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Abstract: Organic solvent nanofiltration (OSN) technology is advantageous for separating mixtures
of organic solutions owing to its low energy consumption and environmental friendliness. Covalent
organic frameworks (COFs) are good candidates for enhancing the efficiency of solvent transport
and ensuring precise molecular sieving of OSN membranes. In this study, p-phenylenediamine (Pa)
and 1,3,5-trimethoxybenzene (Tp) are used to construct, in situ, a TpPa COF skin layer via interfacial
polymerization (IP) on a polyimide substrate surface. After subsequent crosslinking and activation
steps, a kind of TpPa/polyimide (PI) OSN membrane is obtained. Under optimized fabrications, this
OSN membrane exhibits an ethanol permeance of 58.0 LMH/MPa, a fast green FCF (FGF) rejection
of 96.2%, as well as a pure n-hexane permeance of 102.0 LMH/MPa. Furthermore, the TpPa/PI OSN
membrane exhibits good solvent resistance, which makes it suitable for the separation, purification,
and concentration of organic solvents.

Keywords: organic solvent nanofiltration (OSN); covalent organic frameworks (COFs); interfacial
polymerization (IP); in situ construction

1. Introduction

Organic solvent nanofiltration (OSN) separation technology is advantageous over
traditional distillation methods owing to its low energy consumption and high selectiv-
ity [1]. OSN membranes exert a direct influence on the efficiency of the OSN separation
process. To date, researchers have prepared a variety of OSN membranes with pore sizes
ranging from several nanometers to sub-nanometers. However, conventional polymer
materials generally lack tunable and well-organized pore channels, leading to limited mem-
brane porosity and uneven pore distribution, thus affecting the separation performance of
OSN membranes.

Covalent organic frameworks (COFs) are suitable for the fabrication of membranes
for rapid molecule transport and precise molecular sieving due to their porous crystalline
structure [2,3]. The use of COFs in membrane preparation could be classified into three
main categories: doping the synthesized COFs as additives into the monomer solutions
during the interfacial polymerization (IP) process for membrane preparation [4,5], using
COFs to construct an interlayer [5], or directly using COFs to construct the separation
layer [6,7]. Among them, membranes with COFs as the separation layer have drawn more
attention with the advancements in COF synthesis technology.

COF membranes have promising applications in gas separation [8], water treat-
ment [9], pervaporation [10], and organic solvent nanofiltration [11,12]. Until now, most
of the research works have been done on nanofiltration (NF) membranes. For instance,
Kandambeth et al. [12] showcased an eloquent fabrication methodology for the production
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of a series of self-standing, porous, and crystalline COF membranes. They utilized these
membranes for the recovery of valuable active pharmaceutical ingredients (APIs) from or-
ganic solvents as the representative cases. Dey et al. [13] prepared a Tp-Bpy self-supporting
COF NF membrane via a 72 h reaction between 5,5′5′-diamino-2,2′2′-bipyridine (Bpy) and
1,3,5-tricarbonylresorcinol (Tp). The Tp-Bpy membrane exhibited an acidic fuchsin (AF)
rejection rate of 97% and an exceptionally high pure water permeance of 2110 LMH/MPa.
However, the extremely long reaction time of the self-supporting COF membrane greatly
limits its application. In order to facilitate the practical application of COF membranes,
Wang et al. [14] fabricated COF NF membranes using Tp and p-phenylenediamine (Pa) as
reaction monomers via IP on polysulfone (PSf) substrates. Due to the moderate reaction
rate between monomer pairs in aqueous and organic solutions, a COF can be conformally
grown in less than 1 min. The prepared membrane exhibited 99.5% congo red (CR) rejection
rate and a pure water permeance of 500 LMH/MPa. The above results demonstrate that the
high-performance COF NF membrane can be prepared via IP in a very short time. In addi-
tion, in response to the still existing problem of uneven and discontinuous COF structures
caused by an extremely short reaction time, Lei et al. [15] used a very low concentration
(0.6 mM) of Tp with the Pa monomer to pre-generate oligomers with a planar structure in
n-hexane, and then catalyzed the oligomers by acetic acid for 60 s on a PSf-based membrane
surface. Afterward, they cured the membrane at 80 ◦C for 5 min and achieved a pure water
permeance of 652 LMH/MPa as well as a CR rejection rate of 98.0%.

Currently, most membranes with COFs as the separation layer are used for aqueous
systems, and relatively few are used for organic solvent systems. Nevertheless, COFs
have an excellent resistance to most organic solvents, and are promising candidates for
fabricating OSN membranes. Therefore, in this work, we construct an integrally crosslinked
COF membrane via an IP process using Tp and Pa monomers on a polyimide (PI) substrate
membrane surface within a short time, and, subsequently, perform crosslinking and solvent
activation. The optimized TpPa/PI COF membrane exhibits effective separation perfor-
mance and remarkable resistance to strong polar solvents. This work provides insights into
the fabrication of COF OSN membranes.

2. Materials and Methods
2.1. Materials

The materials used in this work are detailed in Table S1.

2.2. Fabrication Process of the TpPa/PI Membrane

Prior to the fabrication of the TpPa/PI membrane, the PI substrate was prepared
following the steps outlined in our previous work [16]. Afterward, the TpPa separation
layer was constructed via the IP process, during which the aqueous phase solution (25 mL)
containing a specific quantity of Pa, cetrimonium bromide (CTAB), 1 wt% acetic acid, and
deionized water was poured onto the PI substrate surface (approximately 8 × 8 cm), where
it remained for 30 s. Then, the aqueous phase solution was drained off and the organic phase
solution (20 mL) containing Tp and n-hexane was poured thereon to perform the IP reaction
and form the COF layer. The membrane was immediately heat cured at 60 ◦C for a certain
time, then it was immersed in a 10 wt% 1,6-hexanediamine (HDA)/isopropanol (IPA)
solution at 60 ◦C for 30 min to facilitate the crosslinking. Afterward, it was immersed in
ethanol to replace the crosslinking agent, then it was immersed in N, N-dimethylformamide
(DMF) at 80 ◦C for 15 min to perform the activation. The fabrication process is shown in
Figure 1.
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Figure 1. Fabrication process of the TpPa/PI membrane.

2.3. Characterization Methods

The characterization methods used of the membrane are detailed in Table S3.

2.4. Separation Performance Test

All the separation tests, including the long-term filtration test, were performed using
our crossflow filtration platform at 0.5 MPa and 25 ◦C, with a test area of 28.26 cm2. The
permeance (P) and the rejection (R) were calculated according to Equations (S1) and (S2),
respectively, in the Supplementary Material.

During the separation performance test, 100 mg L−1 of Fast Green FCF (FGF,
809 Da)/ethanol solution was used as feed. The pure solvent permeance was also tested
using different pure organic solvents, of which the characteristic parameters are presented
in Table S4. Further, a kind of solution with a weakly polar solvent, 100 mg L−1 Jacobsen cat-
alyst/ethyl acetate mixture, was also selected as feed to evaluate the potential application
of the COF membrane in chemical industries.

2.5. MWCO of the Membrane

The ethanol solutions consisting of 100 mg L−1 safranine T (ST), rhodamine B (RDB),
eosin Y (EY), and FGF were used to evaluate the molecular weight cut-off (MWCO) of the
TpPa/PI membrane.

2.6. Long-Term Solvent Resistance Test

The TpPa/PI membranes were immersed in 25 ◦C DMF solution for 23 days, and the
performance was evaluated using 100 mg L−1 of FGF/ethanol solution as feed at 0.5 MPa
and 25 ◦C to evaluate the solvent resistance.

3. Results and Discussion
3.1. Characterization of the Membrane
3.1.1. FTIR

As shown in Figure 2, the peaks at 1251 cm−1 and 1585 cm−1 corresponded to the
stretching vibration peak of the C-N and C = C bonds in the TpPa COF layer [14], which
confirm the successful construction of the TpPa COF separation layer. Figure 3 illustrates
the possible reactions during this process.
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3.1.2. XRD Characterization

As shown in Figure 4, the TpPa/PI composite membrane had characteristic peaks at
2θ = 7.9◦ and 26.0◦. The peak at 2θ = 7.9◦ represents the characteristic peak of the TpPa
COF material [14], proving the successful synthesis of the TpPa COF. The peak at 2θ = 26.0◦

represents the peak generated by the π-π stacking of benzene rings [17], since the growth of
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the TpPa COF in space is the stacking of two-dimensional network COFs, a phenomenon
which could generate the π-π stacking of benzene rings.
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Figure 4. XRD pattern of the TpPa/PI membrane.

3.1.3. Surface Topography Characterization

As shown in Figure 5, the surface of the TpPa/PI membrane in Figure 5a–d clearly showed
COF structures compared to the PI substrate and the PI substrate after the crosslinking and
activation steps in Figure 5e,f, indicating that the TpPa COF separation layer had been exper-
imentally synthesized. The surface of the TpPa/PI membrane was flat, which is due to the
fact that the TpPa COF material is a two-dimensional monolayer structure when it grows spa-
tially [18]. This uniform and flat surface is beneficial for reducing the deposition of contaminants
thereon, i.e., it is beneficial for improving the fouling resistance of the membrane [19].
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In Figure 6a,b, the average surface roughness (Ra) of the TpPa/PI composite membrane
is as low as 1.6 nm, which is consistent with the SEM results. Further, it is much lower than
most of the other OSN membranes in the literature [20–22], as shown in Table S5. As shown
in Figure 6c, the thickness of the COF layer via AFM using a self-standing film fabricated
under the same concentration of COF monomers was as thin as about 10.5 nm.
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3.1.4. Hydrophilicity Characterization

The TpPa/PI membrane in this work and the PI substrate and other COF OSN mem-
branes in the literature are shown in Table 1. The TpPa/PI composite membrane had a
WCA value of 78.8◦, which is much higher than that of the PI substrate in our previous
work. The construction of the TpPa COF layer effectively enhanced the hydrophobicity of
the membrane surface, a phenomenon which is suitable for transmembrane transport of
weakly polar solvents and non-polar solvents.

Table 1. WCA of the TpPa/PI membrane in this work and the PI substrate and other COF OSN
membranes in the literature.

Membrane WCA (◦) Literature

TpPa/PI membrane 78.8 This work
PI substrate 40.7 Our previous work [23]

3.2. Effect of the Fabrication Condition
3.2.1. Monomers Concentration

As shown in Figure 7a, the FGF rejection rate increased sharply from 10.6% to 93.6% as
the Pa concentration increased from 0.4 wt% to 0.6 wt%, accompanied by a sharp decrease
in ethanol permeance from 174.5 LMH/MPa to 25.1 LMH/MPa. This could be due to the
fact that the constructed COF layer became increasingly homogeneous, complete, and less
defective with the increase in Pa concentration, thus leading to the increase of the rejection
rate and to the decrease of the permeance [19]. As the Pa concentration further increased
to 0.7 wt%, there was a slight increase in the ethanol permeance, while the FGF rejection
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rate decreased from 93.6% to 84.4%. This could be due to the acceleration of the IP reaction
rate caused by the increased Pa concentration. This, in turn, resulted in a decrease in the
crystallinity of the COF layer, thus leading to an increase in the defects of the COF layer [13].
Consequently, a 0.6 wt% Pa solution was selected for further analysis.
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Figure 7. Effect of the concentration of (a) Pa, (b) Tp, and (c) CTAB on the separation performance
of the TpPa/PI membrane using the fabrication of (a) Tp, concentration: 0.070 wt%, and CTAB,
concentration: 0.005 wt%, (b) Pa, concentration: 0.6 wt%, and CTAB, concentration: 0.005 wt%, (c) Pa,
concentration: 0.6 wt%, and Tp concentration: 0.055 wt%. Other conditions included IP time: 40 s,
heat treatment time: 5 min, and solvent activation time: 15 min.

As shown in Figure 7b, the ethanol permeance decreased gradually from 62.3 LMH/MPa
to 25.1 LMH/MPa as the Tp concentration increased from 0.05 wt% to 0.07 wt%. This
suggests that the hydraulic resistance became higher with the increase in Tp concentration, a
phenomenon which might be due to the gradually thicker skin layer that was detrimental to
solvent rapid transport [14]. The FGF rejection rate increased as the Tp concentration further
increased from 0.05 wt% to 0.065 wt%, suggesting that the increase in Tp concentration
effectively reduced the defects of the TpPa COF layer [14]. The further increased Tp
concentration from 0.065 wt% to 0.070 wt% resulted in a slight decline in the FGF rejection
rate from 96.2% to 93.6%, which is due to the low Tp solubility in n-hexane solution, thus
leading to the agglomeration of the Tp monomers and the uneven IP reaction and resulting
in the formation of defects in the TpPa COF layer and the decrease in the FGF rejection rate.
Consequently, a 0.055 wt% Tp solution was selected for further analysis.

As shown in Figure 7c, the FGF rejection rate increased from 93.9% to 96.2% as the
CTAB concentration increased from 0% to 0.005 wt%, since CTAB could cause a more
uniform diffusion of the aqueous monomer at the IP interface, thus resulting in a more
complete COF layer and in an increase in the FGF rejection rate. Moreover, the ethanol
permeance increased from 40.6 LMH/MPa to 58.0 LMH/MPa. However, the FGF re-
jection rate decreased from 96.2% to 93.9% as the CTAB concentration increased from
0.005 wt% to 0.015 wt%. The ethanol permeance firstly decreased from 58.0 LMH/MPa
to 24.5 LMH/MPa, then increased to 34.3 m−2 h−1 MPa−1. As a surfactant, CTAB could
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facilitate the diffusion of amine monomers at the phase interface in a more rapid and
homogeneous manner [24], resulting in the formation of a separation layer with uniform
sub-nanopores [24,25] which increases the solute rejection rate and decreases the solvent
permeance. The further increased CTAB concentration increased the diffusion rate of the
aqueous phase monomer into the organic phase, thus resulting in a high concentration of
the aqueous phase monomer in the IP interface and a drastic and rapid IP reaction. In this
case, it is difficult for a thin, continuous, and dense separation layer to form. This, in turn,
leads to many defects and a high thickness of the separation layer as well as a decrease in
the FGF rejection rate and the ethanol permeance [25]. Consequently, a 0.005 wt% CATB
solution was selected for the follow-up study.

3.2.2. Effect of IP Reaction Time

As illustrated in Figure 8, the increase in IP time from 35 s to 40 s resulted in an
increase in the FGF rejection rate from 92.2% to 96.2% and in an increase in the ethanol
permeance from 48.4 LMH/MPa to 58.0 LMH/MPa. The increased FGF rejection suggests
that the slightly longer reaction time (40 s) resulted in significantly fewer defects in the COF
separation layer. As a result, during the filtration of the dye solution, fewer dye molecules
could be adsorbed and trapped in the pores of the COF separation layer, thus exerting less
resistance against solvent transport [26]. Therefore, the ethanol permeance of the OSN
membrane fabricated at a reaction time of 40 s was higher than that of the membrane
fabricated at a reaction time of 35 s. However, with the IP time further increasing from 40 s
to 50 s, the FGF rejection rate decreased from 96.2% to 87.3% and the ethanol permeance
decreased from 58.0 LMH/MPa to 27.5 LMH/MPa. This suggests that the increased IP
time led to a thicker TpPa COF separation layer with a higher hydraulic resistance. On the
other hand, the increased IP time also decreased the number of residual aqueous monomer
molecules. Thus, fewer residual aqueous monomer molecules could react with the organic
phase monomer in the subsequent heat treatment process, making it difficult to fill up the
defects of the separation layer during this curing process and leading to a decrease in FGF
rejection rate. Therefore, a short IP reaction time of 40 s was selected in this work. Usually, the
formation of a COF separation layer often requires a long reaction time of several hours or
even days [13,27,28], while our work achieved a very high dye rejection rate in a very short
reaction time. The same result was also seen in the work by Prof. Yong Wang [14] in which
the COF membrane prepared in their work achieved a CR rejection rate of 99.5% and a water
permeance of 500 LMH/MPa or 50 ppm CR/H2O solution in a reaction time of 10 s.
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3.3. Separation Performance of the Membrane
3.3.1. Pure Solvent Permeance

In Figure 9, the TpPa/PI OSN membrane has a high methanol permeance of
140.5 LMH/MPa because of its smallest molecular volume. The permeances for ethanol,
DMF, and isopropanol were 81.9 LMH/MPa, 13.7 LMH/MPa, and 68.2 LMH/MPa, respec-
tively. It is worth noting that the TpPa/PI membrane had a high n-hexane permeance of
102.0 LMH/MPa, since the TpPa/PI membranes had a higher surface hydrophobicity, as
discussed in Section 3.1.4, thus leading to a higher permeance of non-polar solvents.
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3.3.2. MWCO

In Figure 10, the TpPa/PI membrane shows rejection rates higher than 93% for RDB,
EY, and FGF, and a rejection rate lower than 87% for ST. It can be seen that the corresponding
solvent molecular weight had a rejection rate of 90%, i.e., the MWCO was about 396 Da.
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3.3.3. For Weakly Polar Solvent System

Jacobson’s catalyst is an effective homogeneous catalyst that catalyzes epoxidation
reactions and has become an important catalyst in the chemical industry owing to its high
chemical selectivity [29]. However, in the homogeneous catalysis system, the efficient
separation and recovery of catalysts is a great challenge [30]. In this study, the separation
performance of the TpPa/PI COF OSN membrane fabricated in this work on the Jacob-
son’s catalyst in an ethyl acetate solvent solution was tested and compared with those
of other OPN membranes in the literature [31–33], and the results are shown in Table 2.
It can be seen that the TpPa/PI COF OSN membrane prepared in this study had a rea-
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sonably high rejection rate of 87% for the Jacobson’s catalyst and a superior permeance
of 75.8 LMH/MPa for ethanol acetate, indicating its excellent permeation performance in
relation to weakly polar solvents and proving its effectiveness in separating Jacobson’s
catalysts in chemical industries.

Table 2. Separation performance of TpPa/PI membrane in relation to catalysts compared with those
of other OSN membranes in the literature [31–33].

Membrane Catalyst Solvent
Solvent

Permeance
(LMH/MPa)

Catalyst Rejection (%) Reference

TpPa/PI Jacobson’s catalyst Ethanol acetate 75.8 87.1% This work
COK M2 Jacobson’s catalyst Ethyl ether 2.2 83.0% [31]

DuraMem 300 Magnesium
trifluoromethanesulfonate

Ethanol/Ethyl
acetate/Cyclohexane 1.0 98.0% [32]

PERVAP 4060 Tetraoctylammonium bromide Toluene 20.0 92.0% [33]

3.3.4. Long-Term Solvent Resistance

The results of the long-term solvent-resistant stability of the TpPa/PI membrane are
illustrated in Figure 11. After a 25 ◦C DMF immersion of 23 days, the ethanol permeance
of the TpPa/PI COF OSN membrane remained almost constant, and the FGF rejection
rate slightly increased from 96.5% to 97.0%. The results demonstrate that the TpPa/PI
membrane has outstanding solvent resistance against strong polar solvents.
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3.3.5. Benchmark

The separation performance of the COF OSN membrane fabricated in this work and
that of other COF OSN membranes reported in the literature [34–36] is shown in Table 3.
It can be seen that the TpPa/PI membrane prepared in this study has a relatively higher
solute rejection rate than that of other OSN membranes. Although the Tp-Azo membrane
has a higher solute rejection, it has a much longer reaction time. Further, the TpPa/PI
membrane prepared in this study shows a much higher pure n-hexane permeance than
that of other COF OSN membranes, indicating that the COF membrane we fabricated is
also well suited for use in non-polar solvent systems.
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Table 3. Comparison of the separation performance of the COF OSN membrane fabricated in this
work and that of other COF OSN membranes reported in the literature.

Membrane Reaction
Time Solute/Solvent Permeance

(LMH/MPa)
Rejection

(%)

Pure n-Hexane
Permeance

(LMH/MPa)
Literature

TpPa/PI membrane 40 s FGF/ethanol 58.0 96.2 102.0 This work
TpPaAn-30/HPaN

membrane 30 s Methyl
blue/methanol 318 >90 67.0 [34]

COP-30 membrane 10 s CR/toluene 111.0 >95 47.0 [35]

Tp-Azo membrane 72 h Gold nanoclus-
ters/acetonitrile — ~100 — [36]

4. Conclusions

In this study, we detail the generation of an OSN membrane which has an overall
crosslinking structure with a COF layer as the separation layer. The prepared TpPa/PI
membrane has a smooth surface and an average roughness of about 1.60 nm. The optimal
TpPa/PI membrane exhibits a high permeance relative to both polar and non-polar sol-
vents, with a methanol permeance of 156.7 LMH/MPa and a high n-hexane permeance of
102.0 LMH/MPa, while the n-hexane permeance is approximately one order of magnitude
higher than that of most other OSN membranes reported in the literature (Table 3). In addi-
tion, the TpPa/PI membrane shows excellent solvent resistance, proving its high potential
prospects for separation and purification for organic solvent systems.
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mdpi.com/article/10.3390/membranes14110234/s1, Table S1: Experimental materials; Table S2: The
information of dyes used in this study; Table S3: Characterization of the membrane; Table S4: Physical
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