
Citation: Yang, S.; Fan, G.; Ma, L.;

Wei, C.; Li, P.; Cao, Y.; Teng, D.

Enhanced Gallium Extraction Using

Silane-Modified Mesoporous Silica

Synthesized from Coal Gasification

Slag. Molecules 2024, 29, 5232.

https://doi.org/10.3390/

molecules29225232

Academic Editor:

Krzysztof Pielichowski

Received: 15 October 2024

Revised: 2 November 2024

Accepted: 4 November 2024

Published: 5 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Enhanced Gallium Extraction Using Silane-Modified
Mesoporous Silica Synthesized from Coal Gasification Slag
Shiqiao Yang 1,†, Guixia Fan 1,2,3,†, Lukuan Ma 1 , Chao Wei 4, Peng Li 1,2,3, Yijun Cao 1,2,3,*
and Daoguang Teng 1,2,3,*

1 School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China;
yangshiqiao0521@163.com (S.Y.); cumtfgx@126.com (G.F.); mlkhhh@stu.zzu.edu.cn (L.M.);
zdhglipeng@zzu.edu.cn (P.L.)

2 Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
3 The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education,

Zhengzhou 450001, China
4 College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249,

China; chao_wei7997@163.com
* Correspondence: yijuncao@126.com (Y.C.); teng_daoguang@zzu.edu.cn (D.T.)
† These authors contributed equally to this work.

Abstract: This study presents an innovative approach to utilize coal gasification coarse slag (CGCS)
for efficient and low-cost gallium extraction. Using a one-step acid leaching process, mesoporous
silica with a surface area of 258 m2/g and a pore volume of 0.15 cm3/g was synthesized. The
properties of CGCS before and after acid leaching were characterized through SEM, FTIR, XRD,
and BET analyses, with optimal conditions identified for maximizing specific surface area and
generating saturated silanol groups. The prepared mesoporous silica demonstrated a 99% Ga(III)
adsorption efficiency. Adsorption conditions were optimized, and adsorption kinetics, isotherms, and
competitive adsorption behaviors were evaluated. Competitive adsorption with vanadium suggests
potential application in Ga(III) extraction from vanadium-rich waste solutions. Furthermore, the
recyclability of both the acid and adsorbent was explored, with the adsorbent maintaining over 85%
adsorption efficiency after five cycles. The adsorption mechanism was further elucidated through
SEM-EDS, XPS, and FTIR analyses. This work not only advances resource recovery from industrial
waste but also offers a sustainable method for gallium extraction with industrial applications.

Keywords: CGCS; cyclic acid leaching; silanol-modified mesoporous silica; gallium extraction

1. Introduction

Coal gasification slag (CGS) is a significant industrial waste byproduct in China, with
improper disposal, such as stacking and landfilling, posing serious risks to the environment
and human health [1–5]. Globally, vast amounts of CGS are stockpiled, and coal gasification
coarse slag (CGCS) accounts for 60–80% of this waste [6,7]. Reusing this material to alleviate
land occupation and mitigate environmental harm remains a challenge for industries [8].
Recently, the high silica (SiO2) content in CGS has attracted attention for its potential in
ion adsorption, particularly in the adsorption of metals from dilute solutions. Despite this
interest, the effective and economical utilization of SiO2 resources in CGCS for producing
high-performance adsorbent materials remains an ongoing challenge, especially for the
extraction of critical metals such as Ga(III), In(III), and Ge(IV) [9].

Mesoporous SiO2 has emerged as a promising material due to its large surface area [10],
tunable pore size, and excellent chemical stability. These properties make it suitable for
applications in catalysts [11], supports [11,12], adsorbents [13], sensors [14], and more [15].
Previous studies have demonstrated that CGS can be transformed into high-value meso-
porous SiO2 through appropriate chemical and thermal treatments [16,17]. For instance,
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Xu et al. [18] prepared mesoporous SiO2 from coal gasification fine slag (CGFS) using
acid leaching, calcination, and pH adjustment, resulting in a material with a larger sur-
face area compared to commercially available SiO2. Similarly, Liu et al. [17] synthesized
mesoporous glass microspheres with a surface area of 364 m2/g via simple acid leaching.
Other researchers, such as Wei et al. [19], utilized CGFS to synthesize hierarchical porous
SiO2 for CO2 adsorption, while Shu et al. [20] developed ZSM-5 molecular sieves from
CGCS for volatile organic compound (VOC) adsorption. Chai et al. [21] used CGFS as
a raw material, employing hierarchical synthesis to prepare SBA-15 and hierarchical X
zeolite/carbon composite materials, modified with 1,3,5-trimethylbenzene and CO2 pre-
activation to adjust their pore structure, followed by amino functionalization. Liu et al. [22]
obtained novel functionalized nanostructured glass microspheres via foam flotation and
simple acid leaching from CGFS, applied for the adsorption of Pb(II) and Congo Red.
Yang et al. [23] modified CGCS using magnesium slag as a calcium source in the presence
of NaOH to prepare a novel phosphate adsorbent. Gallium is commonly found in bauxite,
lead–zinc ore, and coal mines [24]. Given that both coal gasification slag and gallium can
originate from coal mines, this approach not only enables a more comprehensive utilization
of coal resources but also reduces the likelihood of introducing additional impurity ions
when using modified adsorbents derived from coal gasification slag to extract gallium from
coal mines. In other words, modified materials from coal gasification slag are particularly
suitable for gallium extraction. While these studies highlight the potential of CGS-derived
materials, the adsorption of trace metals remains limited by the low density of surface
functional groups, particularly hydroxyl (-OH) groups, which are crucial for enhancing
adsorption capacity [24,25]. Adsorbents enriched with -OH groups have demonstrated
superior performance in metal adsorption, making the development of such materials a
pressing challenge [26].

To address these limitations, this study focuses on the acid leaching of CGCS to pro-
duce mesoporous silica with a surface enriched in silanol (-OH) groups, specifically for
the adsorption of Ga(III). The effects of different acids (HCl, H2SO4, CH3COOH), acid
concentrations, leaching times, and temperatures on the specific surface area and silanol
group formation were investigated. As a result, mesoporous silica with a significantly
enhanced surface area and silanol group content was synthesized. The adsorption be-
havior of Ga(III) was optimized, and the adsorption kinetics and isotherms were studied.
Additionally, the recyclability of the acid and adsorbent was explored through cyclic regen-
eration experiments. Finally, the adsorption mechanism was elucidated through a detailed
characterization. This approach not only enhances the high-value utilization of CGCS but
also provides a cost-effective method for the industrial extraction of Ga(III), offering a
sustainable solution for both waste management and critical metal recovery.

2. Results and Discussion
2.1. Optimization of Acid Leaching Conditions for Mesoporous Silica Construction

Figure 1a–d shows the morphology of CGCS after modification with different acids.
Untreated CGCS (Figure 1a) displays a compact morphology with spherical and block-
like structures. Acid treatment, particularly with HCl, significantly increased the surface
porosity of CGCS (Figure 1b). In contrast, H2SO4 and CH3COOH treatments (Figure 1c,d)
resulted in fewer surface pores. The lower porosity in H2SO4-treated CGCS can be at-
tributed to the potential precipitation of salts such as CaSO4, which block pores. Similarly,
the weaker reactivity of CH3COOH with metal oxides (Fe, Al, Ca) in CGCS limits its effec-
tiveness in enhancing porosity [27]. These findings suggest that HCl is the most effective
acid for modifying CGCS, significantly improving its performance.

Figure 1e–h presents the analysis of the specific surface area, composition, and func-
tional groups of untreated and acid-treated CGCS samples. According to Figure 1e and
Table 1, HCl-CGCS achieved the highest specific surface area of 240.05 m2/g—nearly
40 times greater than the untreated CGCS. H2SO4-CGCS showed a moderate increase, while
CH3COOH-treated CGCS exhibited minimal improvement in surface area. Figure 1f shows
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that the pore sizes of all samples were predominantly between 2 and 4 nm, with HCl-CGCS
and H2SO4-CGCS showing larger pore volumes than untreated CGCS, with HCl-treated
CGCS performing slightly better. In contrast, CH3COOH-CGCS demonstrated a negligible
improvement in pore volume.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 15 
 

 

 
Figure 1. SEM images of (a) CGCS, (b) HCl-CGCS, (c) H2SO4-CGCS, and (d) HAc-CGCS, along with 
(e) adsorption–desorption isotherms, (f) pore size distribution, (g) XRD patterns, and (h) FTIR spec-
tra. 

Figure 1e–h presents the analysis of the specific surface area, composition, and func-
tional groups of untreated and acid-treated CGCS samples. According to Figure 1e and 
Table 1, HCl-CGCS achieved the highest specific surface area of 240.05 m2/g—nearly 40 
times greater than the untreated CGCS. H2SO4-CGCS showed a moderate increase, while 
CH3COOH-treated CGCS exhibited minimal improvement in surface area. Figure 1f 
shows that the pore sizes of all samples were predominantly between 2 and 4 nm, with 
HCl-CGCS and H2SO4-CGCS showing larger pore volumes than untreated CGCS, with 
HCl-treated CGCS performing slightly better. In contrast, CH3COOH-CGCS demon-
strated a negligible improvement in pore volume. 

Table 1. Pore structure parameters of CGCS and acid-treated samples. 

Sample as,BET (m2/g) Total Pore Volume 
(cm3/g) 

Average Pore Diameter (nm) 

CGCS 6.3855 0.0047 2.9184 
HCl-CGCS 240.0500 0.1393 2.3217 

H2SO4-CGCS 179.3500 0.1081 2.4100 
HAc-CGCS 8.2362 0.0068 3.3101 

Figure 1g presents the XRD patterns, where broad peaks between 20 and 30° indicate 
amorphous SiO2 [28]. Sharp peaks around 28° suggest crystalline SiO2, with HCl-CGCS 
and H2SO4-CGCS showing more prominent peaks compared to untreated CGCS, indicat-
ing the removal of metal oxide ash and an increased proportion of amorphous SiO2. 
CH3COOH-treated CGCS did not show a significant improvement in crystallinity over 
untreated CGCS, and the presence of Ca2Fe2O5 and CaSO4 peaks was more pronounced in 
H2SO4-treated CGCS. 

Figure 1h shows FTIR spectra of the samples. The broad peak near 3442 cm−1 corre-
sponds to O-H stretching vibrations, indicating the presence of bound water and surface 
hydroxyl groups formed during acid leaching [17,29–31]. The intensity of this peak in-
creased significantly after HCl leaching, suggesting a higher density of surface silanol 
groups. Additional peaks at 1043 cm−1 correspond to Si-O anti-symmetric stretching, while 
the 776 cm−1 peak is associated with amorphous SiO2 [32]. The increased intensity of these 

Figure 1. SEM images of (a) CGCS, (b) HCl-CGCS, (c) H2SO4-CGCS, and (d) HAc-CGCS, along with
(e) adsorption–desorption isotherms, (f) pore size distribution, (g) XRD patterns, and (h) FTIR spectra.

Table 1. Pore structure parameters of CGCS and acid-treated samples.

Sample as,BET (m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (nm)

CGCS 6.3855 0.0047 2.9184
HCl-CGCS 240.0500 0.1393 2.3217

H2SO4-CGCS 179.3500 0.1081 2.4100
HAc-CGCS 8.2362 0.0068 3.3101

Figure 1g presents the XRD patterns, where broad peaks between 20 and 30◦ indicate
amorphous SiO2 [28]. Sharp peaks around 28◦ suggest crystalline SiO2, with HCl-CGCS and
H2SO4-CGCS showing more prominent peaks compared to untreated CGCS, indicating the
removal of metal oxide ash and an increased proportion of amorphous SiO2. CH3COOH-
treated CGCS did not show a significant improvement in crystallinity over untreated
CGCS, and the presence of Ca2Fe2O5 and CaSO4 peaks was more pronounced in H2SO4-
treated CGCS.

Figure 1h shows FTIR spectra of the samples. The broad peak near 3442 cm−1 corre-
sponds to O-H stretching vibrations, indicating the presence of bound water and surface
hydroxyl groups formed during acid leaching [17,29–31]. The intensity of this peak in-
creased significantly after HCl leaching, suggesting a higher density of surface silanol
groups. Additional peaks at 1043 cm−1 correspond to Si-O anti-symmetric stretching, while
the 776 cm−1 peak is associated with amorphous SiO2 [32]. The increased intensity of
these peaks after HCl leaching confirms the successful removal of metal oxide ash and the
enrichment of SiO2 content.

Thus, HCl was identified as the optimal acid for CGCS modification, warranting
further investigation of the effects of acid concentration, leaching time, and temperature on
mesoporous silica formation.

Figure 2a,b and Table 2 show the effect of varying HCl concentrations on the spe-
cific surface area and pore structure of CGCS. The surface area of HCl-treated CGCS
initially increased with acid concentration, peaking at 6 mol/L HCl with a surface area
of 258.40 m2/g (Figure 2b, Table 2). Beyond this concentration, the surface area declined
slightly. Thus, 6 mol/L of HCl was selected as the optimal concentration for further ex-
periments. Figure 2c,d and Table 3 illustrate the effect of immersion time on the specific
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surface area. The surface area of HCl-CGCS increased with time, reaching a maximum at
3 h (257.84 m2/g). Extending the leaching time beyond 3 h did not significantly affect the
surface area or pore volume. Therefore, a leaching time of 3 h was chosen for subsequent
experiments. Figure 2e,f and Table 4 demonstrate the influence of temperature on the
specific surface area and pore structure. The surface area increased with temperature,
reaching a maximum of 257.84 m2/g at 90 ◦C. Higher temperatures led to a slight decrease
in surface area, indicating that 90 ◦C is the optimal temperature for acid treatment.
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Figure 2. Isotherms of adsorption and desorption (a) and pore size distribution (b) of CGCS and
HCl-CGCS with different acid concentrations; isotherms of adsorption and desorption (c) and
pore size distribution curves (d) of HCl-CGCS with different acid immersion times; isotherms of
adsorption and desorption (e) and pore size distribution curves (f) of HCl-CGCS with different acid
immersion temperatures.

Table 2. Pore structure parameters of CGCS and HCl-CGCS with different acid concentrations.

Sample as,BET (m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (nm)

CGCS 6.3855 0.0047 2.9184
HCl(2)-CGCS 79.7940 0.0424 2.1235
HCl(4)-CGCS 167.7100 0.0963 2.2967
HCl(6)-CGCS 258.4000 0.1526 2.3626
HCl(8)-CGCS 240.0500 0.1393 2.3217
HCl(10)-CGCS 194.9600 0.1029 2.1116
HCl(12)-CGCS 204.4900 0.1052 2.0570

Table 3. Pore structure parameters of HCl-CGCS with different acid immersion times.

t (h) as,BET (m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (nm)

t = 1 227.7500 0.1216 2.1364
t = 2 227.4900 0.1234 2.1694
t = 3 257.8400 0.1482 2.2987
t = 4 247.4413 0.1471 2.3786
t = 5 253.4111 0.1553 2.4513
t = 6 221.3612 0.1338 2.4172
t = 7 245.4923 0.1533 2.4972
t = 8 182.1936 0.1127 2.4737
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Table 4. Pore structure parameters of HCl-CGCS with different acid immersion temperatures.

T (◦C) as,BET (m2/g) Total Pore Volume (cm3/g) Average Pore Diameter (nm)

T = 20 43.5290 0.0244 2.2414
T = 30 61.2870 0.0318 2.0733
T = 40 87.2240 0.0455 2.0885
T = 50 117.5300 0.0588 2.0016
T = 60 115.7700 0.0617 2.1332
T = 70 172.7800 0.0915 2.1191
T = 80 199.8900 0.1111 2.2237
T = 90 257.8400 0.1482 2.2987
T = 95 248.2500 0.0920 2.4819

2.2. Influence of Acid Immersion on Silanol Group Formation

Figure 3 presents the effects of HCl concentration, immersion time, and temperature
on silanol group formation. Figure 3a shows that beyond 2 mol/L HCl, the quantity of
silanol groups in HCl-treated CGCS remains relatively unchanged, indicating saturation.
This suggests that concentrations of ≥2 mol/L are sufficient for saturating silanol groups
in CGCS. Figure 3b shows that a reaction time of 2 h is optimal for detecting silanol groups,
reducing the required time compared to the 12 h period reported in the literature [17].
Figure 3c indicates that an immersion time of ≥1 h saturates silanol group formation.
Figure 3d demonstrates that temperatures of ≥60 ◦C are sufficient for saturating silanol
groups with a concentration of 0.0009 mol/g.
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Figure 3. The reaction of HCl-CGCS with dilute NaOH, where the amount of consumed OH-
approximately equals the number of silanol groups: (a) the number of silanol groups in HCl(C)-CGCS
with different acid concentrations; (b) the relationship between the pH of the mixture of HCl(6)-
CGCS and NaOH and the reaction time; (c) the number of silanol groups in HCl-CGCS-t(a) with
different acid immersion times; (d) the number of silanol groups in HCl-CGCS-T(b) with different
acid immersion temperatures.

2.3. Acid Immersion Mechanism

The mechanism of HCl acid immersion in CGCS involves two key processes, namely
(1) the leaching of ash content and (2) the formation of silanol groups (Figure 4). Acid
leaching dissolves metal oxides, creating additional pores and increasing the specific surface
area. Simultaneously, the high-temperature decomposition of CGCS breaks some Si-O
bonds in SiO2, allowing oxygen atoms to bond with H+ ions, forming surface silanol
groups (Si-OH). These processes are responsible for the enhanced adsorption capacity of
HCl-treated CGCS.
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2.4. Adsorption Behavior of Mesoporous Silica on Gallium

Through a series of optimized experiments, a material labeled HCl(6)-CGCS-t(3)-T(90)
(referred to as HCl-CGCS) was synthesized, with a specific surface area of 280 m2/g and
saturated silanol groups. This material was tested for the adsorption of Ga(III). Figure 5
illustrates the static adsorption experiments and optimization of adsorption conditions for
Ga(III) using HCl-CGCS. Figure 5a shows that the adsorption efficiency increases with pH,
peaking at pH 9, where adsorption efficiency reaches approximately 100%. In Figure 5b, the
adsorption performance increases with adsorbent dosage, stabilizing at 500 mg. Figure 5c
demonstrates that as the initial concentration of Ga(III) increases, adsorption efficiency
rises initially, peaking at 99% at a concentration of 40 mg/L before decreasing. Figure 5d
shows that the adsorption rate increases up to 2.5 h, after which equilibrium is reached,
with 99% adsorption efficiency.
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The optimal adsorption parameters for Ga(III) were determined as pH 9, an adsorbent
dosage of 500 mg, an initial Ga(III) concentration of 40 mg/L, and an adsorption time of 2.5 h.
Under these optimized conditions, the adsorption efficiency of untreated CGCS was only 3.23%,
while HCl-treated CGCS exhibited a 30-fold increase in Ga(III) adsorption efficiency.

Table 5 presents the kinetic parameters derived from pseudo first-order and pseudo second-
order models, shown in Figure 6a,b. Both models show R2 values above 0.95, indicating their
suitability in describing the adsorption process. However, the pseudo second-order model fits the
data more closely, suggesting that chemical adsorption predominates during Ga(III) adsorption.

Table 5. Kinetic parameters for Ga(III) adsorption on HCl-CGCS.

Qe,exp,
(mg/g)

Pseudo First-Order Pseudo Second-Order

Qe
(mg/g)

K1
(min−1) R2 Qe

(mg/g)
K2

(g·mg−1·min−1) R2

3.9600 3.0791 2.1360 0.9833 4.1853 1.5770 0.9997
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Table 6 lists the isotherm fitting parameters for the Langmuir and Freundlich models. Both
models exhibit high R2 values, indicating their effectiveness in describing the Ga(III) adsorption
process. However, the Langmuir model provides a slightly better fit, suggesting that monolayer
adsorption is more significant. The Langmuir model’s dimensionless constant (RL) values for
Ga(III) are between 0 and 1, indicating favorable adsorption conditions.

Table 6. Isotherm fitting parameters for Ga(III) adsorption on HCl-CGCS.

T (K)
Qm,exp
(mg/g)

Langmuir Model Freundlich Model

Qm
(mg/g)

b
(L/mg) R2 RL n KF

(mg/g)(L/mg) 1/n R2

303.1500 27.6243 0.0110 0.9853 0.9853 0.6947 2.5423 2.1076 0.9827
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2.5. Competitive Adsorption

In the competitive adsorption experiment, we investigated Ga-Al competitive adsorp-
tion, and the results indicated that the adsorbent does not exhibit selectivity between Ga
and Al. Therefore, we focused on discussing the Ga-V competition experiment.

The selective recovery of gallium from vanadium-containing waste solutions is of
significant industrial interest [33]. Figure S1 (Supplementary Materials) illustrates the
competitive adsorption behavior of Ga(III) and V(V) on HCl-CGCS. The results show
that HCl-CGCS exhibits significantly higher adsorption for Ga(III) compared to V(V). A
selectivity coefficient (SelGa/V) greater than one (Sel = 1.5736), as shown in Table S1, confirms
the preferential adsorption of Ga(III) from Ga-V binary systems.

2.6. Regeneration Cycle

The acid regeneration and adsorption recycling processes are crucial for the economic
and environmental sustainability of this approach. This experiment evaluated the recycling
potential of HCl and the adsorbent.

Figure 7a,b and Table 7 show that cycling 6 mol/L HCl (30 mL) for five cycles with
4 g of CGCS results in a gradual decline in surface area and pore volume, while pore size
remains largely unchanged. After the first cycle, the surface area remained above 200 m2/g.
Even after four cycles, the surface area remained higher than that of untreated CGCS,
indicating that HCl recycling retains its positive effect on CGCS modification. The repeated
use of HCl four times demonstrates an efficient green cycling approach for enriching metal
ions and utilizing residual ash content.
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As shown in Figure 7c, during the desorption process, 50 mL of 0.15 mol/L HCl
achieved a desorption rate of 91.53% in 2.5 h. The eluate contained Si, Al, Fe, and Ca
at concentrations ≤ 5 ppm, indicating effective desorption. Figure 7d shows that the
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adsorption efficiency of HCl-CGCS remained above 85% after five cycles, confirming the
adsorbent’s excellent cyclic regeneration performance.

Table 7. Pore structure parameters of CGCS after 5 cycles of HCl cyclic acid immersion.

Number of
Cycles

as,BET
(m2/g)

Total Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

0 257.0100 0.1349 2.3609
1 202.2232 0.1087 2.4264
2 113.0098 0.0582 2.3269
3 30.84711 0.0225 3.2899
4 10.0210 0.0055 2.2059
5 3.4663 0.0020 2.3490

2.7. Adsorption Mechanism Exploration

The mechanism of Ga(III) adsorption on HCl-CGCS was further investigated using
energy-dispersive X-ray spectroscopy (EDS), FTIR, and XPS analyses. Figure 8 shows
significant Ga signals on HCl-CGCS after adsorption, confirming Ga(III) adsorption on
the surface.
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Figure 8. SEM Images of HCl-CGCS after Ga(III) adsorption (a); elemental distribution EDS maps of
(b) O, (c) Si, and (d) Ga; FTIR spectra before and after Ga adsorption (e); XPS survey spectrum (f);
O1s fine spectrum of HCl-CGCS before Ga adsorption (g); and O1s fine spectrum of HCl-CGCS after
Ga adsorption (h).

FTIR spectra (Figure 8e) reveal peaks at 3425 cm−1 and 1632 cm−1, corresponding
to H2O and -OH vibrations, respectively [17,29,30]. These peaks intensify after Ga(III)
adsorption, suggesting the adsorption of Ga(OH)4

− species. A new peak at 617 cm−1 after
adsorption corresponds to O-Ga bonds [34]. The XPS analysis (Figure 8f) reveals Ga3p1 and
Ga2p3 peaks after adsorption, confirming the coordination of Ga(III) with the adsorbent.
A comparison of the O1s fine spectra before and after adsorption (Figure 8g,h) shows an
increase in O-H signal intensity and the appearance of an O-Ga peak at 530.9 eV [35], further
supporting the formation of O-Ga bonds through electrostatic and chemical interactions.

Figure 9 presents the proposed chemical adsorption and desorption mechanism. Dur-
ing adsorption, Si-OH groups ionize, releasing H+ ions that combine with Ga(OH)4

− to
form H2O. Simultaneously, Si-O− coordinates with Ga in Ga(OH)3.
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3. Experimental Section

The acid leaching and adsorption experiments are detailed in the Supporting Information.

3.1. Materials and Reagents

CGCS used in this study was sourced from Shenhua Group, Ningxia, China, produced
in a modified Siemens (GSP) gasifier. The chemical composition of CGCS was determined by
X-ray fluorescence (XRF) and industrial analysis, as summarized in Table 8. The raw CGCS
was crushed to a particle size of approximately 200 mesh using a grinder, and the resulting
powder was used in all subsequent experiments. Hydrochloric acid (HCl, 37%), sulfuric acid
(H2SO4, 98%), and acetic acid (CH3COOH, 99.5%) were obtained from Luoyang Chemical
Reagent Factory (Henan, China). Laboratory-grade ultrapure water was used throughout
the experiments.

Table 8. Chemical composition of CGCS (wt%).

Component SiO2 Fe2O3 Al2O3 CaO MgO K2O Na2O TiO2 LOI Others

Content (%) 50.24 14.72 14.75 10.46 2.27 2.26 1.79 1.00 1.32 1.19

3.2. Characterization

The phase composition and crystalline structure of the materials were analyzed using
X-ray diffraction (XRD, D8-ADVANCE, Bruker, Karlsruhe, Germany) with a scanning
angle range from 10◦ to 80◦. Surface functional groups were characterized using Fourier
transform infrared spectroscopy (FTIR, FT-IR200, Shimadzu, Kyoto, Japan), with samples
prepared by the KBr pellet method and scanned in the 4000–400 cm−1 infrared spectrum
range. Microstructural observations and elemental distributions were examined using
scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS, ZEISS
Sigma 300, ZEISS, Oberkochen, Germany). Specific surface area, pore size distribution,
and pore structure parameters were determined using the Brunauer–Emmett–Teller (BET)
method (BELSORP-Max 11, MicrotracBEL, Osaka, Japan) after sample pretreatment at
300 ◦C for 4 h. The data were processed using BELSORP-Max software (BELSORP Analysis
Software V5.4.1). The ion concentrations in solutions were quantified by inductively cou-
pled plasma optical emission spectroscopy (ICP-OES, 5800 ICP-OES, Agilent Technologies,
Penang, Malaysia). Surface elemental composition and valence states were analyzed via
X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Wilmington, NC, USA).
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3.3. Silanol Group Quantification

Identifying silanol groups through infrared detection is challenging due to the overlap
with the water absorption peak. Therefore, an acid–base titration method [17,36,37] was
employed to quantify silanol groups [38–40], with the amount of NaOH consumed corre-
sponding to the number of silanol groups. This method was adapted for a quantitative
analysis of silanol groups in HCl acid-leached CGCS under varying acid concentrations,
times, and temperatures, and the equilibrium reaction time between HCl-treated CGCS
and NaOH was determined.

The procedure was as follows: 1 g of HCl(C)-CGCS-t(8)-T(90) was added to 50 mL of
0.02 mol/L NaOH solution and stirred magnetically at room temperature for 12 h. The
initial pH (pH0) and final pH after 12 h (pH12) were measured using a pH meter (PHS-3E).
The effect of acid concentration on silanol formation was determined based on the change
in pH. Additionally, the pH of the reaction solution between HCl-treated CGCS and NaOH
was measured at regular intervals to determine the reaction equilibrium time (t). The effects
of acid impregnation time and temperature on silanol formation were also investigated
under optimized conditions. The surface hydroxyl content (C) was calculated using the
following equations:

NaOH (50 mL, 0.02 mol/L) + CGCS-OH (1 g) → CGCS-ONa + H2O (1)

C0 = 10−14 + pH
0 (2)

Ct = 10−14 + pH
t (3)

C = C0 − Ct (4)

where C0 and Ct represent the initial and final OH- concentrations in the solution, respec-
tively, and C is the surface hydroxyl content of HCl-treated CGCS (mol/L).

Note: A(C)-CGCS-t(a)-T(b): A is the acid used for leaching CGCS, C is the acid
concentration, a is the leaching time, and b is the leaching temperature.

3.4. Cycle Experiment

To evaluate acid recyclability, HCl (6 mol/L, 30 mL) was mixed with 4 g of CGCS in
a pressure-resistant bottle, and the mixture was subjected to acid leaching in a constant
temperature water bath shaker at 90 ◦C and 200 rpm for 3 h. The filtrate from this reaction
was reused to leach another 4 g of CGCS under the same conditions, and the process was
repeated for five cycles.

For the adsorption-desorption-readsorption cycle, CGCS-derived mesoporous silica
was used to adsorb Ga(III) under optimal conditions. After adsorption, the adsorbent was
desorbed using HCl (0.15 mol/L, 50 mL) for 3 h. The Ga, Fe, Al, and Ca contents in the
solution at desorption equilibrium were measured by ICP-OES. The desorption equilibrium
time, desorption rate, and impurity ion concentration were determined. The desorption
rate was calculated similarly to the adsorption rate.

4. Conclusions

This study demonstrates the economic, environmental, and sustainable utilization
of coal gasification coarse slag (CGCS) for the extraction of the critical rare metal gallium
using acid leaching methods. The key findings of this research are summarized as follows:

Preparation of mesoporous silica via HCl leaching: CGCS was effectively transformed
into mesoporous silica with a high specific surface area by leaching with 6 mol/L HCl at
90 ◦C for 3 h. The resulting mesoporous silica exhibited a specific surface area of 258 m2/g,
representing a 40-fold increase compared to untreated CGCS. The saturation of silanol
groups was achieved with HCl concentrations of ≥2 mol/L, leaching times of ≥1 h, and
temperatures of ≥60 ◦C.

Outstanding adsorption performance and selectivity for Ga(III): Under optimized
conditions (500 mg of mesoporous silica, 50 mL of 40 mg/L Ga(III) solution, pH 9, at



Molecules 2024, 29, 5232 12 of 14

30 ◦C for 2.5 h), the material achieved 99% adsorption efficiency. In contrast, untreated
CGCS under the same conditions adsorbed only 3.23%, indicating a 30-fold improvement
in adsorption capacity. The adsorption process followed pseudo second-order kinetics,
with the Langmuir model describing the isotherms, suggesting a combination of physical
and chemical adsorption mechanisms. Additionally, the material demonstrated a selective
recovery of Ga in a Ga-V binary system with a selectivity coefficient (Sel) of 1.5736.

Cyclic regeneration of HCl solution and mesoporous silica: The leaching of 4 g of
CGCS with 6 mol/L HCl retained a specific surface area of 202.22 m2/g after one cycle,
showcasing the potential for resource enrichment and a hierarchical utilization of the
material. Adsorption experiments over five cycles showed a consistent Ga(III) adsorption
efficiency above 85%, demonstrating the effective recyclability of both the HCl solution and
the mesoporous silica.

Adsorption and desorption mechanism: The adsorption mechanism involves the
dissociation of silanol groups (Si-OH), with H+ ions reacting with Ga(OH)4

− to form H2O,
while Si-O− coordinates with Ga(OH)3, forming Si-O-Ga(OH)3. During desorption, H+

ions attack the Si-O-Ga(OH)3 complex, releasing Ga3+, H2O, and regenerating Si-OH. The
reaction can be described by the following equations:

Si-OH + Ga(OH)4
− → Si-O-Ga(OH)3 + H2O

Si-O-Ga(OH)3 + H+ → Ga3+ + H2O + Si-OH

These findings provide a promising approach for the sustainable extraction of Ga(III)
from industrial waste, with potential applications in resource recovery and environmen-
tal remediation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29225232/s1, Figure S1: Competitive adsorption in the
Ga-V binary system; Table S1: Selectivity coefficients for Ga/V competitive adsorption.
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