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Abstract: The micro disk resonator gyroscope is a micro-mechanical device with potential for
navigation-grade applications, where the performance is significantly influenced by the quality
factor, which is determined by various energy dissipation mechanisms within the micro resonant
structure. To enhance the quality factor, these gyroscopes are typically enclosed in high-vacuum
packaging. This paper investigates a wafer-level high-vacuum-packaged (<0.1 Pa) cobweb-like disk
resonator gyroscope, presenting a systematic and comprehensive theoretical analysis of the energy
dissipation mechanisms, including air damping, thermoelastic damping, anchor loss, and other
factors. Air damping is analyzed using both a continuous fluid model and an energy transfer model.
The analysis results are validated through quality factor testing on batch samples and temperature
characteristic testing on individual samples. The theoretical results obtained using the energy transfer
model closely match the experimental measurements, with a maximum error in the temperature
coefficient of less than 2%. The findings indicate that air damping and thermoelastic damping are
the predominant energy dissipation mechanisms in the cobweb-like disk resonant gyroscope under
high-vacuum conditions. Consequently, optimizing the resonator to minimize thermoelastic and air
damping is crucial for designing high-performance gyroscopes.

Keywords: energy dissipation; disk resonator gyroscope; air damping; thermoelastic damping

1. Introduction

MEMS vibratory gyroscopes are angular velocity sensors that operate based on the
Coriolis effect and micromachining technology. Due to their distinctive advantages in terms
of their compact size, low power consumption, and cost-effectiveness, these gyroscopes
are widely used across various fields, including inertial navigation, consumer electronics,
automotive safety systems, and military fields [1]. Recently, disk resonator gyroscopes
have garnered significant research interest due to their superior symmetry, high sensitivity,
stable scale factor, and potential self-compensation capabilities [2]. The quality factor (Q)
of these gyroscopes is a critical performance parameter that directly influences essential
metrics such as sensitivity, noise, and bias instability [3].

The quality factor (Q) quantitatively represents the various energy dissipation mech-
anisms within a gyroscope. The energy dissipation in a gyroscope can be influenced by
multiple factors, including thermal conduction in the surrounding air, energy dissipa-
tion through the anchor points, surface effect loss, electronic loss, thermoelastic loss, and
phonon diffusion loss (Akhiezer loss). As these attenuation phenomena are independent
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and may manifest partially or fully within the resonator, the contributions of these dissipa-
tion mechanisms to the overall energy loss are fundamentally independent of one another.
Consequently, the quality factor (Q) can be mathematically expressed as [4].

1
Q

=
1

Qair
+

1
QTED

+
1

QAnchor
+

1
Qother

(1)

where Qair, QTED, and Qanchor are the quality factors of gas loss, thermoelastic loss, and
anchor loss, respectively; Qother is the quality factor of other energy dissipation mechanisms,
such as the surface loss, electronic loss, and Akhiezer loss. The overall Q value of the
resonator is typically determined by the predominant energy dissipation mechanism or the
mechanism contributing the lowest Q value.

Currently, research on energy dissipation mechanisms primarily focuses on thermoe-
lastic damping and anchor loss [5–7]. In high-vacuum-packaged gyroscopes, air damping
is typically neglected. However, given the small structural gaps in these devices, the
impact of air damping on gyroscope energy dissipation remains significant, even under
high-vacuum conditions.

This paper presents a comprehensive analysis of the energy dissipation mechanisms in
a MEMS cobweb-like disk resonant gyroscope. Air damping is assessed using a modified
continuum fluid model and an energy transfer model, while thermoelastic damping is
examined through the Zener analytical model and finite element simulations. The anchor
loss is estimated using the Perfectly Matched Layer (PML) method. Other loss mechanisms
are estimated using analytical models. Finally, experimental verifications are conducted to
validate the theoretical analyses.

2. Design and Operation

This study introduces a novel cobweb-like disk resonant gyroscope (CDRG), devel-
oped in reference to the international standard ring-shaped disk resonant gyroscope design,
but with a regular polygonal frame substituting for the traditional arc-shaped ring struc-
ture [8]. While the CDRG design comprises exclusively linear structures without any arcs,
its structural properties are essentially consistent with those of conventional ring-shaped
disk resonant gyroscopes.

The schematic diagram of the CDRG structure is illustrated in Figure 1. It comprises
10 concentric hexagonal rings, with the hexagon selected for convenience in the external
electrode correspondence, though other regular polygon frames can be considered. These
rings are alternately connected to the central anchor point through eight spokes. Each
ring is connected end-to-end by 16 identical rectangular beams. Although the resonator
appears as a disk with multiple rings, it is actually an all-linear structure. The diameter of
the outermost ring measures 3.8 mm, while the diameter of the central anchor is 1.7 mm. A
small solid mass, with a width of 77 µm, is suspended in both an odd-numbered ring and
an even-numbered spoke layer, extending from the inside to the outside. The resonator’s
thickness is 100 µm, and the widths of the spokes and rings are 13.5 µm and 13 µm,
respectively. Surrounding the resonator are 16 uniformly distributed external electrodes
for frequency tuning and orthogonal zeroing. There are eight independent slots between
the rings, where internal double electrodes are inserted to enhance the conduction area for
drive and detection. Additionally, a regulating electrode is inserted into the inner groove to
improve the tuning capability, with a capacitance gap of 7.5 µm.

The resonator is a planar structure, and the selected working vibration mode features
a pair of in-plane elliptical bending. The wave-belly angle difference between the drive
mode and the sense mode is 45◦, while the phase difference is 90◦. This vibration mode
is commonly referred to as the wineglass mode, specifically, the n = 2 cup mode. The
working mode shapes of the CDRG are illustrated in Figure 2, with the resonant frequency
18; 188; Hz, . The main structural parameters of the final design are summarized in Table 1.
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Figure 1. A cobweb-like disk resonator gyroscope (CDRG) structure schematic diagram with mass 
and stiffness decoupling. 

The resonator is a planar structure, and the selected working vibration mode features 
a pair of in-plane elliptical bending. The wave-belly angle difference between the drive 
mode and the sense mode is 45°, while the phase difference is 90°. This vibration mode is 
commonly referred to as the wineglass mode, specifically, the n = 2 cup mode. The work-
ing mode shapes of the CDRG are illustrated in Figure 2, with the resonant frequency 
18,188 Hz. The main structural parameters of the final design are summarized in Table 1. 

Drive mode Sense mode

y

0°

90°
45°135°

CDRG CDRG 

x
 

Figure 2. Mode shapes of the n  =  2 wineglass modes of CDRG. 

Table 1. Structural parameters of CDRG. 

Parameter Value 
Outermost ring diameter 3.8 mm 
Center anchor diameter 1.7 mm 

Width 13 μm 
Spoke width 13.5 μm 

Thickness 100 μm 
Capacitive gap 7.5 μm 

Resonant frequency 18,818 Hz 

3. Energy Dissipation Analysis 
3.1. Air Damping 

Due to the size effect, the volume of MEMS resonators decreases while the surface 
area-to-volume ratio increases, leading to a significant influence of the damping force on 
the surface. Many literature sources neglect the air damping loss mechanism in MEMS 
disk resonant gyroscopes, primarily due to vacuum packaging. However, even in an ex-
tremely low-pressure environment, the reduction in the resonator characteristic size leads 
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Table 1. Structural parameters of CDRG.

Parameter Value

Outermost ring diameter 3.8 mm
Center anchor diameter 1.7 mm

Width 13 µm
Spoke width 13.5 µm

Thickness 100 µm
Capacitive gap 7.5 µm

Resonant frequency 18,818 Hz

3. Energy Dissipation Analysis
3.1. Air Damping

Due to the size effect, the volume of MEMS resonators decreases while the surface
area-to-volume ratio increases, leading to a significant influence of the damping force on
the surface. Many literature sources neglect the air damping loss mechanism in MEMS disk
resonant gyroscopes, primarily due to vacuum packaging. However, even in an extremely
low-pressure environment, the reduction in the resonator characteristic size leads to energy
dissipation from interactions between air molecules and the resonator, making the air
damping effect significant and worthy of attention [9].

Air damping can be classified into squeeze film damping and slide film damping,
depending on whether the movement direction of the resonator is vertical or parallel to its
surface. The primary mechanism of air damping for axially symmetric gyroscopes, which
is the focus of this paper, is squeeze film damping. The degree of gas rarefaction affects the
accuracy of the analytical model for squeeze film damping, necessitating a description of
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the gas rarefaction degree. Knudsen proposed the concept of the Knudsen number (Kn) to
characterize this degree, expressed as

Kn = λ/d (2)

where d is the characteristic size of the device and λ is the average free path of the gas
molecules. According to the definition of λ and the ideal gas state equation, Kn can be
expressed as

Kn =
λ

d
=

BT
pd

(3)

Among them, B = R/
√

2πd2
mNA is a constant. For air, the value of B is

2.2248 × 10−5 kg/(K·s2), R is the general gas constant (8.31 kg·m2/s2/K), NA is the
Avogadro constant, dm is the effective diameter of the gas molecules, T is the absolute
temperature, and p is the gas pressure.

From Formula (3), it is evident that the Knudsen number is related to both the struc-
tural feature size and the ambient pressure. Based on the range of the Knudsen number,
the flowing gas can be divided into four regions [10]: Kn < 10−3 (continuous medium flow
region), 10−3 < Kn < 10−1 (slip flow region), 10−1 < Kn < 10 (transition flow region), and
Kn > 10 (free molecular flow region).

Flow air damping arises from the viscosity of the fluid itself, represented by the viscos-
ity coefficient. The Sutherland equation, an empirical formula proposed by W. Sutherland,
describes the relationship between the viscosity coefficient µ and temperature [11].

µ = µ0
1 + TS/T0

1 + TS/T

√
T
T0

(4)

Here, T0 = 237.16 K, µ0 represents the viscosity coefficient at T0, and TS is the con-
stant temperature. The values of µ0 and TS depend on the specific gas. For air, µ0 is
1.85 × 10−5 Pa·s and TS is 124 K.

When Kn > 10−3, the effective viscosity coefficient µeff is introduced to correct µ when
the N-S equation is used to solve the air damping model in the discontinuous medium flow
region. The following formula is the approximate correction formula proposed by Veijola.
The correction is in the range of 0 < Kn < 880, and the deviation from the derivation result
based on the Boltzmann transport equation is within 5% [12].

µe f f =
µ

1 + 9.638K1.159
n

(5)

The CDRG is vacuum-packaged and operates in the free molecular flow region. For the
squeeze film damping effect in rarefied gas, two types of models can be used for analysis.
The first is the gradient model, with the modified continuous fluid model based on the
Reynolds equation being a typical example. The second is the non-gradient model, which
is often represented by energy transfer models. The following discussion addresses these
two models separately.

3.1.1. Modified Continuous Fluid Model

Since the constitutive equation of the continuous fluid model has been well-established
and validated, the squeeze film damping model based on the Reynolds equation is worth
considering even in the free molecular flow state. The behavior of the squeeze film is gener-
ally governed by the viscous and inertial effects of the fluid. However, for the extremely
small geometries typical of MEMS devices, the inertial effects are usually negligible. Under
these conditions, the Reynolds equation can be applied with the following assumptions [13]:

• Rigid plate;
• Small gap;
• Small displacement;
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• Small pressure change.

The Reynolds equation used to analyze squeeze film damping is expressed as

ph2

12µ
∇2

(
∆p
p

)
− ∂

∂t

(
∆p
p

)
=

∂

∂t

(
∆h
h

)
(6)

where p is the ambient pressure, ∆p is the distribution of pressure variation, h is the gap
between the plates, and ∆h is the variation in gap height. The Reynolds equation describes
the relationship between the pressure distribution and changes in film thickness. By
applying specific boundary conditions, the pressure at each point can be determined by
solving this second-order differential equation.

In the context of CDRG, the air damping behavior of the drive mode is similar to that
of the sense mode. Due to the gyroscope’s complex structure, performing finite element
simulations of the squeeze film damping requires significant computational resources. To
simplify the analysis, the structural model is approximated. The squeeze film movement
between each ring and the fixed electrode is modeled as the squeeze film movement
between a long rectangular plate and a fixed electrode. In this simplified model, the
rectangular plate is assumed to have a specific length and width, as illustrated in Figure 3.
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Since the squeeze film damping in the Y direction does not change, the Reynolds
equation can be simplified to

d2P
dx2 =

12µ

h3
dh
dt

(7)

The boundary conditions are

P
(
±1

2
W

)
= 0 (8)

To carry out the second integral, we obtain

P(x, t) =
6µ

h3
dh
dt

x2 + C1x + C2 (9)

The pressure distribution of the long rectangular plate can be obtained by using
boundary conditions.

P(x, t) = −6µ

h3

(
W4

4
− x2

)
dh
dt

(10)

When the rectangular plate moves downward and the film is compressed
(dh/dt < 0), the pressure becomes positive. At this moment, the pressure at x = 0 is
the largest, 3 µW4/2 h3 (where dh/dt < 0); while the pressure at x = ±W/2 is 0. The pressure
distribution is illustrated in Figure 4.
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∫ W/2
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P(x)Ldx = −µW3L
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= −µW3L
h3

.
h (11)

According to the definition F = −c
.
x, the damping coefficient of the long rectangular

plate can be determined.

clr =
µW3L

h3 (12)

By substituting the relevant parameters into Equation (12), the squeeze film damping
coefficient of CDRG can be derived as follows:

Csq,C =

µH3
n
∑

i=1
Ai

d3
0

(13)

where H is the thickness of the resonator, n is the number of rings, Ai is the circumference
of the vibration part corresponding to the i-th ring, and d0 is the gap between the resonator
and the electrode. Therefore, the squeeze film damping quality factor Qsq,C is

Qsq,C =
me f f ωn0d3

0

µH3
n
∑

i=1
Ai

(14)

where meff is effective mass of the resonator, and ωn0 is angular frequency of the
intrinsic mode.

In the discontinuous flow region, the viscosity coefficient µ can be corrected by the
effective viscosity coefficient µeff. For MEMS structures, Equation (5) can be applied in
a correction to obtain more accurate data. By substituting the Formulas (3)–(5) into the
Formula (14), we derive the final expression for Qsq,C as follows:

Qsq,C =
me f f ωn0d3

0

H3
n
∑

i=1
Ai

1 + 9.638
(

BT
pd0

)1.159

µ0

1 + Ts/T
1 + Ts/T0

√
T0

T
(15)

Given the parameter T = 298.15 K (in order to ensure the consistency with the experi-
mental temperature, the following are set at room temperature of 298.15 K), meff = 0.268 mg,

n
∑

i=1
Ai = 0.031 mm2, and p = 0.07 Pa, and according to Equation (15), the quality factor of

the squeeze film damping in the modified continuous fluid model is 2.075 × 107.

3.1.2. Energy Transfer Model

In extremely low-pressure environments (<1 Pa), collisions between gas molecules
become infrequent, making it challenging to treat the gas as a viscous fluid. In such cases,
the concept of effective viscosity may no longer apply. An energy transfer model, which
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describes the interactions between gas molecules and the vibrating plate during collisions,
could provide a more accurate representation. To simplify the analysis of the MEMS
cobweb-like disk resonant gyroscope, its structure is approximated as a rectangular plate,
as illustrated in Figure 5.
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To determine the analytical solution, it is essential to first consider the change in the
velocity of gas molecules after colliding with the resonator [14]. It is assumed that the gas
molecules collide with the resonator at a velocity v, and the velocity of the collision position
on the resonator is

.
z. Since the mass of the gas molecular Mm is much smaller than the

resonator mass M, we can apply the principle of momentum conservation. Therefore, the
gas molecular velocity after the collision is given by

v+ = v + 2
.
z (16)

Similarly, if the resonator moves in the same direction as the gas molecules, the velocity
of the gas molecules will be

v+ = v − 2
.
z (17)

Next, we need to calculate the energy dissipated by the collision of gas molecules
in a unit period. The gap between the resonator and the fixed electrode is denoted as d0.
Assuming the vibration displacement of the resonator z = z0sinωt, the gap becomes d = d0
− z0sinωt during the vibration process. Considering the perimeter of the gas film boundary
is L, the boundary area is

S = L(d0 − z0 cos ωt) (18)

The number of gas molecules passing through the boundary per unit time is

N0 =
1
4

ncvS =
1
4

ncvL(d0 − z0 cos ωt) (19)

where nc and v are the concentration and mean velocity of the gas molecules, respectively,
and v =

√
8kT/πMm.

When the gas molecules enter the gap, the velocity component in the z direction is vz0,
the velocity component in the XY plane is vxy0, and the transverse displacement is l, so the
residence time in the gap is ∆t = l/vxy0. Since this is much less than the vibration period of
the resonator [15], the collision time of the gas molecules in each vibration period is

∆N =
vz0∆t

2(d0 − z0 sin ωt)
=

vz0l
2(d0 − z0 sin ωt)vxy0

(20)

When the gas molecules collide with the plate and the velocity increment is 2
.
z, the

z-direction velocity at the end of the movement in the gap is

vz = vz0 + ∆N · 2
.
z = vz0 +

vz0lz0ω cos ωt
(d0 − z0 cos ωt)vxy0

(21)
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The molecular potential energy of the gas inside the entry gap region is

ek,in =
1
2

Mm

(
v2

z0 + v2
xy0

)
(22)

The molecular potential energy of the gas in the escape gap region is

ek,out =
1
2

Mm

(
v2

z + v2
xy0

)
(23)

Therefore, the additional energy obtained by the gas molecules through the collision
with the resonator is

∆ek = ek,out − ek,in =
1
2

Mm

 2v2
z0lz0ω cos ωt

(d0 − z0 cos ωt)vxy0
+

v2
z0l2z2

0ω2 cos2 ωt

(d0 − z0 cos ωt)2v2
xy0

 (24)

It is evident that the additional energy acquired by the gas molecules originates from
the resonator. Since the average value of the first term on the right side of the equation is
zero over one vibration period of the resonator, only the second term contributes to the
energy dissipation of the resonator. By combining Equations (19) and (24), the average
energy dissipation of the resonator during one vibration period can be expressed as

∆Ecycle =

2π∫
0

ncvLMmv2
z0l2z2

0ω cos2 ωt
8(d0 − z0 cos ωt)v2

xy0
dωt (25)

To predict the calculation, l2, v2
z0 and z0 are approximated by l2, v2

z0 and z0, respectively.
Since v2

xy0 = 2v2
z0 [16], the Formula (25) can be converted into

∆Ecycle =

2π∫
0

ρovLl2z0
2ω cos2 ωt

16(d0 − z0 cos ωt)
dωt (26)

where ρ0 = ncMm is the gas density. Assuming that the vibration shift z of the resonator is
much less than the gap d0, there is

∆Ecycle ≈
πρovLl2z0

2ω

16d0
(27)

Hence, the quality factor Qsq,e for squeeze film damping, based on the energy transfer
model at low pressure, is expressed as

Qsq,E =
2πEv

∆Ecycle
=

16mωd0

ρovLl2
(28)

where Ev and m are the vibration energy and mass of the resonators, respectively. According
to the energy transfer theory, l2 = 2A/π, A is the overlapping area of the resonator’s
vibration part and the fixed electrode, ρ0 = Mmp/RT, v =

√
8RT/πMm; then, Qsq,e can be

expressed as

Qsq,E = (2π)
3
2

mωd0

LA

√
RT
Mm

1
p

(29)
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By substituting the structural parameters of the CDRG, the final expression for Qsq,e
can be obtained as follows:

Qsq,E = (2π)

3
2 mωd0

2
n
∑

i=1
(Ai + H)

n
∑

i=1
Ai H

√
RT
Mm

1
p

(30)

Based on the provided parameters, the calculations from the energy transfer model
are presented in Table 2. A comparison of the quality factor curves for the two models with
respect to pressure is illustrated in Figure 6. It is evident that as the pressure decreases, the
error increases for both models. This may be attributed to the presence of air molecules
in high-vacuum conditions, where they can no longer be considered a continuous fluid.
Consequently, the energy transfer model may provide a more accurate representation,
which will be confirmed through experiments discussed in the following sections.

Table 2. Comparison of the results between the two models of MEMS (T = 298.15 K, p = 0.07 Pa).

Model Continuous Fluid
Model

Energy Transfer
Model Error Coefficient k

Squeeze film
damping quality

factor Qsq

2.075 × 107 3.058 × 105 66.86
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3.2. Thermoelastic Damping
3.2.1. The Thermoelastic Damping Loss Mechanism

When a MEMS device experiences vibration, material strain results in irreversible
energy dissipation, known as thermoelastic damping (TED). For MEMS devices operating
in ultra-high-vacuum conditions, TED is the dominant mechanism limiting their quality
factor [17]. The thermomechanical coupling process responsible for TED is described
as follows.

Thermal expansion, a well-established phenomenon, occurs when temperature vari-
ations induce dimensional changes in solids. This interaction between mechanical and
thermal fields is bidirectional. Specifically, a solid under tensile stress will experience
temperature changes: compressive strain typically causes a temperature increase, while
tensile strain results in a temperature decrease, particularly in materials like silicon.

Two mechanisms explain the thermal dissipation process. One explanation posits that
the strain gradient in a bending beam induces a corresponding temperature gradient. As
heat flow mitigates this temperature gradient, thermoelastic dissipation occurs, irreversibly
converting vibrational energy into heat. Alternatively, mechanical energy can generate a
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temperature gradient, resulting in energy exchange between the system and entropy. Heat
flow naturally attempts to balance the temperature gradient, leading to irreversible energy
dissipation in the form of increased entropy.

While TED cannot be entirely eliminated in any resonator, it can be minimized through
structural optimization and material selection. Based on the coupling between the strain
field and the temperature field, TED models can be classified into two categories. The first
category considers unidirectional coupling, where the strain field influences the tempera-
ture field, but not vice versa; a typical example is the Zener analytical model. The second
category involves full coupling, where both strain and temperature fields influence each
other, as exemplified by the COMSOL 6.2 simulation model. The first model is simpler
and computationally efficient, while the second model, although more complex, offers
greater accuracy.

Subsequently, estimations will be performed using both models. The methods of mode
superposition and separation of variables will be employed, along with the introduction of
triangular series to satisfy the boundary conditions, leading to the final expression [18]:

QTED,Zener =
1

∆E

1 + (ω0τ)2

ω0τ
=

ρCρ

Eα2T0

1 + (ω0τ)2

ω0τ
(31)

where ω0 is the natural frequency and τ = W2ρCp/kπ2 is the thermal relaxation time.
Obviously, the quality factor QTED is partially dependent on the material properties, which
may also vary with ambient temperature T0. Additionally, the thermal relaxation time
τ is related to the heat transfer rate across the entire cross-section of the resonant beam
and depends on the beam width W (which defines the length of the heat flow path).
Furthermore, the natural frequency ω0 is influenced by both the size of the beam and its
material characteristics. The function

(
1 + ω2

0τ2)/ω0τ describing Debye behavior reaches
a minimum at the frequency ω0 = ωmin = 1/τ. Therefore, the QTED of the resonator changes
significantly depending on the proximity of the natural frequency ω0 to ωmin. When
ω0 = ωmin, QTED takes the minimum value, corresponding to the maximum thermoelastic
damping; when ω0 < ωmin, the heat transfer time constant is shorter than the vibration
period, making the system effectively isothermal. Conversely, when ω0 > ωmin, the heat
transfer time constant exceeds the vibration period, rendering the system adiabatic. Table 3
lists the material properties of (111) monocrystalline silicon, while Figure 7 illustrates the
relationship between QTED, the ring width (beam width) and frequency. The color bar in
the figure represents the magnitude of the Q value. For a MEMS gyroscope with a ring
width of 13 µm, the analytical solution for QTED using the Zener model is 2.452 × 105 at
room temperature (T = 298.15 K).

Table 3. The typical properties of monocrystalline silicon materials under the (111) crystal orientation
at room temperature (T = 298.15 K).

Material Attributes Value Unit

Density ρ 2330 Kg/m3

Young’s modulus E 168.9 G Pa

Poisson’s ratio v// (horizontal direction) 0.262 -

Poisson’s ratio v⊥ (vertical direction) 0.182 -

Modulus of shearing G//
(horizontal direction) 66.9 G Pa

Modulus of shearing G⊥(vertical direction) 57.8 G Pa

Coefficient of expansion due to heat α 2.6 × 10−6 1/K

Heat conductivity k 130 W/(M·k)

Normal pressure heat capacity Cv 713 J/(kg·K)
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3.2.2. COMSOL Finite Element Model

The COMSOL simulation model considers the anisotropic thermoelastic coupling in
solid structures, where the interaction between stress and temperature fields exhibits a full
coupling effect. The 3D elastic solid motion equation and the isotropic thermoelastic solid
constitutive equation are combined [19,20], and the simplified tensor method is applied to
obtain the displacement linear equation as follows:

ρ
∂2u
∂t2 = µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ (λ + µ)

(
∂2u
∂x2 +

∂2v
∂x∂y

+
∂2w
∂x∂z

)
− γ

∂T
∂x

(32)

ρ
∂2v
∂t2 = µ

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
+ (λ + µ)

(
∂2u

∂y∂x
+

∂2v
∂y2 +

∂2w
∂y∂z

)
− γ

∂T
∂y

(33)

ρ
∂2w
∂t2 = µ

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
+ (λ + µ)

(
∂2u

∂z∂x
+

∂2v
∂z∂y

+
∂2w
∂z2

)
− γ

∂T
∂z

(34)

where u, v, and w are the displacement in x, y, and z, respectively, and the thermoelastic
coefficient γ = α(3λ + 2µ), λ = E/(1 + v) (1 − 2v) and µ = E/2(1 + v) is the Ramer coefficient
(Lamé parameters). Through Fourier’s law of entropy and the constitutive matrix equation,
the thermal coupled linear equation of the temperature field is obtained as [21] follows:

κ∇2T = ρCp
dT
dt

+ T0γ

(
∂

.
u

∂x
+

∂
.
v

∂y
+

∂
.

w
∂z

)
(35)

Formulas (32) to (35) above form a set of 3D thermoelastic coupled linear equations,
where the coupling between structural stress and temperature fields is governed by the
thermal expansion coefficient α. Due to their linear nature, these equations can be solved
for various geometries using the finite element method (FEM). COMSOL finite element
simulation software, equipped with built-in thermoelastic and solid mechanics physics
modules, facilitates the coupling of heat transfer processes between stress and temperature
fields, making it suitable for simulation calculations. In this model, thermal insulation
boundary conditions are applied to all external surfaces.

The thermoelastic damping of the MEMS cobweb-like disk resonator gyroscope was
simulated using COMSOL 6.2, with the temperature gradient distribution of the operational
mode shown in Figure 8. Areas with higher temperatures (in the compressive stress zones)
are depicted in red, while those with lower temperatures (in the tensile stress zones) are
shown in blue. The purple arrows illustrate the direction of heat flow.
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From a macroscopic viewpoint, the mass block suspended within the structural frame
does not substantially contribute to heat dissipation, resulting in the overall structure
remaining near thermal equilibrium, with only slight temperature deviations. However,
a localized magnified view reveals that the temperature gradient is concentrated in areas
with significant deformation, such as the rings and spokes, where temperature deviations
are most pronounced.

The final quality factor value obtained from the COMSOL simulation at room tem-
perature (T = 298.15 K) is 1.733 × 105, as shown in Table 4. Compared to the analytical
solution derived from the Zener model, this result displays a numerical difference of 41.5%,
indicating a notable discrepancy. This variation arises due to the complex geometry of
the structure, which deviates from a simple beam configuration, resulting in consider-
able coupling between the stress and temperature fields. Consequently, the Zener model
alone may not provide precise results, making the FEM approach essential for achieving
higher accuracy.

Table 4. Comparison of the QTED between the analytical Zener model and the COMSOL simulation
model for the CDRG.

Model Zener Analytic
Model

COMSOL
Simulation Model Error Coefficient

QTED 2.452 × 105 1.733 × 105 41.5%

3.3. Anchor Loss

In MEMS structures, all resonant elements are fixed to a substrate, with the connection
point between the resonant structure and the substrate known as the anchor. The energy
dissipation mechanism, where part of the vibrational energy radiates as an elastic wave
from the anchor and dissipates into the substrate, is referred to as anchor damping loss [22].
This loss is influenced by multiple factors, including the structural form, vibrational state,
and the size and position of the support structure.

For simple resonant beams with well-defined vibration characteristics, anchor damp-
ing can be calculated using analytical models [23]. However, for complex axisymmetric
structures like the cobweb-like disk resonant gyroscope, establishing an analytical model
for anchor damping is highly challenging. Therefore, COMSOL finite element analysis
(FEA) is employed for simulation.

A primary difficulty in simulating anchor damping arises from the nature of the
substrate, which behaves as a semi-infinite medium. Elastic waves propagating into the
substrate continue indefinitely without reflecting off sidewalls, complicating the modeling
process. To address this, the substrate is represented as a finite domain surrounded by
artificial boundaries that mimic the behavior of an infinite substrate.
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One key characteristic of an infinite substrate is that waves entering it do not reflect
back from the boundary. To approximate this behavior in a finite domain, non-reflective
boundaries are often applied; however, this method is effective only when the incident
wave is perfectly perpendicular to the boundary. To overcome this limitation, a more
effective solution is to implement a Perfectly Matched Layer (PML), which is a specialized
dielectric layer that matches the wave impedance of the adjacent medium. The PML allows
incident waves to pass through the boundary without reflection and attenuates the waves,
effectively meeting the requirements for accurate modeling.

In this simulation, a PML is added to the outer boundary of the model’s substrate to
prevent elastic waves from reflecting back and distorting the results. The PML enhances
wave damping by converting the wave solution into a complex coordinate system within
the PML region, resulting in an exponential decay of the wave amplitude. If the PML region
is sufficiently large, the exponential decay ensures that the wave diminishes to negligible
levels. Even if some attenuated waves reflect from the PML boundary, their energy upon
returning to the resonator is minimal, making their impact negligible.

To calculate the Q factor for anchor damping, the PML order and scaling factor were set
to 1. Depending on the resonator design and boundary conditions, Cartesian, cylindrical, or
spherical PMLs can be utilized to absorb stress waves. Since spherical PMLs are particularly
effective at absorbing radial waves, they were selected for this simulation.

In this study, we assume that the gyro resonators, anchors, substrate, and Perfectly
Matched Layers (PMLs) are constructed from (111) monocrystalline silicon, with the ma-
terial properties detailed in Table 3. The quality of the grid cells and the dimensions of
the PMLs are critical factors when calculating the quality factor (Q values) using PMLs.
Poor grid quality can lead to inadequate convergence of iterative solvers and pathological
behaviors in the solution process. Generally, increasing the number of grid cells enhances
numerical accuracy but also raises solution time and memory requirements.

Given practical constraints, we prioritize grid accuracy for the gyroscope resonator
structure. The meshing process begins with a swept approach for the resonator surface,
followed by the creation of a free tetrahedral mesh for both the substrate and the PML. The
results of the final grid dissection are illustrated in Figure 9.
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To ensure accurate simulation results, the PML radius was set to match the mechanical
wavelength during the analysis. For longitudinal waves propagating through the solid
material, the mechanical wavelength is defined by the following expression [24]:

λ =
1
f

√
E(1 − υ)

ρ(1 + υ)(1 − 2υ)
(36)

where f is the resonator’s vibration frequency. The MEMS cobweb-like disk axisymmetric
gyroscope resonance frequency design value is 18,188 Hz, as shown in Table 3, and it is
calculated that λ = 4.72 × 105 µm. This value is used to define the edge length of the
Perfectly Matched Layer (PML). The quality factor Qanchor of the anchor damping can be
expressed as follows [25]:

Qanchor =
Re(ω)

2Im(ω)
(37)

where Re(ω) and Im(ω) represent the real and imaginary parts of the gyroscopic resonance
angular frequency, respectively. Using this equation, the COMSOL finite element method
numerically solves the intrinsic frequency problem via the characteristic frequency method
within the solid mechanics module. The calculated quality factor Qanchor for anchor damp-
ing in the axisymmetric gyroscope of the CDRG is found to be 1.921 × 108. This value
is significantly higher than the quality factors associated with air damping and thermoe-
lastic damping, indicating that anchor damping is largely negligible in the overall energy
dissipation of the system.

3.4. Other Dissipation Mechanisms
3.4.1. Surface Loss

Due to the MEMS fabrication process, the dimensions of the resonator decrease, re-
sulting in an increased surface-to-volume ratio that amplifies the surface effects [26]. The
resonator surface may contain impurities, lattice defects, adsorbates, and other imperfec-
tions, leading to surface stress and energy dissipation. Several researchers have analyzed
this phenomenon of surface loss by exploring specific physical mechanisms and developing
a range of models to explain the surface effects. Their studies indicate that surface loss is
influenced by material properties as well as the presence of metals on the resonator surface.

For instance, Seoanez et al. established a “unified model” for surface loss mechanisms,
which considers both the second-order energy system of the surface and the total resonator
energy [27]. Additionally, Esashi and Yasumura et al. investigated the Q value of ultrathin
MEMS resonant beams, demonstrating that the Q value is dependent on both the film thick-
ness and the thickness of the surface oxide layer formed during thermal processing. In both
cases, the Q value fluctuates significantly during the high-to-normal-to-high temperature
cycle [28]. When the vibrational displacement is much smaller than the structural size,
surface loss can be modeled using the complex variable form of Young’s modulus [29], that
is, EC = E + iEd, where E is the conventional Young’s modulus and Ed is Young’s modulus
responsible for energy dissipation. The total energy of the resonant beam during vibration
can be expressed as

W =
1
6

bhE
∫

ε2
max(x)dx (38)

Among these parameters, b is the beam width, h is the beam thickness, and εmax is the
maximum surface strain experienced during vibration. If the thickness of the surface layer
is denoted as δ, the surface energy dissipation per unit vibration period can be expressed
as [30]

∆W = 2πδEd

(
b +

h
3

)∫
ε2

max(x)dx (39)
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Thus, the Q value of the surface loss is

Q =
bh

3b + h
E

2Edδ
(40)

As illustrated by Equation (40), a decrease in structural thickness, along with increases
in both the surface layer thickness and Young’s modulus, leads to a reduction in the Q value
associated with surface loss. Consequently, for structures characterized by a high surface-to-
volume ratio, such as thin micro-hemispherical geometries, surface loss frequently emerges
as a significant contributor to energy dissipation. However, in the case of the CDRG under
investigation, the thickness-to-diameter ratio is relatively large. This results in a surface
loss quality factor exceeding 1 × 1010, rendering surface loss effects negligible for this
particular structure.

3.4.2. Electronic Damping

When the conductive surface exhibits finite resistivity, the movement of charges
encounters resistance, leading to energy dissipation known as electronic damping. In the
MEMS gyroscope structure, gyro resonance is excited by applying an AC voltage to the
excitation electrode. The output signal from the detection capacitance is then amplified
using a basic amplification circuit. Importantly, the voltage bias necessary for generating
the readout signal also applies a force to the gyro resonator, resulting in electronic damping
losses. Unlike the energy dissipation mechanisms discussed previously, electronic damping
is independent of the gyro structure’s design and fabrication, instead being linked to the
electronic components utilized in the experimental setup.

For the CDRG, a charge amplifier serves as the pre-detection circuit module, as
illustrated in Figure 10. The blue curve in the figure is the charge amplifier module, vin is
the excitation AC voltage, VB is the offset DC voltage, C is the gyro detection capacitor, vs.
is the gyro output voltage signal, and Rf and Cf are the feedback resistance and capacitance
of the charge amplifier, respectively. According to Figure 10, the resonant vibration of the
gyroscope can be described by the control equation of a second-order mechanical system,
with the electrostatic force generated by two electrodes, as illustrated below [31].

me f f
..
x + c

.
x + kx =

(VB − vin)
2

2
dC
dx

+
(VB − vs)

2

2
dC
dx

(41)

where c and k are the damping and stiffness coefficients of the gyroscope, respectively.
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Figure 10. A simplified schematic diagram of the circuit model for the experimental setup of
the CDRG.

To determine the output voltage vs. of the gyroscope, the current is is calculated first.
In an ideal operational amplifier, the gain is considered infinite, and the node voltage equals
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the input voltage. However, in practice, the amplifier gain is finite. By applying Kirchhoff’s
current law and Ohm’s law, the following relationships can be established:

is = is1 + is2 (42)

is = (VB − vs)
dC
dt

(43)

is1 =
vs + Gvs

Z f
(44)

is2 =
vs

Zin
(45)

where Zin is the input impedance of the amplifier, G is its amplification gain, Zf = Rf/
(1 + sRfCf) is the feedback impedance, and s is the complex frequency. Equations (46)~(50)
are combined and expanded using Taylor series, as follows:

m
..
x + c

.
x + kx =

(VB − vin)
2

2
dC
dx

+
V2

B
2

dC
dx

− ZsV2
B

(
dC
dx

)2
.
x +

Z2
s V2

B
2

(
dC
dx

)3
.
x2 (46)

where
Zs =

1

1
Zin

+
(G−1)(1+sR f C f )

R f

(47)

The third term on the right side of Equation (51) represents the damping effect due to
the experimental electronics, as it is proportional to the velocity. Utilizing the relationship
between damping and Q value, the electronic damping quality factor Qelec can be derived
as follows:

Qelec =
2πme f f f

V2
B Zs

(
dC
dx

)2 (48)

Equation (48) indicates that Qelec increases as the equivalent output impedance of
gyroscope Zs and the bias DC voltage VB decrease. The Qelec for the study object has been
calculated using the parameters listed in Table 5. Based on these parameters, the calculated
Qelec is 3.08 × 1010. Clearly, the contribution of electronic damping is negligible compared
to that of the other damping mechanisms.

Table 5. System parameters of the CDRG.

Parameter Value Unit

Effective mass meff 2.68 × 10−7 Kg

Resonant frequency f 18,818 Hz

Change rate (dC/dx) 2 × 10−7 F/m

Biased DC voltage VB 1.65 V

Equivalent input
impedance@18,818 Hz Zin

1.88 MΩ

Feedback resistance Rf 100 MΩ

Feedback capacitance Cf 2 pF

Amplification gain of
the amplifier 113 dB

3.4.3. Akhiezer Damping

The energy dissipation caused by interactions between elastic waves and thermal
phonons within a material is categorized as an intrinsic damping loss mechanism. This
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mechanism can be divided into two components: spatial phonon transport and local
phonon scattering. Irreversible spatial phonon transport, resulting from time-varying strain
gradients, corresponds to the previously examined thermoelastic damping loss mechanism.
In contrast, local phonon scattering, first identified by Akhiezer in 1939, is known as
Akhiezer damping. For high-frequency bulk mode resonators, Akhiezer damping is often
the primary factor limiting the quality factor, whereas in low-frequency resonators, it is
typically negligible compared to thermoelastic damping.

Woodruff, applying the linear Boltzmann transport equation and the Debye model,
derived a simplified expression for isotropic Akhiezer damping [32], which considered
only classical properties. Subsequently, Iyer et al. explored the anisotropic energy storage
and dissipation due to non-harmonic phonon–phonon interactions in cubic semiconductors
and dielectric crystals, deriving an expression for the Akhiezer damping quality factor [33].
The following equation represents the quality factor for Akhiezer damping [34].

f · QAkhiezer =
3ρc2c2

D
2πγ2

e f f κT
(49)

where c is the acoustic wave velocity, cD is the Debye velocity, and γeff is the effective
Gruneisen parameter. The Grüneisen parameter, which depends on the mode pattern and
material anisotropy, is typically treated as a free parameter for fitting. For silicon materials,
the order of f · QAkhiezer is near 1 × 1013. Using this relationship, the QAkhiezer of the CDRG
is estimated to be approximately 1 × 109.

In conclusion, the quality factors for surface damping, electronic damping, and
Akhiezer damping are all on the order of 1 × 108, making them negligible compared
to the air damping and thermoelastic damping mechanisms. Table 6 presents the theo-
retical results and contribution rates for the total quality factor and each damping mech-
anism. Notably, the thermoelastic damping quality factor is derived solely from finite
element analysis.

Table 6. Theoretical calculation results of MEMS at room temperature (T = 298.15 K).

Damage Loss
Mechanism Q Contribution

Rate Q Contribution
Rate

Air damping @
(0.07 pa)

2.075 × 107

(Continuous
fluid model)

~0.83% 3.058 × 105

(Energy transfer model)
~36.14%

Thermoelastic
damping 1.733 × 105 ~99.07% 1.733 × 105 ~63.79%

Anchor loss 1.921 × 108 ~0.089% 1.921× 108 ~0.058%

Other losses 1 × 109 ~0.017% 1 × 109 ~0.011%

Total loss 1.716 × 105 - 1.105 × 105 -

From Table 6, the results calculated using different air damping models show sig-
nificant variation in the total quality factor and the contribution rates of the primary
damping mechanisms. When the continuous fluid model is applied, the total quality
factor is approximately 1.716 × 105, with the thermoelastic damping mechanism being
dominant, contributing 99.07%. This indicates that the overall quality factor is mainly
influenced by thermoelastic damping. In contrast, using the energy transfer model yields
a total quality factor of about 1.105 × 105, where both thermoelastic and air damping
mechanisms are significant, contributing 63.79% and 36.14%, respectively. Accurate experi-
mental measurements are needed to determine which air damping model provides a more
precise representation.
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4. Verification and Discussion

A detailed theoretical analysis of the damping loss mechanism has been previously
discussed. To validate this theoretical analysis, experimental testing of the fabricated
prototype is necessary. The following section provides experimental verification of the
energy dissipation mechanism model and the damping asymmetry error mechanism.

Two common methods exist for measuring the quality factor (Q): the frequency re-
sponse method and the time decay method. For high-Q resonators, the −3 dB bandwidth
is very narrow, making the measurement of Q values using the frequency response method
increasingly difficult and prone to error. As a result, the time decay method is used for
measuring the Q value of the resonator. Initially, the resonant frequency is determined
using the sweep method, and the resonator is then excited at this frequency. After allowing
the oscillation to reach a stable state, the excitation signal from the signal generator is
turned off, and the decay oscillation data are collected using the NI data acquisition card.
The Hilbert transform is then applied to extract the envelope of the signal, and the time
constant τ and Q are derived by fitting an exponential decay model. The time required
for the amplitude to decay to 1/e of its initial value is defined as the time constant τ, from
which the quality factor Q can be calculated using the following formula:

Q = π f0τ (50)

where f 0 is the resonant frequency.
The time constant τ and Q values of the drive mode for CDRG #1 are 1.911 s and

1.124 × 105, respectively, while those for the sense mode are 1.922 s and 1.13 × 105, as
illustrated in Figure 11. In Figure 11, the blue segment represents the attenuation signal,
and the red segment corresponds to the A0 exp(−t/τ) fitted curve. The Q-value test results
for the remaining seven CDRG prototypes are summarized in Table 7. According to the
test data, the quality factor of the CDRG prototypes ranges from 0.66× 105 to 1.23 × 105.
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Table 7. Quality factor test results of CDRG prototypes (T = 298.15 K).

No. Qx Qy ∆Q

#1 1.124 × 105 1.13 × 105 0.6 × 103

#2 0.977 × 105 0.974 × 105 0.3 × 103

#3 0.861 × 105 0.885 × 105 2.4 × 103

#4 1.007 × 105 1.025 × 105 1.8 × 103

#5 0.678 × 105 0.659 × 105 1.9× 103

#6 1.23 × 105 1.219 × 105 1.1 × 103

#7 0.957 × 105 0.932 × 105 2.5 × 103

#8 1.108 × 105 1.115 × 105 0.7 × 103
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In Figure 12, the theoretical analysis results comparing the relationship between the
total quality factor based on the modified continuous fluid model (CFM) and that based on
the energy transfer model (EFM) with pressure and at room temperature (T = 298.15 K) are
presented. According to previous studies on the damping loss mechanisms of vibrating
ring gyros, the pressure range for wafer-stage vacuum packaging is approximately 0.02 Pa
to 0.2 Pa, influenced by the adsorption effect of the getter, which is the light blue area
in Figure 12. In the corresponding pressure region, the total quality factor for the CFM
ranges from 1.685 × 105 to 1.729 × 105 (see the purple dotted line in Figure 12), while the
quality factor for the EFM spans from 0.662 × 105 to 1.491 × 105 (see the green dotted line
in Figure 12).
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Since the test results of the quality factor for the CDRG prototypes ranges from
0.66 × 105 to 1.23 × 105, it is obvious that these results are within the range of the theoretical
analysis results for the total quality factor based on the EFM, while it is outside the range
for the total quality factor based on the CFM, so the theoretical model of the total energy
dissipation mechanism based on the EFM is more consistent with the experimental results.

Furthermore, the theoretical model of the total energy dissipation mechanism loss
mechanism based on the energy transfer model can be further validated through a tem-
perature characteristic test of the quality factor. The temperature characteristics of the
total energy dissipation mechanism are primarily influenced by both the air damping loss
mechanism and the thermoelastic damping loss mechanism. To describe the temperature
dependence of the quality factor, the temperature coefficient (temperature coefficient of
quality factor, TCQ) is introduced. Typically, the TCQ is expressed in an exponential form,
such as Q∝T−TCQ.

Due to the damage sustained by device CDRG #1 after multiple uses, device CDRG
#3 was employed to evaluate the quality factor and temperature characteristics. The time
decay method was used for the measurement, and the results are presented in Figure 13. In
Figure 13, the blue and red curves represent the drive mode quality factor and the sense
mode quality factor of device CDRG #3, with TCQs of 2.013 and 1.998, respectively.



Micromachines 2024, 15, 1380 20 of 22

Micromachines 2024, 15, x FOR PEER REVIEW 20 of 23 
 

 

Since the test results of the quality factor for the CDRG prototypes ranges from 0.66 
× 105 to 1.23 × 105, it is obvious that these results are within the range of the theoretical 
analysis results for the total quality factor based on the EFM, while it is outside the range 
for the total quality factor based on the CFM, so the theoretical model of the total energy 
dissipation mechanism based on the EFM is more consistent with the experimental results. 

Table 7. Quality factor test results of CDRG prototypes (T = 298.15 K). 

No. xQ  yQ  QΔ  

#1 1.124 × 105 1.13 × 105 0.6 × 103 
#2 0.977 × 105 0.974 × 105 0.3 × 103 
#3 0.861 × 105 0.885 × 105 2.4 × 103 
#4 1.007 × 105 1.025 × 105 1.8 × 103 
#5 0.678 × 105 0.659 × 105 1.9× 103 
#6 1.23 × 105 1.219 × 105 1.1 × 103 
#7 0.957 × 105 0.932 × 105 2.5 × 103 
#8 1.108 × 105 1.115 × 105 0.7 × 103 

Furthermore, the theoretical model of the total energy dissipation mechanism loss 
mechanism based on the energy transfer model can be further validated through a tem-
perature characteristic test of the quality factor. The temperature characteristics of the to-
tal energy dissipation mechanism are primarily influenced by both the air damping loss 
mechanism and the thermoelastic damping loss mechanism. To describe the temperature 
dependence of the quality factor, the temperature coefficient (temperature coefficient of 
quality factor, TCQ) is introduced. Typically, the TCQ is expressed in an exponential form, 
such as Q∝T−TCQ. 

Due to the damage sustained by device CDRG #1 after multiple uses, device CDRG 
#3 was employed to evaluate the quality factor and temperature characteristics. The time 
decay method was used for the measurement, and the results are presented in Figure 13. 
In Figure 13, the blue and red curves represent the drive mode quality factor and the sense 
mode quality factor of device CDRG #3, with TCQs of 2.013 and 1.998, respectively. 

Temperature(K)

(Theoretical )      

Q
 

(Measure )      

(Measure )      

120,000

100,000

80,000

60,000

250 275 300 325 350

 
Figure 13. Comparison of measured results and theoretical models of device CDRG # 3. 

Based on the measured results for the quality factor of CDRG #3, the energy transfer 
model estimates that, at a packaging pressure of approximately 0.12 Pa, the damping qual-
ity factor is around 1.784 × 105. In reference [35], it is noted that the quality factor for the 

Figure 13. Comparison of measured results and theoretical models of device CDRG # 3.

Based on the measured results for the quality factor of CDRG #3, the energy transfer
model estimates that, at a packaging pressure of approximately 0.12 Pa, the damping
quality factor is around 1.784 × 105. In reference [35], it is noted that the quality factor for
the air damping loss mechanism is expressed as Qair∝T−0.5, indicating that its temperature
coefficient is the opposite. This discrepancy arises because the device is vacuum-packed,
meaning the volume remains constant while the pressure varies as a function of the
temperature. Thus, the combination of Equation (30) and the ideal gas state equation can
be expressed as follows:

Qsq,e = (2π)

3
2 mωd0

2
n
∑

i=1
(Ai + H)

n
∑

i=1
Ai H

√
1

MmRT
V
n

(51)

In Equation (51), V represents the gas volume, and n denotes the amount of substance
in the wafer-level package. These values are fixed and independent of temperature for the
packaging device, and the quality factor for the air damping is also given by Qair∝T−0.5. In
addition, the thermoelastic damping is very sensitive to temperature. In the finite element
model, (111) single-crystal silicon is utilized, and the TCQ for thermoelastic damping is
approximately 3.5, consistent with findings reported in the literature [35].

Finally, using the energy transfer model and finite element analysis, we derived the
theoretical temperature characteristic curve for the total energy dissipation mechanism,
illustrated by the green dashed line in Figure 13. This curve indicates a TCQ of approxi-
mately 1.975. When compared to the experimental results, the temperature coefficient is
closely aligned, with a maximum error not exceeding 2%. These findings demonstrate that
the theoretical model is generally consistent with the experimental results and can effec-
tively estimate the loss mechanisms of the gyro structure, providing significant guidance
for its design and optimization.

5. Conclusions

In this paper, we systematically establish a theoretical model for the energy dissipa-
tion mechanisms of the MEMS cobweb-like disk resonator gyroscope, which includes air
damping, thermoelastic damping, anchor loss, and other losses. Air damping in the free
molecular flow regime is analyzed using both a continuous fluid model and an energy
transfer model. The results obtained from the theoretical model using the energy transfer
approach align well with the measured data, with the maximum error in the tempera-
ture coefficient being less than 2%. This discrepancy may arise from fabrication errors



Micromachines 2024, 15, 1380 21 of 22

and measurement inaccuracies. The results indicate that thermoelastic damping and air
damping are the primary energy dissipation mechanisms in the MEMS cobweb-like disk
resonator gyroscope, accounting for 63.79% and 36.14%, respectively. In contrast, anchor
loss accounts for about 5.8%, while other losses, including surface loss, electronic damping,
and Akheizer damping, contribute only about 1.1%. This suggests that even with high-
vacuum packaging, air damping continues to significantly impact the quality factor when
the capacitor gap is small. Therefore, to enhance the quality factor of resonator structures
with vacuum packaging, it is essential to prioritize the optimization of air damping and
thermoelastic damping, particularly in small gaps.
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