically calculated.
In the far-field area, the specific characteristic of each coding particle becomes hazy because
of the subwavelength characteristic of the digital particle with a reflection phase of φ(m, n)
(either θ or θ + 180◦ in the 1-bit case) for the mnth element. The far-field-function-reflected
metasurface at the normal incidence of plane waves is written as

f (θ, φ) = fe(θ, φ)
N

∑
n=1

exp{−i{φ(m, n) + kDsinθ[(m − 1/2)cosφ + (n − 1/2)sinφ]}} (7)

where the lattice pattern function is denoted by fe(θ, φ) and the elevation and azimuth
angles are represented by θ and φ, respectively. The relative phase of the “0” element has
been assumed to be zero for simplicity’s sake, and the term fe(θ, φ) in Equation (7) has
been neglected because it becomes ambiguous in the far-field. Using any given encoding
sequence, we may determine the directivity function Dir(θ, φ) from Equation (7), which
can be represented as

Dir(θ, φ) =
4π| f (θ, φ)|2∫ 2π

0

∫ π/2
0 | f (θ, φ)|2sinθdθdφ

(8)

In order to investigate the aforementioned beam modulation performance, the 1-bit dig-
ital MS is designed, which consists of 13 × 13 unit cells in the total size of 234 mm × 234 mm.
The various reflection fields will be produced by various coding sequences in the reflection
mode, and each particle can be independently controlled. Full-wave numerical simulations
are used to finish all numerical simulations. Figure 12 presents the reflection pattern of the
proposed RMM with the 0001111000111 coding sequence, under the y-normal illumination
from bottom to top. The coding sequence is shown in Figure 12a. From Figure 12b, it is
evident that normal-incidence plane waves are redirected in two symmetrical directions,
which is consistent with the theoretical predictions in Equation (7). Figure 13 depicts the
reflection pattern of the chess-board periodic coding MS under the y-normal illumination
from bottom to top. The chess-board coding sequence with 01/10 is shown in Figure 13a.
From Figure 13b, it can be obviously found that the normal-incidence plane waves are
scattered in four symmetrical directions, which further verifies the theory derivation results
in Equation (7). The comparison of the designed RMM with some existing multifunction
MSs for full space are listed in Table 2. It can be observed that the proposed RMM pos-
sesses real-time multifunctional adjustability and a low profile. Further, transmission and
reflection of the designed RMM have good angular stability compared to other existing
multiple MSs.

Table 2. Comparison of the proposed RMM with some recently reported full-space MSs.

Refs. Real-Time Tunable Phase Active Element Layer Number Bias Circuit Design Profile

[41] Yes P-i-n 9 No High
[42] No - 5 - Low
[43] Yes P-i-n 11 Yes Low

[44,45] No - 7 - Low

This work Yes P-i-n 9 Yes Low
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5. Conclusions 
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four beams by switching p-i-n diodes. The efficiency of the suggested design is confirmed 
by the simulation results, which agree with the theoretical predictions. Our design 
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Figure 13. Schematic illustration of chess-board periodic coding metasurface under the y-normal
illumination with quad-beam pattern: (a) coding phase profile, (b) simulated 3D far-field patterns.

5. Conclusions

In this paper, an important design has been implemented: a flexible transmission-
reflection-integrated RMM with p-i-n diodes and an AS, which can realize the EM wave
polarization conversion from the LP to CP in the transmission mode. As a good structure
from top to bottom, it can modulate reflection beam patterns by switching the p-i-n diodes
embedded into metal 5. Taking the transmitted mode as an example, the physical mecha-
nism of multifunctionalities was developed. An RMM with 13 × 13 elements was designed
and simulated, which can scatter reflection beam patterns with two beams and four beams
by switching p-i-n diodes. The efficiency of the suggested design is confirmed by the
simulation results, which agree with the theoretical predictions. Our design provides a new
method for building an RMM in full space and possesses enormous potential applications
in radar and wireless communications.
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