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Abstract: Polyvinylidene fluoride (PVDF) membranes are extensively utilized in membrane distilla-
tion (MD) for water treatment. However, traditional methods easily form asymmetrical membranes
with dense skin layers that are detrimental to membrane flux. Herein, an eco-friendly PVDF mem-
brane was fabricated by utilizing a delayed phase separation process without using any pore-forming
agents. In addition, methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) was used
as a green solvent without posing risks to humans and the environment. It was demonstrated
that the PVDF concentration is crucial in influencing the microstructures and performance of the
resulting membranes. As the PVDF concentration increased, the morphology changed significantly,
resulting in a reduction of pore size. When feeding the device with NaCl solution at a concentration
of 35 g/L, the MD water vapor flux reached 18.49 kg·m−2·h−1, while maintaining a salt rejection of
over 99.97% during the continuous operation for 24 h. This work presented a method for producing
green PVDF membranes via delayed phase inversion with satisfactory water vapor flux and salt
rejection, highlighting their prospect for effective applications in MD for water treatment.

Keywords: PVDF membrane; delayed phase inversion; green fabrication; membrane distillation

1. Introduction

Seawater treatment has advanced rapidly due to increasing water shortages [1–3].
Membrane distillation (MD) is widely used for desalination because of its mild operating
conditions and energy efficiency [4–6]. Among them, polyvinylidene fluoride (PVDF)
is widely utilized in the preparation of membranes for seawater treatment, owing to its
exceptional chemical degradation resistance, mechanical strength, thermal stability, and
contamination resistance [7]. Non-solvent induced phase separation (NIPS) is a typical
method to fabricate PVDF membranes [8–10]. However, the NIPS process depends on
many factors, including the type of solvent, components of the coagulation bath, and
temperature [11]. Among them, solvent is the main component of the casting solution that
accounts for about 70~90%. Polar aprotic solvents, like N-methyl pyrrolidone (NMP) [12],
N-N-dimethylacetamide (DMAc) [13], and N-N-dimethylformamide (DMF) [14] are exten-
sively utilized due to their chemical affinity with polymers. However, these solvents pose
a serious threat to health and the surroundings. For example, NMP can cause irritation
to the skin and respiratory tract. DMF is carcinogenic, and DMAc has some reproductive
toxicity. These solvents are not only limited to the preparation of the casting solution but
also remain in the wastewater after membrane formation. According to statistics, more than
50 billion liters of sewage are poured annually [15]. Therefore, the adoption of less toxic or
environmentally friendly solvents is essential for sustainable membrane technology.

Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) is a recently dis-
covered eco-friendly green solvent [16]. Polarclean is a clear, slightly yellow liquid with boil-
ing and freezing points (at 1013 hPa) 278−282 ◦C and –60 ◦C, respectively; the flash point
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(closed cup) is 144−146 ◦C. The water solubility of Polarclean is higher than 490 g dm−3 at
24 ◦C [17]. It has the advantages of low toxicity, good biodegradation, and environmental
protection, which reduce harmful emissions [18]. In addition, PolarClean is completely
miscible with water and has a certain solubility for polymers, which can be utilized as a
solvent to prepare PVDF membranes via the NIPS method [19,20]. However, it is gener-
ally recognized that the rapid transfer of solvents and non-solvents during the inversion
phase can result in a dense membrane structure, which is not conducive to vapor transport
in the MD process [21]. Currently, studies on methods to construct porous surfaces are
mainly focused on adding pore-forming agents [22–24], changing bath components [25],
and surface modification [26,27], while fewer studies have been conducted on changing
the membrane structure through the preparation process [28]. Tian et al. [21] proposed a
co-casting method that constructed a polymer isolation layer on the PVDF membranes to
limit the exchange of solvents and non-solvents to prepare hydrophobic microporous PVDF
membranes. Through this method, the PVDF membranes obtained a porosity of about
45% and a water flux of 25 kg·m−2·h−1. Marcello et al. [29] investigated how the support
structure and materials influenced membrane morphology and MD performance. The
outcomes showed that the PVDF membranes prepared by non-woven fabrics (NWFs) had
a flux of over 60 kg·m−2·h−2. Wu et al. [30] further investigated the role of the NWFs on
the membrane microstructure and its performance during the phase inversion process from
a kinetic point of view. They analyzed how NWFs influence the membrane properties and
structure during phase inversion from a dynamic perspective and found that the structure
embedded in NWFs provided extremely high mechanical strength (~50 MPa).

In this work, PolarClean served as a solvent to realize a green process for membrane
fabrication. In addition, the NWFs were employed to act as a physical obstacle to delay the
phase inversion process of PolarClean and water during membrane formation. The impacts
of PVDF concentrations on wettability, pore size, roughness, morphology, and porosity
were studied. Then, the optimized PVDF membranes were prepared and placed in the MD
system to test the membrane performance, including the salt rejection and water vapor
flux of simulated seawater. The work provides an interesting and eco-friendly approach to
fabricating PVDF membranes for MD applications.

2. Experimental
2.1. Materials

PVDF power (Solef 1015, Molecular weight: ~573,000) was obtained from Solvay Co.,
Ltd. (Shanghai, China). Sodium chloride (NaCl, ≥99.5%) was obtained from Shanghai
Aladdin Biochemical Technology Co., Ltd. (Shanghai, China). PolarClean was obtained
from Solvay Novecare (Cranbury, NJ, USA). Deionized water (DI water, 13–17.5 MΩ cm)
was supplied from an ultrapure water machine (Q2-10T, Nanjing Yuheng Instrument
Equipment Co., Ltd., China).

2.2. PVDF Membrane Fabrication

Figure 1 shows the specific process for preparing the PVDF membranes. First, the
required mass of the PVDF powders that were used to prepare PVDF membranes at
different concentrations was weighed. Then, the powders were placed in a three-neck flask
and dissolved in PolarClean via mechanical stirring at 140 ◦C for 2 h to obtain homogeneous
solutions. The solutions were maintained at 140 ◦C for 3 h to ensure that all bubbles were
removed. Next, the casting solution was poured onto a clean glass plate before a membrane
layer with a thickness of 300 µm was scraped out. Subsequently, the NWFs were instantly
covered on the membrane layer. Finally, the membrane was placed in water (20 ◦C) for 24 h
and dried for 6 h after the solvent from the matrix of the PVDF membranes was removed.
The chemical formula of Polarclean and the surface structure of the NWFs are displayed
in Figure 1.
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Figure 1. Preparation diagram for PVDF membrane by delayed phase inversion.

2.3. Characterization

The scanning electron microscope (FE-SEM S-4800, Hitachi, Tokyo, Japan) was utilized
to examine the surface structures of the membranes at an acceleration voltage ranging
from 5 to 7 kV. The atomic force microscope (AFM, PARK XE-100, Suwon, Korea) was
used to measure the surface roughness on a specified 25 µm2 zone and then computed
using the XEI5.0.1.Build5 analysis software. The hydrophobic nature of the membrane,
as indicated by the water contact angle, was evaluated using the Dataphysios OCA25
(Filderstadt, Germany) by depositing 3 µL of water, and measurements were taken at
four distinct regions. The mean pore size and pore distribution of the PVDF membranes
were determined utilizing the bubble pressure method with a PMI ipore 1500 (Ithaca, NY,
USA), ensuring complete wettability of the membrane with Galwick (surface tension of
15.9 dyn/cm). Nitrogen was used for pore opening, and the pore size (r) was computed
according to Equation (1).

∆P =
2σcosθ

r
(1)

where ∆P denotes the additional pressure difference (MPa), σ stands for the liquid surface
tension (N/m), and θ represents the water contact angle (◦). The membrane’s total porosity
was computed using the Equation (2):

ε = 1 − MP/ρP
w × l × t

(2)

In this equation, MP stands for the mass of the PVDF material (g), and ρP stands for
the density of the PVDF (1.75 g/cm3), while t, l, and w denote the thickness (cm), length
(cm), and width (cm) of the membranes, respectively.

2.4. Membrane Distillation Performance

The desalination performance of the PVDF membranes was manifested through
a vacuum membrane distillation (VMD) setup. The process of the VMD experimental
device is shown in Figure 2. The concentration of the NaCl solution was 35 g/L, and the
temperature of the NaCl solution was maintained between 50~70 ◦C. The DI water was
put into the feed side every 2 h during the operation to keep a constant concentration. The
circulation volume was controlled to be 600 mL. The feed solution was injected into the
membrane through a peristaltic pump, and the flow rate was controlled at 200 mL/min. The
effective area of the PVDF membrane in the module was 14.51 cm2 (diameter of 43 mm).
The condensate was controlled by a chiller at a temperature of ±0.5 ◦C. The vacuum
pressure was kept above −0.965 MPa during the test. The conductivity and mass of the
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permeate were monitored every half hour. The salt rejection and water vapor flux were
calculated using Equations (3) and (4), respectively.

R =

(
1 − CP

CF

)
× 100% (3)

where CP and CF stand for the salt concentration of the permeate and feed solution, respectively.

J =
∆m

A × t
(4)

where ∆m (kg) stands for the mass of the condensate water within a fixed time loop (t, h),
and A represents the effective area of the membrane (m2).
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3. Results and Discussion

Figure 3 displays the SEM results of the PVDF membranes at distinct concentrations.
The surface is the side close to the glass plate, and the bottom is the side of the NWFs
that sticks to the membrane. Compared with the traditional method, the delayed phased
inversion can change the surface morphology and overall structure of the membrane. In
the conventional method, the membrane layer came into direct contact with the water
when the cast membrane was placed in the water [31]. The solvent (Polarclean) in the
matrix of the membranes could exchange with water rapidly, resulting in the formation of
a dense layer on the surface of the membrane [32]. However, the delayed phase inversion
process in this work was different. In the membrane formation process, the NWFs were
stuck to the nascent membrane surface. After being placed in the water, the NWFs acted
as a physical barrier, slowing down the transfer rate between the solvent and water [33].
A porous surface was then produced. From Figure 3a–d, we can note that the delayed
phase inversion method could produce porous PVDF membrane surfaces regardless of
the PVDF concentrations. However, there is a slight difference in the microstructure of
the PVDF membranes at distinct concentrations. When the concentration of PVDF ranged
from 15 wt% to 20 wt%, the interconnected flower-like spherical particles appeared on
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the membrane surface. This was because the side in contact with the glass plate was
isolated from the bath water when the membrane was soaked in a water coagulation bath.
Therefore, the PVDF membrane obtained a long phase inversion time, resulting in the
formation of oversized particles [34]. When the concentrations of PVDF were between
25 wt% and 30 wt%, the surface gradually tended to be intact, and the pore size became
smaller. This is due to the fact that the growth of PVDF particles in a fixed volume was
limited with the increase of polymer concentration, thus achieving a uniform smaller size.
In addition, the bottom membrane surfaces are shown in Figure 3e,f. It can be seen that the
formation of the microstructure of filamentous fibers was the imprint of the fiber texture
from the NWFs. The fibrous structure of the NWFs further altered the diffusion behavior of
water when it prevented the water from making direct contact with the nascent membrane.
Additionally, the viscosity of the casting solution increased as the PVDF concentration rose,
leading to the size coarsening of the fiber structures.
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surfaces. The yellow box in the upper right corner is the magnified image of the membrane top surface.
Note that the bottom was observed after removing the NWFs.

Figure 4 shows the AFM results for various concentrations of PVDF membranes. We
can see that when the PVDF concentration was 15 wt% and 20 wt%, the average roughness
(Ra) of the membranes was 30.38 nm and 37.51 nm, respectively. It is also interesting
to point out that there were large pore defects on the membrane surface from the AFM
characterization. Moreover, the mean roughness of the PVDF membranes changed from
59.39 nm to 66.43 nm as the concentration of the PVDF elevated from 25 wt% to 30 wt%.
The increase in the average roughness can be ascribed to the diminished size of the PVDF
particles on the membrane surface, which formed a rougher surface morphology [35]. The
average roughness depended on the degree of surface roughness and the microstructure,
while the surface of a single truncated sphere was relatively flatter.

Figure 5 displays the properties of the PVDF membranes at distinct polymer con-
centrations. Figure 5a shows the membrane thickness with or without using NWFs as
supports. It can be found that the membrane thickness increased as the PVDF concentration
(15~30 wt%) rose. The membrane thicknesses using NWFs were 143.6, 169.0, 193.1, and
234.3 µm, while the membrane thicknesses after removing the NWFs were only 63.6, 98.0,
115.3, and 128.6 µm, respectively. The casting solution became more viscous as the PVDF
concentration increased, making it more difficult to penetrate into the pore structures of
the NWFs. This could result in a higher membrane thickness. Figure 5b displays the pore
size of PVDF membranes at distinct concentrations. It demonstrated that the pore size
gradually became smaller with the rise of PVDF concentration. When the concentration of
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PVDF was 15 wt% and 20 wt%, the overall pore sizes were larger than 0.89 µm and 0.64 µm.
That was because the high PVDF concentration in the cast membrane could decrease the
porosity and thus lead to the formation of many small pores [36]. While the concentrations
of the PVDF were 25 wt% and 30 wt%, the membrane integrity was satisfactory, with pore
sizes of 0.35 µm and 0.19 µm, respectively. It was attributed to the smaller particle sizes (see
Figure 3c,d). Figure 5c shows the porosity of the PVDF membrane. Apparently, the delayed
phase inversion method maintained a high overall porosity of the PVDF membrane. As
the PVDF concentration increased from 15 wt% to 30 wt% (with increments of 5 wt%),
the corresponding porosity values were 82%, 80%, 77%, and 75%, respectively. Figure 5d
shows the water contact angle that reflected the hydrophobic properties. It can be observed
that the water contact angle rose from 61.6◦, 80◦, 115.4◦ to 132.1◦ as the concentration of
PVDF was elevated from 15 wt% to 30 wt%, respectively. The variations in the contact
angle with water were positively correlated with the roughness of the PVDF membranes.
High membrane roughness could lead to increased hydrophobic properties and a higher
water contact angle [37].
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Figure 6 shows the effect of the different concentrations of PVDF membranes on
membrane distillation performance. We can note that the vapor fluxes were higher when
the concentration of PVDF was 15 wt% and 20 wt%. However, the salt rejection was only
74.68% and 82.57%, respectively. This was caused by the non-uniformity of the pore size on
the membrane surface, which did not completely reject the saline water. Additionally, this
finding suggests that the vacuum MD system is not suitable for PVDF membranes with pore
sizes of 0.89 µm and 0.64 µm [38]. In contrast, during the entire process, the salt rejection
remained over 99.9% when the concentration of PVDF was 25 wt% and 30 wt%, respectively.
Specifically, the average vapor fluxes at 50, 60, and 70 ◦C were 8.6, 12.4, and 16.9 kg·m−2·h−1

(25 wt%) and 3.4, 9.7, and 14.2 kg·m−2·h−1 (30 wt%), respectively. This was because the
PVDF membrane with a concentration of 25 wt% exhibited higher porosity and thinner
thickness, thereby obtaining a lower transferring resistance. Therefore, the optimized PVDF
concentration was selected as 25 wt%, and the resulting PVDF membranes were employed
for a 24 h long-term MD test (Figure 6b). The fluxes varied from 7.22 to 10.21 kg·m−2·h−1

at 50 ◦C, and from 11.40 to 13.55 kg·m−2·h−1 at 60 ◦C. At 70 ◦C, the vapor flux decreased
slightly from 18.49 kg·m−2·h−1 to 15.21 kg·m−2·h−1. Throughout the process, the salt
rejection consistently exceeded 99.97%, indicating a high MD separation performance.
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performance. 

Figure 5. Properties of the PVDF membranes at various PVDF concentrations. (a) Membrane
thickness, (b) pore size distribution, (c) porosity, and (d) water contact angle. Note that PVDF-15
indicates that the PVDF concentrations are 15 wt% and so forth.
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Figure 6. (a) MD performance of PVDF membranes at various PVDF concentrations, and (b) mem-
branes with a PVDF concentration of 25 wt% underwent long-term performance testing.

4. Conclusions

The delayed phase inversion method effectively slowed down the transfer between
solvents and non-solvents. This method successfully fabricated a hydrophobic and porous
PVDF membrane using green solvents. Specifically, NWFs hindered the diffusion behavior
of water and solvents, which delayed the occurrence of phase inversion. This method
induced a porous surface with interconnected spherical particles, and the total porosity of
the membranes was relatively higher than ~79 ± 3%. By increasing the PVDF concentration
from 15 wt% to 30 wt% in 5 wt% increments, the membrane thickness elevated from
63.6 µm to 128.6 µm, respectively, and the pore size reduced from 0.89 µm to 0.19 µm,
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respectively. At the optimized condition (a PVDF concentration of 25 wt%), the resulting
membranes were applied well to MD for seawater desalination. At 70 ◦C, the water vapor
flux of these membranes ranges from 18.49 to 15.21 kg·m−2·h−1. The salt rejection was
stably maintained above 99.97% in the MD test for 24 h.

Finally, it is important to mention the following fact. Different from the conventional
NMP solvent, PolarClean must be heated to 130–140 ◦C to dissolve the PVDF particles,
which could increase the fabrication cost. In the future, more green solvents that could
dissolve PVDF powders at room temperature should be considered.
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