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Abstract: The chemistry of bidentate ligands with a dppf-like motif, where phosphorus is fully or
partially replaced by other pnictogens as donor sites, is summarized and discussed in this compre-
hensive review, while covering the literature from 1966 to 2024, related to more than 165 original
references and discussing more than 75 independent chemical entities (1–41). Besides addressing
synthetic, structural, and electrochemical aspects of such compounds, their donor properties and
metal coordination behavior is discussed, along with catalytic applications. Based on their electronic
and steric situations, trends in the performance of such compounds, either as ligands for catalysis or
on their own merits for non-catalytic purposes, have been elucidated. Related topics that could not
be covered in this article have been acknowledged by referring to the literature for completeness.

Keywords: pnictogens; ferrocene; dppf-analogs; amine; arsenic; antimony; bismuth; homoditopic
ligands; heteroditopic ligands

1. Introduction

By hosting mono- [1], di- [2], tri- [3,4], and multidentate phosphanyl ligand sys-
tems [5], ferrocene has played a vital role in complexation and catalysis for almost six
decades. Despite the dominance of dppf (i.e., 1,1′-bis(diphenylphosphino)ferrocene or
1,1′-bis(diphenylphosphanyl)ferrocene according to IUPAC) [6] and its slimmer and bulkier
counterparts as bidentate ligands [7], related 1,1′-bischalcogen and 1,1′-bispnictogen lig-
ands have further emerged over time [8–10]. Unlike other bidentate ligands with alkyl (e.g.,
1,2-bis(diphenylphosphino)ethane) and alkenyl (e.g., cis-1,2-bis(diphenylphosphino)ethylene)
spacers, ferrocene provides a robust yet flexible backbone, which allows a variety of metal
centers to be stabilized by attaining various facile spatial orientations (such as classical
chelated; open-bridged; double-bridged; quasi-closed bridged; η1, η1-intrabridged; η1,
η1-interbridged; and quasi-closed double-bridged complexes) [7,11,12]. At the same time,
the 1,1′-(bisphosphino)ferrocene ligand family shows higher bite angles (βn, Figure 1A)
during complexation [13], which further plays an instrumental role in catalysis, usually
resulting in higher conversion rates than comparable reactions with their alkyl and alkenyl
counterparts [14].

Other than contributing to ligand chemistry and catalysis, pnictogen-substituted
ferrocenylene species further constitute a major subsection of ferrocenophanes (FCPs,
Figure 1B,C), where the resulting rings feature moderate to high molecular strain [15].
Dihedral angle α is considered the key parameter of molecular deformation, which has been
related to ring strain and thermodynamic aspects of ring-opening polymerization (ROP)
reactions [16], allowing different compounds to be compared. Following the previously
demonstrated trends, the α angle decreases with the increase in the size and number of
bridging atoms [15,17,18]. In this respect, the largest α angle is manifested by P-bridged
[1]FCPs, for which the values vary narrowly between 26.9 and 27.9◦, depending upon
the nature of the substituents on phosphorus and in the α-positions of the ferrocene
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(Figure 1D) [15]. Owing to the bigger atomic size of arsenic, the α angle of arsa [1]FCP
(α = 22.9◦) is significantly smaller than those of phospha [1]FCPs (Figure 1E) [19].

Besides [1]FCPs, there are a handful of examples reported for pnictogen-bridged [n]
FCPs (n = 2, 3) [17,18,20–24], among which the highest dihedral angles were found for a
family of B,N-bridged [2]FCPs (α = 22.9–24.2◦), where the bridging B=N bonds can further
be considered isoelectronic to the C=C bond (Figure 1F) [25]. On the other hand, N,Si and
N,Sn [2]FCPs (Figure 1G) showed low to moderate dihedral angles (α = 9.36–15.73◦), and
therefore, no detectable polymers were observed after ROP reactions [23]. N,P [2]FCP H
demonstrates a rare example for mixed pnictogen-bridged [2]FCP, which, upon prolonged
standing at room temperature, isomerizes into N,C,P [3]FCP I, accompanied by a decrease
in the α angle (from 17.93–18.15◦ for H to 5.81–9.49◦ for I), which is a determining factor
in transforming [2]FCP to [3]FCP [24]. Upon replacement of P in the ansa-position with
a smaller pnictogen-like N, diazacarba [3]FCP with paramagnetic (J, α = 11.80–14.31◦)
and arylamino- (K, α = 15.57–16.44◦) substituents showed considerably higher dihedral
angles [26] compared to alkylidene-bridged aminophosphanyl [3]FCP I (α = 5.81–9.49◦) [24].
However, none of the compounds D–K have been used for complexation and catalysis,
except for photoinduced ROP of D with R = Ph and R’ = H, where the ring opening reaction
is believed to proceed via in situ formation of a complex L [15,27].
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Figure 1. Bite angle βn for a chelated complex of dppf (A) [7]; [1]FCP and its dihedral angle α (B) [16];
[2]FCP and its dihedral angle α (C) [23,24]; phospha [1]FCP, where R = Ph, CH(Me)(NMe2) and
R’ = NiPr2, Ph, tBu, Cl, etc. (D) [15]; arsa [1]FCP (E) [15]; azabora [2]FCP (F) [25]; aza [2]FCP, where
ER’2 = SiMe2, SntBu2, SitBu2, and R = SiMe3 (G) [23]; azaphospha [2]FCP (H) [24]; azacarbaphos-
pha [3]FCP (I) [24]; diazacarba [3]FCP with paramagnetic substituents (J) [26,28–30]; arylamino-
1,3-diaza [3]ferrocenophanes (K) [26]; intermediate for photoinduced ROP of D (L) [15,27]; 1,1′-
diisocyanatoferrocene (M) [31–33]; and 1,1′-dipthalimidoferrocene (N) [34,35].

Although several excellent review articles and book chapters discuss syntheses and
catalytic features of dppf and its analogs [7,8,11,36–41], to the best of our knowledge,
there are no reports available that solely concentrate on the recent advancements in their
non-phosphanyl counterparts. Unlike several bisphosphanyl-substituted dppf analogs,
where detailed computational assessment on the bite angles βn and catalytic activities have
frequently been reported [7,42], such data are unavailable for their (N,N), (As,As), (Sb,Sb),
(Bi,Bi), or (N,P) counterparts. As they are lacking pronounced chemical applications,
1,1′-diisocyanato- (Figure 1M) and 1,1′-dipthalimidoferrocene (Figure 1N) have not been
put into focus here. Compounds M and N have notably been used as starting materials
to functionalize ferrocenes with amino and (oxycarbonyl)amino moieties via reduction
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with other amines (for M, Scheme 1) [31–33], phosphines (for M, Scheme 1) [43], and
alcohols (for M, Scheme 1) [44,45], and via Gabriel-type synthesis with hydrazine (for N,
Scheme 1) [34,35].
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For a better overview, the wealth of 1,1′-bispnictogen-substituted dppf analogs has
been divided into two major categories: 1,1′-symmetrically and -unsymmetrically sub-
stituted systems. 1,1′-Symmetrically substituted compounds are discussed depending
on their substituents on ferrocenes, and therefore, have further been classified as 1,1′-
diamino- (1–12), 1,1′-diimidazolium- (13–16), 1,1′-diimino- (17–19), 1,1′-diarsanyl- (20–23),
1,1′-distibanyl- (24), and 1,1′-dibismuthanyl ferrocenes (25 and 26). On the other hand,
1,1′-unsymmetrically substituted systems are subdivided into the following three groups:
1,1′-N,P (27–39), 1,1′-arsanylphosphanyl- (40), and 1,1′-arsanylstibanylferrocenes (41). Ow-
ing to the sake of simplicity and their low abundance, multiferrocenyl and multidentate
ligand systems are kept out of our discussion, and consequently, readers interested in such
ligands are referred to specialized articles for further information [47,48].

2. Itemization and Inventory

Although the main text of the current article summarizes 1,1′-pnictogen-disubstituted
dppf analogs, their chemical structures, synthetic precursors, respective complexes, and
applications have been listed in Table 1 for a better overview. Table 1 further serves the
purpose of synoptical documentation, so that the functional details of 1–38 can be found
via a quick and easy inspectional survey, without investing much time in comprehensive
reading.
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Table 1. Overview of the synthetic access and chemical uses for 1,1′-bispnictogen-substituted dppf
analogs.

Group 15 Elements Substituting
1,1′-Ferrocenes Precursors for Syntheses Chemical Applications and Complexes

1,1′-Symmetrically substituted systems: 1,1′-diaminoferrocenes
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C5H4LiNMe(CH2CH2NMe2) and
FeCl2 (Scheme 2B) [57]

Compound 6 has been used for
electrochemical measurements [58].
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with Zr(OtBu)2, which was further used 

in ROP for L-lactide and ε-caprolactone 

[61]. 

 

Fc’(NH2)2 and aldehydes or si-

lylchlorides or respective ketones 

(with p-toluene sulfonic acid mono-

hydrate) [62–66]. 

Different variations of 9 were used for 

electrochemical measurements and 

computational purposes [64], and to act 
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stannylenes, germylenes [62,63,67], 

Zr(Bn)2, Mg(THF)2, TiCl2, and TiMe2 

[68]. Germylenes with deprotonated 9a, 

9d, 9e, and 9h were further explored for 
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[M(CH2Ar)(THF)] (M = Sc, Y, La, Lu) 

with 9d and 9f were used for dearoma-

tization and ring-opening reactions [70–

74]. 

 

Fc’(NH2)2, PhBr, and Pd2(dba)3 (sim-

ilar to Scheme 2D) [75]. 

Compound 10 was used to synthesize 

zirconium chelates [76]. 

 

Fc’(NH2)2, respective arylbromides, 

and Pd2(dba)3 (similar to Scheme 

2D) [65,75,77]. 

11b and 11c were used to synthesize N-

heterocyclic silylenes [78], germylenes, 

and stannylenes [79]. Germylenes of 

11b and 11c were further explored for 

oxidation reactions with S, Se, and 

(PhSe)2 [69]. Isolated complexes of 11c 

were reported with Al(III) [77]. Isolated 

complexes of 11d were reported with 

Zr(NMe2)2 and Zr(Bz)2 [76]. 

 

Fc’(NH2)2, 3,5-Me2-C6H3-Br, and 

PdBINAP [55]. 
No application reported [55]. 

1,1′-Symmetrically substituted systems: 1,1′-diimidazoliumferrocenes 

 

Fc’I2, imidazole and CuI [80]. 

Compound 13 was used to synthesize 

ferrocene-based redox-responsive re-

ceptors [80]. 

Fc’(NH2)2 and 3,5-di-tert-butyl-2-
hydroxybenzaldehyde [61].

Isolated complexes of 8 are reported with
Zr(OtBu)2, which was further used in ROP

for L-lactide and ε-caprolactone [61].
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Fc’(NH2)2 and aldehydes or
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and 9f were used for dearomatization and
ring-opening reactions [70–74].
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Fc’I2, imidazole and CuI [80]. 
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zirconium chelates [76].
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1,1′-Symmetrically substituted systems: 1,1′-diimidazoliumferrocenes 

 

Fc’I2, imidazole and CuI [80]. 

Compound 13 was used to synthesize 

ferrocene-based redox-responsive re-

ceptors [80]. 

Fc’(NH2)2, respective arylbromides,
and Pd2(dba)3 (similar to Scheme 2D)

[65,75,77].

11b and 11c were used to synthesize
N-heterocyclic silylenes [78], germylenes,

and stannylenes [79]. Germylenes of 11b and
11c were further explored for oxidation

reactions with S, Se, and (PhSe)2 [69].
Isolated complexes of 11c were reported with
Al(III) [77]. Isolated complexes of 11d were
reported with Zr(NMe2)2 and Zr(Bz)2 [76].
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Fc’I2, imidazole and CuI [80].
Compound 13 was used to synthesize

ferrocene-based redox-responsive
receptors [80].
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tions of 18 were reported with Zr(Bz)2 

[91], Mg(THF)2 [91], TiCl2 [89], Ti(OiPr)2 

[89,93,94], Ce(OtBu)2 [95], In(OtBu) 

[94,96], Zn [97], Co [97], Zr(OiPr)2 [98], 

Zr(OtBu)2 [94,98], and Al(OiPr) [94]. 

Some of these complexes were further 

used for ethylene, lactone, and lactide 

polymerizations [89,93–96,98]. 

 

Fc’(N3)2 and respective ar-

ylphosphine (Scheme 2F) 

[92,99,100]. 

Isolated complexes with 19 are reported 

with Ce(OtBu)2 [99], Ce(OtBu)THF [99], 

CeCl(THF) [99], CeI(THF) [99], YCl 

[99], Y(OtBu) [99], YCl [101], Y(CH2Ph) 

[101], and Y(CH2SiMe3) [101]. 

1,1′-Symmetrically substituted systems: 1,1’-diarsanylferrocenes 

Fc’(NH2)2 and
2-fluoronitrobenzene [81].

Isolated complexes of compound 14 were
reported with Ir(cod), where “cod” stands for

1,5-cyclooctadiene [81].
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reported with Miyaura borylation [118].

Molecules 2024, 29, x FOR PEER REVIEW 9 of 40 
 

 

 

38·PdCl2: Fc’(PPh2)NC, PdCl2(cod), 

and respective (MeO)2CHCH2NHR 

(R = Me, iPr) [118]. 

Isolated complexes with compound 38 

are reported with PdCl2, which was fur-

ther reported with Miyaura borylation 

[118]. 

 

Fc’(PPh2·BH3)N3, RC≡CH (R = Bz, 

Mes), and CuSO4·5H2O [122]. 

Isolated complexes with compound 39 

are reported with MeBF4, 

PdCl2(MeBF4), AuiPr(MeBF4), and 

[PdCl2(AuiPr)2(MeBF4)2]1/2 [122]. 

1,1’-Unsymmetrically substituted systems: 1,1’-arsanylphosphanylferrocenes 

 

[1]PhosphaFCP and nBuLi, followed 

by Ph2AsCl [123,124]. 

No application reported for 37 [123–

125]. 

1,1′-Unsymmetrically substituted systems: 1,1′-phosphanylstibanylferrocene 

 

Fc’(PPh2)Br and nBuLi, followed by 

Ph2SbCl [126]. 

Isolated complexes with compound 41 

are reported with AuCl, which was fur-

ther treated with 3,5-di-tert-butyl-o-

benzoquinone for further complexation 

with Sb. Both complexes were eventu-

ally used for gold catalysis [127]. 

 

Scheme 2. Synthetic routes to selected 1,1′-N,N-ferrocenes (A–F) [31,49,55,56,58,99]. 

Fc’(PPh2·BH3)N3, RC≡CH (R = Bz,
Mes), and CuSO4·5H2O [122].

Isolated complexes with compound 39 are
reported with MeBF4, PdCl2(MeBF4),

AuiPr(MeBF4), and
[PdCl2(AuiPr)2(MeBF4)2]1/2 [122].

1,1’-Unsymmetrically substituted systems: 1,1’-arsanylphosphanylferrocenes

Molecules 2024, 29, x FOR PEER REVIEW 9 of 40 
 

 

 

38·PdCl2: Fc’(PPh2)NC, PdCl2(cod), 

and respective (MeO)2CHCH2NHR 

(R = Me, iPr) [118]. 

Isolated complexes with compound 38 

are reported with PdCl2, which was fur-

ther reported with Miyaura borylation 

[118]. 

 

Fc’(PPh2·BH3)N3, RC≡CH (R = Bz, 

Mes), and CuSO4·5H2O [122]. 

Isolated complexes with compound 39 

are reported with MeBF4, 

PdCl2(MeBF4), AuiPr(MeBF4), and 

[PdCl2(AuiPr)2(MeBF4)2]1/2 [122]. 

1,1’-Unsymmetrically substituted systems: 1,1’-arsanylphosphanylferrocenes 

 

[1]PhosphaFCP and nBuLi, followed 

by Ph2AsCl [123,124]. 

No application reported for 37 [123–

125]. 

1,1′-Unsymmetrically substituted systems: 1,1′-phosphanylstibanylferrocene 

 

Fc’(PPh2)Br and nBuLi, followed by 

Ph2SbCl [126]. 

Isolated complexes with compound 41 

are reported with AuCl, which was fur-

ther treated with 3,5-di-tert-butyl-o-

benzoquinone for further complexation 

with Sb. Both complexes were eventu-

ally used for gold catalysis [127]. 

 

Scheme 2. Synthetic routes to selected 1,1′-N,N-ferrocenes (A–F) [31,49,55,56,58,99]. 

[1]PhosphaFCP and nBuLi, followed
by Ph2AsCl [123,124]. No application reported for 37 [123–125].

1,1′-Unsymmetrically substituted systems: 1,1′-phosphanylstibanylferrocene

Molecules 2024, 29, x FOR PEER REVIEW 9 of 40 
 

 

 

38·PdCl2: Fc’(PPh2)NC, PdCl2(cod), 

and respective (MeO)2CHCH2NHR 

(R = Me, iPr) [118]. 

Isolated complexes with compound 38 

are reported with PdCl2, which was fur-

ther reported with Miyaura borylation 

[118]. 

 

Fc’(PPh2·BH3)N3, RC≡CH (R = Bz, 

Mes), and CuSO4·5H2O [122]. 

Isolated complexes with compound 39 

are reported with MeBF4, 

PdCl2(MeBF4), AuiPr(MeBF4), and 

[PdCl2(AuiPr)2(MeBF4)2]1/2 [122]. 

1,1’-Unsymmetrically substituted systems: 1,1’-arsanylphosphanylferrocenes 

 

[1]PhosphaFCP and nBuLi, followed 

by Ph2AsCl [123,124]. 

No application reported for 37 [123–

125]. 

1,1′-Unsymmetrically substituted systems: 1,1′-phosphanylstibanylferrocene 

 

Fc’(PPh2)Br and nBuLi, followed by 

Ph2SbCl [126]. 

Isolated complexes with compound 41 

are reported with AuCl, which was fur-

ther treated with 3,5-di-tert-butyl-o-

benzoquinone for further complexation 

with Sb. Both complexes were eventu-

ally used for gold catalysis [127]. 

 

Scheme 2. Synthetic routes to selected 1,1′-N,N-ferrocenes (A–F) [31,49,55,56,58,99]. 

Fc’(PPh2)Br and nBuLi, followed by
Ph2SbCl [126].

Isolated complexes with compound 41 are
reported with AuCl, which was further

treated with
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complexation with Sb. Both complexes were

eventually used for gold catalysis [127].
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Scheme 4. Synthetic routes for 1,1′-N,P-ferrocenes (A–D), where DABCO, BOP, and DBU stand
for 1,4-diazabicyclo [2.2.2]octane, (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluo-
rophosphate, and 1,8-diazabicyclo(5.4.0)undec-7-ene, respectively [113,114,119,122].

3. Synthetic Aspects

The earliest example of 1,1′-symmetrically substituted diaminoferrocene was syn-
thesized via a “modified fly-trap methodology”, where a general entry of cyclopentadi-
enylamine is provided by the reaction of C5H5Li with the hydroxylamine derivative of
Me2N-OSO2Me. The resulting C5H5NMe2 was then deprotonated and in situ reacted with
FeCl2 to obtain title compound 1 (Scheme 2A) [49]. This methodology has further been
extended to synthesize 3,4,3′,4′-tetraphenyl-substituted 1,1′-diaminoferrocene (5–7), where
a family of 3,4-diphenyl-substituted cyclopentadienylamine has initially been used for
deprotonation and subsequent salt metathesis reactions with FeCl2 (Scheme 2B) [57–60].
While the above-mentioned “modified fly-trap methodology” is restricted to Fc′(NMe2)2
(1) and a few Ph4-substituted 1,1′-diaminoferrocenes 5–7 [57–60], the majority of other
diamines were typically synthesized using a series of well-established synthetic methodolo-
gies, starting from Fc′(NH2)2 (selected examples in Scheme 2C,D) [55,56,61,81,91], which is
synthesized either via catalytic hydrogenation of Fc′(N3)2 [128] or via two-step Gabriel-type
synthesis, starting from Fc’Br2 or Fc’I2 [35]. Other case-specific synthetic strategies have
occasionally been employed to access 16 and 19, involving condensation and Staudinger
reactions, starting from M and Fc′(N3)2, respectively (Scheme 2E,F) [31,99].

Dimethyl- and diphenyl-substituted 1,1′-diarsanyl- and 1,1′-distibanylferrocenes 20, 22, and
24 were synthesized by salt metathesis reactions of tmeda-stabilized (i.e., Fc’Li2·2/3tmeda) [129]
or in situ-synthesized Fc’Li2 with Me2AsCl (Scheme 3A) [2], Ph2AsCl (Scheme 3A) [2],
and Ph2SbCl (Scheme 3B) [110], respectively. A similar methodology has further been
applied for plana r-enantiomeric versions of 1,1′-distibanyl- and dibismuthanylferrocenes
23 and 26b, where -CH2NMe2 units guided the corresponding lithiation to α-Cp positions
(Scheme 3C,D) [109,112,130–132]. Compound 26b was further treated with a series of com-
mon organic reagents, giving rise to a family of 1,1′-dibismuthanylferrocenes with different
pendant difunctional substituents (selected example of 26e in Scheme 3D) [112]. On the
other hand, 1,1′-bis(dicyclohexylarsanyl)ferrocene (21) was synthesized via a CuI-catalyzed
reaction of 1,1′-bis(dithiaarsole)ferrocene with an excess amount of cyclohexylmagnesium
chloride (Scheme 3E) [106].

The main precursors for all previously reported N,P-substituted ferrocene ligands
(such as 27 and Fc′(PPh2)N3) have been synthesized, starting from protected ferrocenyl
phosphanes to avoid unwanted Staudinger reactions. For example, when Fc′(Ph2PBH3)Br
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was selectively lithiated and subsequently reacted with TsN3, Fc′(Ph2PBH3)N3 was ob-
tained. In the next step, Fc′(Ph2PBH3)N3 was further reduced and deprotected to obtain
title compound 27 (Scheme 4A) [113]. Alternatively, thionation has been used to protect
the P-functionality. To this end, selective lithiation was first performed on Fc′(Ph2P = S)Br,
followed by salt metathesis reaction with TsN3. The resulting Fc′(Ph2P = S)N3 was either
reduced selectively at the P-functionality to obtain Fc′(PPh2)N3 (Scheme 4A), or the P and
N-functionalities simultaneously transformed to title compound 32a (Scheme 4B) [113].
Starting from 27 and Fc′(PPh2)N3, a family of 1,1′-azaphospha ferrocenylene ligands (such
as 29 [113], 30 [115], 31 [116], 32a [113], 33 [119], 35 [118], and 36 [122], has been accessible
using a series of well-established synthetic methodologies, as outlined in Scheme 4A,C. On
the other hand, the syntheses of ligands 28 was based upon the successful and large-scale
preparation of an unsymmetrically substituted 1,1′-aminobromoferrocene Fc′(NMe2)Br
(Scheme 4D), which was first lithiated and subsequently reacted with R2PCl (where R = Ph
and Mes) to obtain target compounds 28a and 28b [114]. Here, it is to be noted that in order
to synthesize 28, N (i.e., NMe2) was first introduced at ferrocene, followed by P (i.e., PR2),
whereas an opposite synthetic order was followed for Fc′(PPh2)N3, 27, and 32a (compare
Scheme 4A,B,D) [113].

1,1′-Arsanylphosphanylferrocenes have been synthesized via ring-opening reactions of
phospha [1]FCPs, where PhLi has reportedly been used as a ring-opening agent. The re-
sulting anionic species were further in situ reacted with Ph2AsCl to selectively synthesize 40b
(Scheme 5A) [123–125]. On the other hand, the only example of 1,1′-phosphanylstibanylferrocene
was synthesized in a modular approach, where 1,1′-dibromoferrocene was first selectively lithi-
ated and subsequently reacted with Ph2PCl. The resulting Fc′(PPh2)Br was further lithiated and
in situ reacted with Ph2AsCl to synthesize mixed compound 41 (Scheme 5B) [126].
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Scheme 5. Synthetic routes for 1,1′-arsanylphosphanyl- (A) and 1,1′-arsanylstibanylferrocenes
(B) [113,114,119,122–126].

4. Complexation Motifs of Pnictogen-Substituted 1,1′-Ferrocenes

The steric situation of the phosphanyl units in dppf analogs is one of the key features
of these compounds, allowing for a wide variation of complexation modes [7]. By con-
trast, the pnictogen-substituted non-phosphanyl species show only a handful examples
for open-bridged (entries 1–10, Table S1, ESI; Figure 2A), quasi-closed-bridged (entry 11,
Table S1, ESI; Figure 2B), double-bridged (entries 12 and 13, Table S1, ESI; Figure 2C), lower-
(entries 14–16, Table S1, ESI; Figure 2D), and higher-order η1, η1-interbridged (entry 17,
Table S1, ESI; Figure 2E) complexes. However, 1,1′-bisimino- (17a and 17i), diarsanyl- (20
and 22), distibanyl- (24), and phosphanyliminoferrocenes (33 and 34a) predominantly show
chelation as their preferred mode of complexation (entries 23–54; Figure 2F), which are
further compared with similar complexes from dppf analogs (entries 18–22), and a rare
example of double chelation for 17j (Entry 55; Figure 2G) in Table S1 (ESI). When secondary
amines (9–11) and substituted imines with proximal hydroxyl groups (18 and 19) were
deprotonated and in situ reacted with metal halides, cyclic (entries 56 and 57, Table S1, ESI;
Figure 2H), multidentate chelated (entries 58–81, Table S1, ESI; Figure 2I,J), and higher-order
species with intermolecular N-M-N bridges (entries 82 and 83, Table S1, ESI; Figure 2K)
were obtained. 1,1′-Diaminoferrocenes with secondary amines (9 and 11) have notably been
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found to be useful in stabilizing carbenes, silylenes, germylenes, and stannylenes, which
are further showcased as entries 84–120 in Table S1 (ESI) (Figure 2L). In order to present
a complete picture to the readers, Table S1 (ESI) has further been equipped with com-
pounds (entries 121–127; Figure 2M,N), obtained by oxidation of 1,1′-distibanylferrocene
24, featuring a rare family of SbOSb [3]FCPs (entries 124–127; Figure 2N).
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Figure 2. Simplified illustrations demonstrating the binding modes for pnictogen-disubstituted
1,1′-ferrocenes: open- (A), quasi-closed- (B), and double-bridged complex (C); lower (D) and higher
aggregated η1, η1-interconnected complex (E); chelated (F) and double-chelated complex (G); cyclic
((H), E’ = FcNR−) and multidentate chelated species ((I,J), O’ = PhO−, E’ = FcNR−); higher-aggregated
species with transition metal bridges ((K), E’ = PhO−); tetrylene-bridged species ((L), E = carbene,
silylene, stannylene, and germylene), compounds obtained via oxidation of 24 ((M), where X = F and
Cl, n = 2 and 4; and (N), where X = F, Cl, ONO2, and OClO3). Note For the sake of simplicity, top
views of the complexes are depicted for (E,K).

Each complexation mode is exemplified with examples, which are arranged following
the order of Table 1. Complexes from each ligand were then arranged by increasing
atomic number of the corresponding complexation partners in Table S1 (ESI). As the
complexes with deprotonated ligands (entries 58–81, Table S1, ESI) exhibit E-M distances
in an acceptable range of polar coordination bonds and tetrylene-bridged cyclic species
(entries 84–120, Table S1, ESI) structurally behave similar to [3]FCPs, the corresponding
dihedral angles (α) are recorded for them in Table S1 (ESI). In order to complete the data-set,
dihedral (α) angles are listed for all chelating complexes and cyclic species, in contrast to
open- (entries 1–10, Table S1, ESI; Figure 2A) and η1, η1-interconnecting complexes (entries
14–16, Table S1, ESI; Figure 2D,E). No meaningful bite angles (βn) have been defined for
open- (entries 1–10; Figure 2A), quasi- (entry 11; Figure 2B), double-bridged (entries 12
and 13; Figure 2C), lower- (entries 14–16; Figure 2D), or higher-order η1, η1-interconnected
complexes (entry 17; Figure 2E) in Table S1, ESI. For acyclic coordination such as for
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24(F)2, 24(F)4, and 24(Cl)4 (entries 121–123; Figure 2M), and higher-order compounds with
intermolecular N-M-N bridges (entries 82 and 83, Table S1, ESI; Figure 2N), α and βn are
not listed. Similarly, Fischer-type carbenes are not included in this table, as they do not
feature any direct bonding connectivity between transition metal and a donor atom directly
attached to the ferrocene.

After methodically arranging the entire wealth of complexes and compounds derived
from ligands 1–41, our next aim was to compare bite angles (βn) for bisphosphanyl and
bisarsanyl ligands. In order to do so, Pd(II) complexes of dppf and its analogs (dppf·Pd(η2-
C60), dppf·PdCl2, and Fc′(PMes2)(PtBu2) PdCl2 in entries 18, 19, and 22, respectively, in
Table S1, ESI) were first structurally compared with 24·PdCl2 (entry 39, Table S1, ESI),
where the βns (complex type Figure 2F) were found following the trend of dppf·Pd(η2-
C60), dppf·PdCl2, and Fc′(PMes2)(PtBu2)·PdCl2 > 24·PdCl2. This trend possibly resulted
from the long Sb-Pd bonds (2.5020(5) Å), which push the bridging PdCl2 moiety away
from the ferrocenylene unit, decreasing the βn compared to dppf and its analogs (where P-
Pd = 2.262(4)-2.286(3) Å; case Figure 3A). This argument holds true for a similar comparison
between dppf·Pt(η2-C60) and 24·PtCl2 (entries 20 and 43, Table S1, ESI), where the latter
showed higher βn compared to the former. However, on comparison between 24·PtCl2
and dppf·PtCl2 (entries 43 and 21, Table S1, ESI), an opposite trend could also be found,
where, despite longer Sb-Pt bonds (2.5007(5) Å) and a smaller α angle (1.0◦), the former
complex showed a higher value of βn (96.49(1)◦, complex type Figure 2F) than the latter
(P-Pt = 2.266(5) Å, α = 5.0◦, and βn = 91.6(2)◦). However, a close inspection of their
structural features reveals larger twist angle in 24·PtCl2 (32.6◦), making βn higher than that
of dppf·PtCl2 (tilt angle 30.7◦, case Figure 3B).

Molecules 2024, 29, x FOR PEER REVIEW 14 of 40 
 

 

 

Figure 3. Simplified illustrations for the dependence of βn on the lengths of E-M bonds (case (A)), 

Sb-Pd > P-Pd, βndppf·PdCl2 > βn24·PdCl2) and Cp/Cp twist angles τ (case (B)), τ 24·PdCl2 > τ dppf·PdCl2, βn24·PdCl2 > 

βndppf·PdCl2). Note Dihedral angle α is not being considered while drawing for case (A), and the Cp 

rings were consequently drawn as parallel to each other. 

When comparing complexes of a ligand scaffold with different substituents, bite an-

gles (βn) increase with enhanced steric interactions. For example, βns for complexes of 17a, 

24, and 34a showed the following trends: 17a·PdClMe > 17a·PdCl2 (entries 23 and 24, Table 

S1, ESI), 24·[Ru(η6-1-Me,3-iPr-C6H4)Cl][PF6] > 24·[Ru(η5-C5Me5)Cl] (entries 36 and 37, Table 

S1, ESI), and 34a·PdBr(p-CN-C6H4) > [34a·Pd(acac)](SbF6) (entries 49 and 52, Table S1, ESI). 

On the other hand, when the PdCl2 complex of sterically bulky ligand 17i was compared 

with that of its slimmer counterpart 17a, βns showed the expected trend, i.e., 17i·PdCl2 > 

17a·PdCl2 (entries 23 and 32, Table S1, ESI). Chelate complexes, such as 24·PdCl2 (entry 39, 

Table S1, ESI), showed a larger βn value than their counterparts with a shared metal cation, 

such as (24)2·(μ-Pd)(SbF6) (entry 40, Table S1, ESI). This is likely due to the steric interac-

tions between two adjacent ligand molecules of 24, which is further supported by the elon-

gation of the Sb-Pd distances from 24·PdCl2 (2.5020(5) Å) to (24)2·(μ-Pd)(SbF6) (2.6142(4) 

Å). Despite having a pool of complexes with different metal ions, intraspecific compari-

sons did not deliver any clear trends for complexes with 17i (entries 25–32, Table S1, ESI) 

and 24 (entries 36–45, Table S1, ESI). 

Considering the effect of secondary ligands, Zr-complexes of 11d feature higher steric 

congestion in (11d-2H)Zr(CH2Ph)2 than in (11d-2H)Zr(NMe2)2, based on the larger βn an-

gle (complex type H, Figure 2) in the former (112.94(11) Å, entry 57, Table S1, ESI) than in 

the latter (104.68(15) Å, entry 56, Table S1, ESI). Similarly, by comparison of multidentate 

chelated species from 18e, (18e-2H)Zr(OiPr)2 (βn = 98.26°, entry 72, Table S1, ESI) showed 

higher βn (complex type I, Figure 2) than that of (18e-2H)Zr(OnPr)2 (βn = 96.93°, Entry 71, 

Table S1, ESI). However, despite increased steric bulk and decreased α angle, βn surpris-

ingly decreased on moving from (18e-2H)Zr(OiPr)2 (α = 5.2°, βn = 98.26°, entry 72, Table S1, 

ESI) to (18e-2H)Zr(OtBu)2 (α = 3.1°, βn = 85.90°, entry 73, Table S1, ESI), which is specula-

tively due to elongation of OPh-Zr distance in the latter (from 2.031 Å to 2.120(1) Å for (18e-

2H)Zr(OiPr)2 and (18e-2H)Zr(OtBu)2, respectively). 

Tetrylene-bridged 1,1′-diamino-ferrocenes exhibit an easily comprehendible relation 

between dihedral angles (α) and corresponding bridging elements, where, α varies in a 

substantially wider range for carba- (α = 15.4–18.3°), sila- (α = 6.2–16.4°), germa- (α = 5.5–

10.2°), and stanna-bridged compounds (α = 1.9–5.6°), listed in entries 84–120 (Table S1, 

ESI). Similar to [n]FCPs, the dihedral angles (α) increase and decrease with the size of the 

bridging element. For example, when tetrylene-bridged species derived from 9 and 11 

were compared, the following trends were observed for α angles: (9a-2H)Ge, (9a-

2H)Ge(SePh)2 > (9a-2H)Sn (entries 84–86, Table S1, ESI); (9b-2H)C, [(9b-2H)CH][BF4], (9b-

2H)[C-RhCl(cod)] > (9b-2H)Ge > (9b-2H)2Sn (entries 87–91, Table S1, ESI); [(9d-

2H)CH][BF4], (9d-2H)C > (9d-2H)Ge, [(9d-2H)Ge(μ-S)]2, [(9d-2H)Ge(μ-Se)]2, (9d-

2H)(Ge3OCl2) (entries 92–97, Table S1, ESI); (9e-2H)Ge, (9e-2H)Ge(SePh)2 > (9e-2H)Sn (en-

tries 98–100, Table S1, ESI); (11b-2H)Si(SePh)2, (11b-2H)Ge, (11b-2H)Ge(SePh)2, [(11b-

2H)Ge(μ-Se)]2, [(11b-2H)Ge]2·(μ-Mo(CO)4) > (11b-2H)Sn (entries 104–109, Table S1, ESI); 

Figure 3. Simplified illustrations for the dependence of βn on the lengths of E-M bonds (case (A)),
Sb-Pd > P-Pd, βn

dppf·PdCl2 > βn
24·PdCl2) and Cp/Cp twist angles τ (case (B)), τ 24·PdCl2 > τ dppf·PdCl2,

βn
24·PdCl2 > βn

dppf·PdCl2). Note Dihedral angle α is not being considered while drawing for case (A),
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When comparing complexes of a ligand scaffold with different substituents, bite angles
(βn) increase with enhanced steric interactions. For example, βns for complexes of 17a,
24, and 34a showed the following trends: 17a·PdClMe > 17a·PdCl2 (entries 23 and 24,
Table S1, ESI), 24·[Ru(η6-1-Me,3-iPr-C6H4)Cl][PF6] > 24·[Ru(η5-C5Me5)Cl] (entries 36 and
37, Table S1, ESI), and 34a·PdBr(p-CN-C6H4) > [34a·Pd(acac)](SbF6) (entries 49 and 52,
Table S1, ESI). On the other hand, when the PdCl2 complex of sterically bulky ligand 17i
was compared with that of its slimmer counterpart 17a, βns showed the expected trend,
i.e., 17i·PdCl2 > 17a·PdCl2 (entries 23 and 32, Table S1, ESI). Chelate complexes, such
as 24·PdCl2 (entry 39, Table S1, ESI), showed a larger βn value than their counterparts
with a shared metal cation, such as (24)2·(µ-Pd)(SbF6) (entry 40, Table S1, ESI). This is
likely due to the steric interactions between two adjacent ligand molecules of 24, which is
further supported by the elongation of the Sb-Pd distances from 24·PdCl2 (2.5020(5) Å) to
(24)2·(µ-Pd)(SbF6) (2.6142(4) Å). Despite having a pool of complexes with different metal
ions, intraspecific comparisons did not deliver any clear trends for complexes with 17i
(entries 25–32, Table S1, ESI) and 24 (entries 36–45, Table S1, ESI).
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Considering the effect of secondary ligands, Zr-complexes of 11d feature higher steric
congestion in (11d-2H)Zr(CH2Ph)2 than in (11d-2H)Zr(NMe2)2, based on the larger βn
angle (complex type H, Figure 2) in the former (112.94(11) Å, entry 57, Table S1, ESI) than
in the latter (104.68(15) Å, entry 56, Table S1, ESI). Similarly, by comparison of multidentate
chelated species from 18e, (18e-2H)Zr(OiPr)2 (βn = 98.26◦, entry 72, Table S1, ESI) showed
higher βn (complex type I, Figure 2) than that of (18e-2H)Zr(OnPr)2 (βn = 96.93◦, Entry 71,
Table S1, ESI). However, despite increased steric bulk and decreased α angle, βn surprisingly
decreased on moving from (18e-2H)Zr(OiPr)2 (α = 5.2◦, βn = 98.26◦, entry 72, Table S1, ESI)
to (18e-2H)Zr(OtBu)2 (α = 3.1◦, βn = 85.90◦, entry 73, Table S1, ESI), which is speculatively
due to elongation of OPh-Zr distance in the latter (from 2.031 Å to 2.120(1) Å for (18e-
2H)Zr(OiPr)2 and (18e-2H)Zr(OtBu)2, respectively).

Tetrylene-bridged 1,1′-diamino-ferrocenes exhibit an easily comprehendible relation
between dihedral angles (α) and corresponding bridging elements, where, α varies in a
substantially wider range for carba- (α = 15.4–18.3◦), sila- (α = 6.2–16.4◦), germa- (α = 5.5–
10.2◦), and stanna-bridged compounds (α = 1.9–5.6◦), listed in entries 84–120 (Table S1,
ESI). Similar to [n]FCPs, the dihedral angles (α) increase and decrease with the size of the
bridging element. For example, when tetrylene-bridged species derived from 9 and 11 were
compared, the following trends were observed for α angles: (9a-2H)Ge, (9a-2H)Ge(SePh)2 >
(9a-2H)Sn (entries 84–86, Table S1, ESI); (9b-2H)C, [(9b-2H)CH][BF4], (9b-2H)[C-RhCl(cod)]
> (9b-2H)Ge > (9b-2H)2Sn (entries 87–91, Table S1, ESI); [(9d-2H)CH][BF4], (9d-2H)C >
(9d-2H)Ge, [(9d-2H)Ge(µ-S)]2, [(9d-2H)Ge(µ-Se)]2, (9d-2H)(Ge3OCl2) (entries 92–97, Ta-
ble S1, ESI); (9e-2H)Ge, (9e-2H)Ge(SePh)2 > (9e-2H)Sn (entries 98–100, Table S1, ESI);
(11b-2H)Si(SePh)2, (11b-2H)Ge, (11b-2H)Ge(SePh)2, [(11b-2H)Ge(µ-Se)]2, [(11b-2H)Ge]2·(µ-
Mo(CO)4) > (11b-2H)Sn (entries 104–109, Table S1, ESI); (11c-2H)Si > (11c-2H)Ge (entries
110 and 118, Table S1, ESI); and (11c-2H)Si(SePh)2 > (11c-2H)Ge(SePh)2·1/2C6H6 (entries
113 and 120, Table S1, ESI), where “≈” (almost equal to) and “>” (greater than) were used
to indicate trends for a given parameter (i.e., α).

In the next step, the chelated complexes with Fe→Pd and Fe→Ni interactions are
discussed, and Table S2 (ESI) summarizes all related species for ligands 17, 28, 31, and 34.
Their molecular parameters (such as avg. Cipso,Cp-E bond lengths, Ni/Pd-Fe distances, and
tilt and bite angles) will further be compared with the corresponding values for similar
complexes with P,P-substituted dppf analogs (entries 1–3, 26, and 27, Table S2, ESI). When
analyzing and discussing the lengths of Fe-Pd distances for cationic Pd(II)-complexes with
Fe-Pd interactions, it is observed that the differences in Cipso,Cp-P or Cipso,Cp-N bond lengths
majorly affect the respective Pd-Fe distances and interactions for related P,P-, N,N-, or
P,N-analogs of dppf. Shorter Pd-Fe distances are observed for ferrocene-based N,N ligand
scaffolds (Pd-Fe = 2.6297(4)-2.7954(5) Å for complexes with 17c and 17e–17i; entries 4–16,
Table S2, ESI) compared with their P,P counterparts (Pd-Fe = 2.7974(10)-3.0014(4) Å for
complexes with dppf and Fc’(PMes2)(PtBu2); entries 1–3, Table S2, ESI), whereas for related
mixed P,N scaffolds (Pd-Fe = 2.7384(18)-2.8349(11) Å for complexes with 28a, 31, 34a, 34b,
and 34c; entries 17–25, Table S2, ESI), intermediate Pd-Fe distances can be seen. Similar
trends could also be observed for complexes with Fe-Ni interactions, where complexes with
N,N-substituted dppf analogs show shorter Ni-Fe distances (Ni-Fe = 2.6268(4)-2.8244(6) Å
for complexes with 17e and 17i; entries 28–30, Table S2, ESI) than those of corresponding
P,P-substituted counterparts (Ni-Fe = 3.498 Å for complexes with (C5H4PiPr2)Fe; entries
26 and 27, Table S2, ESI). However, the weakest Fe→M interactions and, consequently,
the longest Fe-M bond distances could be observed for Sc (III), Y (III), La (III), and Lu (III)
compounds, listed in entries 31–34 (Table S2, ESI), where, despite having short Cipso,Cp-E
bond lengths (1.366(8)-1.401(7) Å), the Fe-M bond distance varies between 3.158(2) and
3.3857(8) Å. It is also to be noted that ferrocene moieties in these complexes are tilted in the
opposite direction of the E-Pd-E’ or E-Ni-E’ bridges, and the Pd-Fe or Ni-Fe distances are
not a consequence of either steric repulsion or any sort of geometric distortions alone in the
related molecules (Figure 4). As per Pietschnig and co-workers, intermetallic distances in
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these complexes result from a compromise between minimized steric repulsions, rotational
distortions, and secondary interactions of the ligand systems in the solid state [114].
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Figure 4. Molecular parameters of Pd(II)/Ni(II) complexes of dppf analogs with Fe→Pd/Ni interac-
tions with tilt (α, (A)) and bite (βn, (B)) angles.

DFT calculations performed on these complexes were further able to verify their in-
trinsic structural features and trends, which further shed light on the nature of the Fe→Pd
bonding interactions. In case of [17i·Pd(NCMe)][BF4]2 and [17i·NiPh][BPh4] (entries 16 and
28, Table S2, ESI), Tamm and co-workers demonstrated the possible existence of second min-
ima on the potential energy surface, where the Pd-Fe distance is significantly longer [87,133].
Eventually, Pietschnig and coworkers further increased the distances between the Pd and
Fe centers in case of model systems A–C, where second minima were found around ~3.78 Å
(A’), ~4.01 Å (B’), and ~4.29 Å (C’), and the Pd atom adopted a slightly distorted T-shaped
geometry, which in turn complies with earlier knowledge (Figure 5) [133]. In contrast to
A and B, in the case of C, the T-shaped second minima (C’) were more stable by 8.1 kcal
mol−1 (∆Eisomer-scan, Figure 5). Pietschnig and co-workers came to an additional conclusion,
where the introduction of bulky substituents at the donor atoms prevent the formation
of the T-shaped isomer, which can further prevent dimerization via the formation of an
intermolecular Pd2Cl2 bridging unit. Therefore, once the chlorine substituent on Pd was
replaced with more bulky phosphanes in [28a·Pd(PPh2C5H5)][SbF6]2, [28a·Pd(PPh3)][BF4]2,
[28a·Pd(PPh2)Fc′(NMe2)][BF4]2, and [28a·PdP(p-OMe-C6H4)3][BF4]2, due to steric factors,
the stability of the T-shaped molecular geometry at Pd centers substantially decreased
compared to [28a·PdCl][SbF6]2 [114].
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permission from the Chinese Chemical Society (CCS), Peking University (PKU), and the Royal Society
of Chemistry.
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5. Electronic Situation in Pnictogen-Disubstituted 1,1′-Ferrocenes and Their Complexes

The electrochemistry of ferrocenyl amines have been studied extensively for decades.
As per Britton and Herberhold et al., the correlation of oxidation potentials for ferrocenyl
moieties are in good agreement with Taft’s constants (σo

p) rather than Hammet’s constants
(σ), which indicates predominant resonance effects of N atoms over to their inductive
effects [51]. Such efficient N-to-Cp electron donations result in electron-rich Fe centers,
which show considerably low redox potentials for 1,1′-N,N-substituted species (such as 1,
2, 4–7, 9b–9e, 11b, and 19; entries 5–16, 19, and 20, Table S3, ESI) and 1,1′-P,N-substituted
species (33 and 34a; entries 26 and 27, Table S3, ESI), with respect to those of ferrocene and
dppf (entries 1 and 2, Table S3, ESI). N-to-Cp extended electronic conjugations can further
be supported by shortening N-CCp bonds (1.377(2) Å for 4) and planar N atoms [56]. For
1,1′-diiminoferrocenes with CHAr substituents (17a and 18e), despite having planar N
centers (N-CCp = 1.397(4) Å for 18b, isostructural with 18e) [89], their lone pair is partially
conjugated with phenyl groups, which further decreases N-to-Cp electron donation and
consequently increases the values of E0 (entries 17 and 18, Table S3, ESI). On the other hand,
due to featuring non-planar N atoms, N-to-Cp electron donations are not fully supported
for 28a and 28b, resulting in a substantial increase in E0 (entries 23 and 24, Table S3, ESI).
Owing to a substantial energy difference between 2p and 5p orbitals, the lone pairs of Sb
are not conjugated with the Cp rings, resulting in tetrahedral Sb moieties and relatively
high EO values (entry 21, Table S3, ESI). It is here noteworthy that Fe→Pd interactions in
34a·PdCl(SbF6) and [28a·Pd(PPh2)Fc′(NMe2)][BF4]2 are fairly strong and, consequently, the
Fe atom is sparingly available for reversible oxidation (entries 36 and 46, Table S3, ESI).

As the coordination complexes are formed by donating lone pairs of electrons from
N to corresponding metal ions, N-to-Cp electron donations become no longer possible,
and as a consequence of such restricted conjugation, their E0 values increase from 5 to
5·Zn(CF3SO3)2, 5·[Zn(CF3SO3)2]2, 5Chelate·Zn(CF3SO3)2, 5·Co(CF3SO3)2, 5·[Co(CF3SO3)2]2,
and 5Chelate·Co(CF3SO3)2 (entries 9, 28–33, Table S3, ESI); from 17a to 17a·PdMeCl and
[17a·PdMeCl]BAF (entries 17, 35 and 36, Table S3, ESI); from 28a to [28achelate]28a·Pd(BF4)2
(entries 23 and 40, Table S3, ESI); from 32a to 32a·AuCl, [32a·AuCl]2, and [32a·µ-Au]2X2
(X = SbF6, NTf2) (entries 25, 41–43, Table S3, ESI); from 33 to 33·PdCl2 (entries 26 and 44,
Table S3, ESI); and from 34a to 34a·PdCl2, 34a·PdCl(SbF6), and 34a·PdCl(SbF6) (entries 27,
45, and 46, Table S3, ESI). Although P and Sb centers in dppf and 24 do not have lone pairs
suitable for P/Sb-to-Cp donations, a negative inductive effect has been considered upon
complexation for dppf·PdCl2, Fc′(PMes2)(PtBu2)·PdCl2, 24·PdCl2, and 24·[Pd(η2-maleic
anhydride)], accompanied by increasing E0 values for dppf and 24 versus their respective
complexes (entries 3, 4, 37, and 38, Table S3, ESI). For compounds with covalently bonded
metal bridges and tetrylenes, the increase in E0 values is accompanied by the formation
of N-E (where E = metal atoms and tetrylenes) bonds, forcing the N atoms from planar
configuration to tetrahedral, and restricting N-to-Cp extended electronic conjugations. For
example, E0 values increased from 9b to [9b-2H]CH[BF4], [9b-2H]C, [9b-2H][C-RhCl(CO)2],
and [9b-2H]Ge (entries 12, 50–53, Table S3, ESI); from 9c to [9c-2H]Ge (entries 13 and 54,
Table S3, ESI); from 9d to [9d-2H]C (entries 14 and 55, Table S3, ESI; from 9e to [9e-2H]Ge
(entries 15 and 56, Table S3, ESI); from 11b to [11b-2H]Ge (entries 16 and 57, Table S3,
ESI); from 18e to (18e-2H)AlOiPr, (18e-2H)Zn, (18e-2H)Co, (18e-2H)Y(OtBu)THF, (18e-
2H)Ce(OtBu)2, and (18e-2H)Ce(OtBu)THF (entries 18, 61–66, Table S3, ESI); from 19a
to (19a-2H)Y(OtBu), (19a-2H)Ce(OtBu)THF, and (19a-2H)Ce(OtBu)2 (entries 19, 67–69,
Table S3, ESI); and from 19b to (19b-2H)YCl and (19b-2H)Y(CH2Ph) (entries 20, 70, and 71,
Table S3, ESI).

6. Applications

The multitude of applied aspects has been sorted into two major divisions: redox-
active sensoric materials, where no catalytic reactivity is involved, and catalytic reactions,
where the respective ligands have first been used to synthesize isolable or in situ prepared
metal complexes, which have been used for various catalytic reactions. On the basis of
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applications, the non-catalytic reactions were further classified into the following sub-topics:
redox-responsive molecular switches, ion recognition receptors, mesoionic and Fischer-type
carbenes, dearomatization reactions of N-heterocycles, and the exploration of oxidation
reactions on germylenes. On the other hand, the catalytic reactions are categorized under
the following sub-headings: ring-opening polymerization of lactides and cyclic esters,
Pd-catalyzed cross-coupling reactions, and Au-catalyzed annellation reactions.

6.1. Redox-Active Sensoric Materials
6.1.1. Redox-Responsive Molecular Switches

The most interesting aspect for non-catalytic applications is that of molecular switches,
where a characteristic property of a molecule can reversibly be switched on or off by chang-
ing the oxidation state of the organometallic scaffold, which is coupled to a macrocyclic
ligand. In molecular switches, the coordination of a metal cation is destabilized upon oxi-
dation of the redox-active unit, and can further be restabilized upon reduction of the same.
The concept of molecular switches on N-containing dppf analogs were first introduced by
Plenio et al. [59], where a molecular switch was coupled with a redox-responsive ligand
5. The interaction of a redox-responsive chelating aminoferrocene 5, a redox-switchable
oxaferrocene cryptand (Fc′Crypt), with Zn2+ and Na+ is shown in Scheme 6. The addition
of two equivalents of Zn(CF3SO3)2 to an equimolecular mixture of Fc′Crypt·NaCF3SO3
and 5+PF6

− in acetonitrile led to the complex 5+·2Zn2+, which is a strong oxidant and capa-
ble of oxidizing Fc′Crypt·Na+ quantitatively. The resulting Fc′Crypt+·Na+ subsequently
displayed a drastically decreased affinity for Na+, resulting in quantitative removal of
Na+ from Fc′Crypt+·Na+. In order to obtain the free molecule of 5, a strong ligand cyclam
was added to the reaction mixture, which was capable of removing Zn2+ ions irreversibly
(Scheme 6). Free aminoferrocene ligand 5 further acted as a reducing agent to reduce
Fc′Crypt + to Fc′Crypt, which finally regained its ability to bind Na+. The reactions shown
in Scheme 6 could further be monitored by UV/Vis spectroscopy, where the absorption
spectra of 5, 5+, 5·2Zn2+, and 5+·2Zn2+ displayed very distinctive signals [59].
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Scheme 6. Electron-transfer-mediated regulation of the Na+ concentration by Zn2+ ions [59,60].

In order to determine whether the reactions depicted in Scheme 6 actually took place
and to further determine whether these reactions are kinetically feasible within a given
time frame, 1H NMR and UV/Vis titration were performed. In both experiments, a solution
of one equivalent of Zn(CF3SO3)2 in CH3CN was added stepwise to a mixture of 5+PF6

−

and Fc′Crypt·Na+ in CH3CN, followed by one equivalent of cyclam. Although the UV/Vis
experiment is ideal for observing species associated with 5 and 5+, due to the negligible
extinction coefficients, it is not suitable for the detection of species derived from Fc′Crypt.
To cover this gap, a 1H NMR titration experiment was performed, where CD3CN was used
as solvent, and one equivalent of Zn2+ salt was found to be sufficient to initiate the reaction
sequence, as shown in Scheme 6 [60].

6.1.2. Ion Recognition Receptor

Ferrocene–triazole and imidazole derivatives have found potential applications in the
fields of electrochemical detection and sensing via host–guest chemistry [134]. N centers
act as a Lewis bases and bind cations via inter- or intramolecular coordination, whereas
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anions are recognized through a complimentary C–H···anion or N-H···anion hydrogen
bond formation for triazoles and imidazoles, respectively. Upon recognizing the cations,
anions, or ion pairs, the resulting in situ-formed LM+, LA−, or LM+A− complexes exhibit
an easily detectable change in the redox potential of the ferrocene/ferrocenium redox
couple, accompanied by perturbation of the emission signal in the emission spectrum [135].
Although such heteroditopic receptors for ion pair recognition involving organic triazoles
are common [136,137], systems with ferrocene backbones are very rare [135,138,139]. Here
it is noteworthy that Otón, Tárraga, and Molina et al. introduced an unsymmetrically sub-
stituted ferrocenylene triazole with sensing properties for unusual ion pair recognition [82].
In order to synthesize the sensor molecule, compound 15 was reacted with 2-quinaldoyl
chloride to obtain species 42, where one half of the ferrocene unit is linked to a pyrene
through a 1,2,3-triazole and the other half is substituted by a quinoline ring, linked through
amide linkage (Scheme 7).
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Signal response of the emission for 42 in the presence of several anions (such as F−, Cl−,
Br−, AcO−, NO3

−, HSO4
−, H2PO4

−, and HP2O7
3− as TBA+ salts) was also studied, with

only HP2O7
3− anion causing a small but significant change in the fluorescence spectrum.

During the course of the titration, an isoemissive point at λ = 425 nm was conserved, which
indicates the existence of an equilibrium between species 42 and complex [42·HP2O7

3−].
The cross-selectivity of 42 was further tested with several cations (such as Li+, Na+, K+,
Ca2+, Mg2+, Ni2+, Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+), where only Pb2+ (∆E1/2 = 75 mV) and
Hg2+ (∆E1/2 = 155 mV) displaying considerable perturbation in the oxidation wave, with a
moderate amount of the cation (10 equivalents), while others required higher amounts (100
equivalents) or showed no changes at all. Upon testing the change in fluorescence spectra
with the above-mentioned cations, it was revealed that only Hg2+ caused variations in the
emission properties of receptor 42, where a progressive decrease in the monomer emission
intensity of about 85% (from ΦF = 0.071 to ΦF = 0.012) with the addition of 60 equivalents of
Hg2+ was observed. When the ion pair recognition capability of 42 was studied via UV/Vis
spectroscopy for Pb2+ and HP2O7

3− (1:1), a remarkable red shift in color was observed,
where 42, [42·Pb2+], [42·HP2O7

3−], and [42·(Pb2+)(HP2O7
3−)] displayed the visible colors of

yellow, red, yellow, and green, respectively. In order to have a further insight into the struc-
ture of the resulting [42·(Pb2+)(HP2O7

3−)] anion, theoretical calculations were used, and
Pb···Ntriazole, Pb···OHP2O7, Pb···Oimide, Pb-Nquinoline, and OHP2O7···Hpyrene connectivities
were observed in the optimized structure (see [42·(Pb2+)(HP2O7

3−)] in Scheme 7).
The metal recognition properties of the imino-bridged [2.2]ferrocenophanes 18f and

19d were also evaluated by cyclic voltammetry, and a reversible electrochemical response
was observed for Zn2+ complexation/decomplexation of 18f [92]. Species 18f further
underwent altered oxidation in the presence of Cu2+ and Hg2+ cations, in contrast to Li+,
Na+, K+, Mg2+, Ca2+, Cd2+, and Ni2+, for which no significant change in the corresponding
electrochemical processes was found. Monitoring the recognition property of 18f with
UV/Vis spectroscopy, no observable changes were noticed upon addition of Li+, Na+, K+,
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Mg2+, Ca2+, Cd2+, and Ni2+, whereas significant changes in the absorption bands were
observed upon addition of Cu2+, Hg2+, and Zn2+. With increasing amounts of Zn2+ added
to 18f, the low-energy (LE) metal-to-ligand transition band (MLCT) at λ = 491 nm gradually
disappeared and a new band at λ = 600 nm progressively appeared, accompanied by
a visible transformation in color from red to deep green. The presence of an isosbestic
point at λ = 505 nm indicates a clean interconversion between the uncomplexed 18f and
complexed species 18f·Zn2+. In sharp contrast to 18f, species 19d exhibited electrochemical
responses only in the presence of Li+, accompanied by a red shift in the absorption signal
from λ = 480 nm to λ = 669 nm and a clear isosbestic point located at λ = 614 nm. The
exceptionally selective complexation behavior of 19d can be explained by size selectivity,
where, based on SCXRD of [19d·Li]B(C6H5)4, a small cavity is formed by two N atoms and
Fe of bisiminophosphoranylferrocene, providing space up to the size of Li+ only.

Jin and Liu et al. introduced a ferrocene-based receptor for the chloride anion 43,
(Scheme 8) which was prepared from compound 13 by stepwise reaction with MeI and
NH4PF6. The addition of a sub-equivalent amount of Cl− to receptor 43 caused a significant
potential shift of ∆E1/2 = 310 mV, where the second oxidation wave overlapped with
the oxidation wave of Cl− in the CV curve. Upon addition of Cl−, the square wave
voltammogram (SWV) curve of 43 showed a gradual anodic shift for the 43·Cl− complex,
along with an increase in peak current. Upon addition of one equivalent of chloride,
a clear two-wave potential was observed in SWV experiments, with a separation of ca.
160 mV from each other. Upon addition of more than two equivalents of Cl−, only the
peak corresponding to the oxidation of the 43·Cl− complex was observed on the SWV
curve, which implies a strong complexation between 43 and Cl−. When more than three
equivalents of Cl− were added to 43, an additional peak for Cl− oxidation (at ca. 0.7 V)
was noticed [80].
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6.1.3. Mesoionic and Fischer-Type Carbenes

Mesoionic carbenes (MICs) are a type of a stable yet fairly reactive carbenoid interme-
diate that, despite being related to N-heterocyclic carbenes (NHCs), are an abnormal variant
of the latter and therefore are sometimes referred to as remote N-heterocyclic carbenes [140].
MICs were notably introduced in the ferrocene system by Sarkar et al., where the resulting
ferrocenyl heteromultimetallic iridium(I) and gold(I) complexes were used to demonstrate
redox-switchable catalysis to synthesize oxazoline, furan, and phenols [141,142]. Unsym-
metrically substituted ferrocenylene-based MICs were introduced by Štěpnička et al., where
species 32b·BH3 was first reacted with benzyl- and mesityl-substituted acetylene to obtain
triazole 39 (Scheme 9A) [122]. After deprotonation with [Me3O][BF4] and subsequent
removal of BH3, active carbenoids 44 was obtained, which was then reacted with transition-
metal precursors to synthesize chelated and η1, η1-interbridged complexes 45 and 46,
respectively (Scheme 9B,C). When the Au-complex of 39a (47 with R = Bn) was further
reacted with [PdCl2(MeCN)2], heterobimetallic gold and palladium complex 48 resulted
(Scheme 9D) [122].
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Scheme 9. Mesoionic carbenes 39 (A) and their complexation with Pd(II) (B,C) and Au(II) (D), where
IPr stands for 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (inset) [122].

Fischer-type carbenes are in their corresponding singlet states, often featuring an
empty and accessible pz orbital on the carbene C atom, which is capable of accepting
π-back donation from the coordinating low-valent, late-transition elements [143]. The
stability of such carbenes is further attained by the π-donor substituents in conjugation
of the carbene atoms (e.g., alkoxy and alkylated amino groups). Although the concept
of Fischer-type carbene complexes is well explored, with almost all transition metals and
several organic moieties as backbones to host the molecule, Štěpnička and co-workers
have recently reported synthesis and complexation for a unsymmetrically substituted
ferrocenylene scaffold, where a second coordination from PPh2 unit helps to stabilize
the metal cation (Pd2+) [117]. In order to synthesize these complexes, when 32a was
separately reacted with (cod)PdClMe, [(RR’)Pd(µ-Cl)]2 (where R = Me and R’ = PPh3,
(RR’) = 2-(dimethylamino)methylphenyl, and (RR’) = η3-C3H5), (η3-C3H5)Pd(PPh3)Cl),
simultaneous coordination of the Ph2P with Pd2+ and insertion of the isocyanide groups
into the Pd–C bonds were observed (species 49–53, Scheme 10).
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6.1.4. Dearomatization Reactions of N-Heterocycles

Benzyl complexes of group 3 elements [(9f-2H)M(CH2Ar)(THF)] (where Ar = 3,5-
Me2C6H3 and M = Sc, Y, La, and Lu), supported by a ferrocene diamide ligand 9f,
are reactive toward aromatic N-heterocycles via the coupling or breaking of C-N bonds
(Scheme 11) [70–74]. For example, when a toluene solution of [(9f-2H)Sc(CH2Ar)(THF)]
(where Ar = 3,5-Me2C6H3) was heated with 2-phenylpyridine at 70 ◦C, the first step of the
reaction was commenced by the THF displacement and coordination of 2-phenylpyridine
to form 54, followed by ortho-metalation of the pyridine ring and simultaneous removal of
mesitylene to produce the THF adduct 55 [70]. Upon prolonged heating at 70 ◦C in toluene
solution, species 55 converted into C-C-coupled product 56, where among the two pyridine
rings, one was dearomatized (Scheme 11A). When species [(9f-2H)Sc(CH2Ar)(THF)] (where
Ar = 3,5-Me2C6H3) was reacted with 1-methylimidazole, displacement of THF was followed
by the formation of imidazole-coordinated intermediate 57, which underwent simultaneous
removal of mesitylene to produce C-H activation product 58 (Scheme 11B). In the next step,
C-C coupling occurred between two neighboring imidazole units, followed by the dearom-
atization of one imidazole ring to yield intermediate 59, which very rapidly arranged
itself to produce final product 60 (Scheme 11B). When 55 was synthesized, isolated, and
subsequently reacted with 8-methylisoquinoline, corresponding C-C-coupled product 61
with a dearomatized isoquinoline unit was obtained (Scheme 11C) [72]. On the other hand,
upon reaction of isoquinoline or 2,2′-bipyridine with [(9f-2H)M(CH2Ar)(THF)] (where
M = Sc, Y, La, or Lu, and Ar = 3,5-Me2C6H3), alkyl migration of the benzyl ligand onto the
pyridine ring was facilitated, accompanied by the dearomatization of the corresponding
N-heterocycle, to yield 62 and 63 (Scheme 11D,E) [73,74]. When a toluene solution of
[(9d-2H)Lu(CH2Ar)(THF)2] was heated at 70 ◦C separately with 1-methylimidazole or iso-
quinoline, corresponding products similar to 60 and 62 were obtained (with R = adamantyl),
respectively [74].
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Scheme 11. Proposed mechanistic details for dearomatization and ring-opening reactions (A–E) using
[(9f-2H)M(CH2Ar)(THF)] (M = Sc, Y, La, Lu), where Ar, R, and iqn stand for 3,5-Me2C6H3, SiMe2

tBu,
and isoquinoline, respectively [70–74].

6.1.5. Exploration of Oxidation Reactions of Germylenes

Siemeling and co-workers recently explored the oxidization reaction on their flag-
ship germylenes, prepared from 1,1′-diaza ferrocenes (9a, 9b, 9d, 9e, 9h, 11b, and 11c),
where species (9a-2H)Ge, (9d-2H)Ge, (9e-2H)Ge, (9h-2H)Ge, (11b-2H)Ge, and (11c-2H)Ge
were separately treated with elemental sulfur (S8), elemental selenium (red Se), and
PhSe-SePh to obtain the oxidized products, such as [(9a-2H)Ge(SePh)2], [(9d-2H)Ge(µ-
S)]2, [(9d-2H)Ge(µ-Se)]2, [(9e-2H)Ge(SePh)2], [(9h-2H)Ge(µ-S)]2, [(9h-2H)Ge(µ-Se)]2, [(9h-
2H)Ge(SePh)2], [(11b-2H)Ge(µ-Se)]2, and [(11c-2H)Ge(µ-Se)]2 (Scheme 12). Unprecedent-
edly short intramolecular CH···Se distances were observed in SCXRD-analyzed structures
of [(9a-2H)Ge(SePh)2] and [(9d-2H)Ge(µ-Se)]2 (Scheme 12) [69].
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6.2. Catalytic Reactions
6.2.1. Ring-Opening Polymerization (ROP) of Lactides and Cyclic Esters

In order to evaluate the catalytic activity for the ROP, (18e-2H)Ce(OtBu)2 was reacted
at 70 ◦C with L-lactide and ε-caprolactone (Scheme 13A,B) [95]. The reaction with 100 equiv.
of ε-caprolactone took 4 h to reach 80% conversion, whereas a similar reaction with 100
equiv. of L-lactide required only 20 min. Although ROP of ε-caprolactone is generally
more facile than that of L-lactide, the extraordinarily high reactivity of L-lactide is not
fully understood. Here, it is to be noted that the isotactic polymer was formed exclu-
sively without epimerization of the stereogenic centers (Scheme 13A). By comparison, the
simple alkoxide Ce(OtBu)4(THF)2 was found to be more active than (18e-2H)Ce(OtBu)2
for L-lactide polymerization (Scheme 13A). When (18e-2H)Y(OtBu)(THF) was used for
L-lactide polymerization (Scheme 13A), it was observed that the Y-complex was more
active than (18e-2H)Ce(OtBu)2, with the ROP occurring at room temperature within min-
utes for the Y-counterpart. Molecular weight analyses of the polymers resulting from
ROPs showed that the polymers from (18e-2H)Y(OtBu)(THF) had lower poly-dispersity
indices (PDIs) than those from (18e-2H)Ce(OtBu)2. The Mulliken charges, calculated by
DFT on (18e-2H)Y(OtBu)(THF) and (18e-2H)Ce(OtBu)2, indicated that the Y-center in (18e-
2H)Y(OtBu)(THF) is more electrophilic than the Ce-center in (18e-2H)Ce(OtBu)2, making
yttrium more reactive than cerium toward L-lactide [95]. However, unprecedentedly high
reactivity towards the polymerization of L-lactide, ε-caprolactone, trimethylene carbonate,
and δ-valerolactone was further achieved by ROP reaction with complex (18e-2H)In(OtBu)
at room temperature (Scheme 13) [96].
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Scheme 13. Polymerization of L-lactide (A), ε-caprolactone (B), trimethylene carbonate (C), and
δ-valerolactone (D) [95,96].

In order to explore the geometric change during lactide ring-opening polymeriza-
tion, Diaconescu and co-workers used (18e-2H)Zr(OnPr)2, (18e-2H)Zr(OiPr)2, and (18e-
2H)Zr(OtBu)2 as precatalysts, where (18e-2H)Zr(OtBu)2 showed no activity but both (18e-
2H)Zr(OnPr)2 and (18e-2H)Zr(OiPr)2 enabled yields in the range of 60–70% at 100 ◦C over
a reaction time of 24 h [98]. 1H NMR experiments of the reaction mixtures indicated that
the corresponding reactions with (18e-2H)Zr(OnPr)2 and (18e-2H)Zr(OiPr)2 proceeded
with a geometric change from cis-β to trans within 2 h upon heating at 100 ◦C. A similar
geometric change was not observed with (18e-2H)Zr(OtBu)2 even after 24 h heating at
100 ◦C, and consequently, catalysis did not occur for the latter. Here, it is noteworthy
that (18e-2H)Zr(OnPr)2, (18e-2H)Zr(OiPr)2, and (18e-2H)Zr(OtBu)2 contain cis-β and trans
isomers in ratios of 71:29, 84:16, and 95:5 at room temperature [98]. 1H NMR experiments of
the reaction mixtures further indicated that the polymerization majorly propagates after the
previously mentioned change in geometry (i.e., cis-β to trans, Scheme 14). This observation
further complies with the previously reported reactivity of salen-TiCl2 complexes [144–146].
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6.2.2. Redox-Switchable Catalysis

The activities of group 4 metals (Zr and Ti) for ROP of L-lactide and ε-caprolactone
were further explored with redox-moderated precatalyst 8·Zr(OtBu)2, where oxidized and
reduced forms of the corresponding metal complex affected the rate of polymerization [61].
When 8·Zr(OtBu)2 was heated at 100 ◦C in the presence of 100 equiv. of L-lactide, 90%
conversion could be achieved within 2 h. On the other hand, with the oxidized version of
8·Zr(OtBu)2 as a catalyst (i.e., [8·Zr(OtBu)2]BARF, synthesized via oxidation of 8·Zr(OtBu)2
with AcFcBARF, where AcFc = Fc(COCH3)), <5% conversion was observed under the same
reaction conditions as before. However, the activity toward ε-caprolactone showed the
opposite trend, where [8·Zr(OtBu)2]BARF and 8·Zr(OtBu)2 exhibited 98% and <5% conver-
sion, respectively, with 100 equiv. of starting material at 25 ◦C over 24 h. In situ conversion
between the oxidized and reduced forms of 8·Zr(OtBu)2 was further examined regarding
their catalytic implications, where AcFcBARF was added to the reaction mixture at 43%
conversion of L-lactide to polylactide (Figure 6A). Owing to the oxidation of 8·Zr(OtBu)2
to [8·Zr(OtBu)2]BARF, the polymerization halted and resumed at the previous rate upon
reduction with Co(η5-Cp)2 (Figure 6A). Similarly, when Co(η5-Cp)2 was added to the
reaction mixture for the polymerization of ε-caprolactone with [8·Zr(OtBu)2]BARF, the con-
version halted until further oxidation (via the in situ addition of AcFcBARF) was performed
(Figure 6B). Upon analyses with gel-permeation chromatography (GPC), the resulting
polymers showed narrow molecular weight distribution with PDIs in the range of 1.1 to
1.2 [61].
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Figure 6. Plot of catalytic conversion vs. time (min) for the polymerization of (A) L-lactide with
8·Zr(OtBu)2, and (B) ε-caprolactone with [8·Zr(OtBu)2]BARF, where AcFcBARF (AcFc = Fc(COCH3))
and Co(η5-Cp)2 were used as the oxidant and reductant, respectively. Adapted with permission from
Ref [61]. Copyright 2014 American Chemical Society.

By using these redox switches, Diaconescu and coworkers also demonstrated the
successful syntheses of AB- and BA-type diblock and ABA- and ABC-type triblock copoly-
mers [147]. For example, L-lactide was first polymerized in the presence of 8·Zr(OtBu)2,
followed by in situ oxidation of 8·Zr(OtBu)2 with AcFcBARF and the addition of cyclohex-
ene oxide to obtain diblock co-polymer [L-lactide]a-[cyclohexene oxide]b. Co(η5-Cp)2 was
then added to the resulting reaction mixture, followed by the addition of β-butyrolactone to
obtain ABC-type triblock copolymer [L-lactide]a-[cyclohexene oxide]b-[β-butyrolactone]c.
When the mechanistic study for block-dependent copolymerization of cyclohexene oxide
and lactide was performed for ring-opening polymerization, it was found that the reaction
is thermodynamically unfavorable for lactide alone with [8·Zr(OtBu)2]BARF [61,147,148].
However, this reaction becomes thermodynamically favorable for lactide after the polymer-
ization of cyclohexene oxide with [8·Zr(OtBu)2]BARF, where the initiation (or ring-opening)
of lactide is thermodynamically favorable but the propagation is not. The propagation step
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for the polymerization of lactide is only possible after the polymerization of cyclohexene
oxide [148].

The same group further reported an electrochemically controlled synthesis of multi-
block copolymers, where the redox state of the precatalyst (8-2H)·Zr(OtBu)2 was elec-
trochemically altered with a glassy carbon electrode, which resulted in a change in the
catalytic selectivity of the catalyst [149]. For example, a sequential addition of L-lactide to
a solution of TPANTf2 (75 mM; TPANTf2 = tetrapropylammonium bistriflimide) and
1,2-difluorobenzene (1.5 mL) of (8-2H)·Zr(OtBu)2, followed by electrochemical oxida-
tion and addition of cyclohexene oxide, yielded AB-type diblock copolymer [L-lactide]a-
[cyclohexene oxide]b. When the resulting reaction mixture was further electrochemically
reduced and L-lactide monomer was added, ABA-type triblock copolymer [L-lactide]a-
[cyclohexene oxide]b-[L-lactide]c resulted. The electrochemically controlled redox reaction
of (8-2H)·Zr(OtBu)2 ⇌ (8-2H)+·Zr(OtBu)2, along with their corresponding bulk electrolysis
potentials (vs. Ag/Ag+ pseudoreference electrode), are demonstrated in Figure 7.
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Polymerization of L-lactide was further performed at 90 ◦C with (18e-2H)Ti(OiPr)2
and its oxidized version, [(18e-2H)Ti(OiPr)2]BARF (synthesized via oxidation of (18e-
2H)Ti(OiPr)2 with AcFcBARF), and the catalytic conversion was plotted against time, with
(18e-2H)Ti(OiPr)2 showing an extraordinarily low catalytic conversion rate (red markers
in Figure 8A) [93]. This observation is opposite to the previously reported catalytic trend,
where electron deficient complexes showed substantially lower conversion rates than their
corresponding electron-rich counterparts [61,150]. To examine the redox-switching ability,
(18e-2H)Ti(OiPr)2 was reacted with 100 equiv. of L-lactide, where the oxidation state of
the catalyst was in situ modulated via the addition of AcFcBARF and Co(η5-Cp)2 as the
oxidant and reductant, respectively. As shown in Figure 8B, the catalytic activity of (18e-
2H)Ti(OiPr)2 was substantially low until the complex is in situ oxidized with AcFcBARF, but
subsided after reaching ca. 4–6%. When the oxidized catalyst was further in situ reduced
upon addition of Co(η5-Cp)2, the catalyst surprisingly began to perform at a greater rate
until up to ca. 40% conversion [93]. Further in situ oxidation with AcFcBARF halted the
catalytic activity, which was followed by restoration of the same upon addition of Co(η5-
Cp)2. As the trend in the in situ redox-switchable catalysis (Figure 8B) is different than
that found in Figure 8A, the in situ oxidation of (18e-2H)Ti(OiPr)2 was performed with
AcFcBARF in the presence of excess L-lactide, which showed a halted reactivity at ca. 4–6%
catalytic conversion. Upon subsequent in situ reduction of the resulting oxidized species
with Co(η5-Cp)2 in the presence of excess L-lactide, a dramatic increase in polymeric activity
could be observed, with the conversation reaching up to ca. 80% over 5 h. As an outcome
of the previous observations, Long and coworkers concluded that the catalytic activities of
(18e-2H)Ti(OiPr)2 and [(18e-2H)Ti(OiPr)2]BARF not only depend on the oxidation states of
the metal ions in the respective precatalysts, but also considerably depend on the chemical
species present during their catalytic reactions.
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tively, (B) and in situ redox-switching with (18e-2H)Ti(OiPr)2 as starting precatalyst. Adapted with
permission from Ref. [93]. Copyright 2015 American Chemical Society.

Iso-propoxide complexes of aluminum, supported by 18e (i.e., (18e-2H)AlOiPr and
[(18e-2H)AlOiPr][BARF]), were further used to examine the redox switchability for the
ring-opening polymerization of L-lactide, ε-caprolactone, δ-valerolactone, β-butyrolactone,
trimethylene carbonate, and cyclohexene oxide, where only the non-oxidized compound
(i.e., (18e-2H)AlOiPr) was found to be active for L-lactide, β-butyrolactone, and trimethy-
lene carbonate [94]. Although 64% and 98% conversion were observed after 24 h at 100
◦C (catalyst:monomer, 1:100), for L-lactide and β-butyrolactone, respectively, a quantita-
tive conversion was observed for trimethylene carbonate (catalyst:monomer, 1:100) even
after 2.5 h at room temperature. In the case of ε-caprolactone and δ-valerolactone (cat-
alyst:monomer, 1:100), no difference in the activity of oxidized and reduced forms of
the catalyst could be observed, as in both cases the quantitative transformation could be
achieved within 2 h at room temperature. On the other hand, when similar ring-opening
polymerization was investigated for cyclohexene oxide separately, with reduced and oxi-
dized forms of the above-mentioned catalyst (catalyst:monomer, 1:100), only the oxidized
form of the catalyst (i.e., [(18e-2H)AlOiPr][BARF]) was found to be active [94]. By using the
selectivity for the catalytic reactions of the above-mentioned monomers, the syntheses of
AB block copolymers were attempted with L-lactide and cyclohexene oxide. In order to do
so, polymerization of L-lactide was first performed with catalyst (18e-2H)AlOiPr, followed
by the addition of AcFcBARF and cyclohexene oxide to stop the L-lactide polymerization
and initiate the corresponding polymerization of cyclohexene oxide to obtain [L-lactide]a-
[cyclohexene oxide]b-OiPr (Scheme 15A). The reverse diblock co-polymer [cyclohexene
oxide]b-[L-lactide]a-OiPr could further be synthesized via the following steps: initial poly-
merization of cyclohexene oxide with [(18e-2H)AlOiPr][BARF], followed by the addition
of Co(η5-Cp)2, along with L-lactide (Scheme 15B). Triblock ABA co-polymer [L-lactide]a-
[cyclohexene oxide]b-[L-lactide]c-OiPr was synthesized from [L-lactide]a-[cyclohexene
oxide]b-OiPr via subsequent in situ reduction of [(18e-2H)AlOiPr][BARF] with Co(η5-Cp)2,
followed by the addition of L-lactide monomers to the reaction mixture (Scheme 15A) [94].
Similarly, when trimethylene carbonate was added at 100 ◦C after the formation of [cy-
clohexene oxide]b-[L-lactide]a-OiPr, the triblock co-polymer [trimethylene carbonate]c-
[cyclohexene oxide]b-[L-lactide]a-OiPr was obtained (Scheme 15B) [94].
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Scheme 15. ABA- (A) and ABC-type (B) triblock polymers, synthesized with redox-switchable
catalyst (18e-2H)AlOiPr [94].

Markovnikov hydroalkoxylation of unactivated olefins with cobalt complexes of salen-
ligands accompanied by silane and N-fluoropyridinium salt was primarily reported by Hiroya
and co-workers [151]. Inspired by the work of Hiroya et al. [151], Diaconescu and coworkers
optimized the catalytic activity of [(18e-2H)Co] towards hydroalkoxylation of olefins in
presence of siloxane TMDSO (TMDSO = HMe2Si-O-SiMe2H) and electrophilic fluorinating
agent NFPBF4 (where NFPBF4 = N-fluoro-2,4,6-trimethylpyridiniumtetrafluoroborate) in
CH2Cl2 (Scheme 16) [97]. Although this catalytic system was effective (yield ca. 99%) for
many different varieties of styrene derivatives (Scheme 16), little to no activity was observed
for alkyl or norbornyl derivatives. Moreover, when the tetrameric Co- and monomeric Zn-
complexes were used in place of [(18e-2H)Co], little and no catalytic conversion were observed
for [(18e-2H)Co]4 and [(18e-2H)Zn], respectively. In situ oxidation of [(18e-2H)Co] by addition
of AcFcBARF halted the catalytic reaction, which further resumed to the previous rate upon in
situ reduction with Co(η5-Cp)2 (Scheme 16).
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6.2.3. Pd(II)-Catalyzed Cross-Coupling Reactions

Phosphine ligands have been employed for Pd(II)-catalyzed Suzuki cross-coupling of
haloarenes with arylboronic acid for decades [152]. Being interested in developing a new
generation of non-poisonous, environment-friendly, water-based, and phosphine-free cata-
lysts of high efficiency, Hor and coworkers investigated the catalytic efficiency of the Pd(II)-
complex of 1,1′-diiminoferrocene 17a for such cross-coupling reactions [88]. As the products
were water-insoluble, their easy separation and isolation from the crude reaction mixture
provided an additional advantage for this catalyst (Scheme 17A). Although 17a·PdCl2
has successfully catalyzed cross-coupling reactions between aryl bromides/iodides and
aryl boronic acids in non-homogenous aqueous reaction conditions, it failed to display
any catalytic activity for Cl-substituted starting materials (Scheme 17A). The choices of
base (Scheme 17B), catalytic load, and recoverability have further been investigated for
17a·PdCl2 by Hor et al [88].
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Scheme 17. Suzuki cross-coupling reactions with catalysts 17a·PdCl2 (A), 24·PdCl2 (B), and 24·[Pd(η2-
maleic anhydride)] (C) [88,110].

In order to compare the catalytic activity of 1,1′-distibanylferrocene 24 with dppf,
Štěpnička et al. used 24·PdCl2 and 24·[Pd(η2-maleic anhydride)] as catalysts for Suzuki
cross-coupling reactions [110]. However, the yields for reactions with Pd(II)-complexes of
24 (i.e., 24·PdCl2 and 24·[Pd(η2-maleicanhydride)]) were rather small compared to those
from respective complexes of dppf (i.e., dppf·PdCl2 and dppf·[Pd(η2-maleic anhydride)],
Scheme 17C).

In order to explore the Miyaura borylation reaction with Pd(II)-complexes of 1,1′-
aminophosphanylferrocene carbene ligands, 64–68 were first synthesized from 32a via reaction
with PdCl2(COD) and primary or secondary amines or ammonium salt (Scheme 18A) [118].
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Precatalysts 64–66 and 68 were then reacted with 4-bromotoluene and bis(pinacolato)diborane
to synthesize the corresponding boronic esters (Scheme 18B) [118]. A series of optimization
experiments with different solvents and bases revealed iPrOH and KOAc to be suitable
for these reactions. When 64–66 and 68 were further used as precatalysts for the Miyaura
borylation reaction of 4-bromotoluene, 65b and 66 showed the maximum catalytic activity
and selectivity, resulting in ca. 98% yield of boronic ester and 0% yield of homocoupled
product 4,4′-dimethylbiphenyl (based on NMR spectra measured from the reaction mixture,
Scheme 18B) [118]. When the most synthetically accessible complex, 66, was used as catalyst
for reactions with several other aryl bromides, the lowest coupling yields could be observed
for mesityl bromide (Scheme 18C). Nonetheless, the reactions with other bromides resulted in
decent to excellent yields, varying in a range of 66–97% (Scheme 18C).
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6.2.4. Au(I)-Catalyzed Annellation Reactions

Being inspired by the catalytic properties of gold(I) complexes of Fc′(PPh2)(CN) [153],
complexes Fc′(Ph2P·AuCl)NC (i.e., 32a·AuCl); Fc’(Ph2P·AuCl)(NC·AuCl) (i.e., 32a·(AuCl)2));
and η1, η1-interbridged complexes [Fc′(Ph2P·Au)NC]2[SbF6]2 (i.e., [32a·µ-Au]2[SbF6]2) and
[Fc′(Ph2P·Au)NC]2[NTF2]2 (i.e., [32a·µ-Au]2[NTF2]2) were used as catalysts for cycloisomer-
ization reaction of enynol by Štěpnička et al. [113]. Owing to very strong Au-CN bonds
in the dimeric complexes, formation of the catalytically active mono-gold species was sup-
pressed, and consequently, no substantial yields of 2,3-dimethylfuran were observed for [32a·µ-
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Au]2[SbF6]2 or [32a·µ-Au]2[NTF2]2 (Scheme 19). Although mono-gold species 32a·AuCl was
found to be ineffective for catalysis, di-gold species 32a·(AuCl)2 demonstrated the highest
catalytic yield of 75–89% after 3 h (Scheme 19).
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Scheme 19. Au-catalyzed cycloisomerization of enynol [113].

Au(I)-complexes derived from ligand 41 (i.e., 69 and 70, following reactions depicted
in Scheme 20A) have further been used for in situ AgNTf2-activated cyclization of N-
propargylbenzamide to produce 4,5-dihydro-5-methylene-2-phenyloxazole (Scheme 20B) [126].
Although the yield obtained with phosphine complex 69 was very high (ca. 97% NMR
yield), the initial acceleration of the reaction, followed by catalyst decomposition, was
observed for the analogous reaction with complex 70. Moreover, complexes 69 and 70 have
further been used for Au-catalyzed oxidative [2 + 2 + 1] cyclization of ethynylbenzene with
acetonitrile (Scheme 20C), with 69 producing a higher yield (37%) than 70 (27%). As the
previous records demonstrated, the outcome of such catalytic reactions is dependent on the
N-oxide [154]. Štěpnička and co-workers have further reported the catalytic yields using
several different N-oxides with complex 69, where the substituted (with 4-Me, 4-OMe, and
4-NO2) pyridine N-oxides produced substantially lower yields (3–23%) than the unsubsti-
tuted one (37%). When sterically demanding N-oxides (such as 2,4-Me2-pyridine N-oxide,
1,5-Me2-pyridine N-oxide, 8-methylquinoline N-oxide, and 2-methylquinoline N-oxide)
were compared in this reaction, the highest yield was obtained with 8-methylquinoline
N-oxide (73%), whereas the other sterically encumbered species produced yields in the
range of 11–28% for the reaction demonstrated in Scheme 20C [126].
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Scheme 20. Syntheses (A) and AgNTf2-activated cyclization of N-propargylbenzamide (B,C) by
complexes 69 and 70 [126].

Owing to their inherent carbophilic nature, Au(I) complexes have frequently been used
as catalysts for various functionalization reactions with C=C and C≡C bonds [155]. In order
to test their carbophilic nature for annellation reactions of 4-fluoro-N-propargylbenzamide,
four Au(I) complexes of phosphanylstibanyl ligands (i.e., 69 and 71–73) were synthesized
as outlined in Scheme 21A,B [127]. While complexes 69, 71, and 73 were almost ineffective
for catalysis, an onset of product formation could be observed right after the addition
of 72 (Scheme 21C). This observation directly supports the effectiveness and increased
carbophilicity of the AuCl center in 72, where the Sb(V) center potentially engaged with
the Au-Cl bond. On the other hand, as the ferrocenylene system freely rotated around
the η5-Cpcenter—Fe—η5-Cpcenter axis, species 73 attained a pre-organized orientation prior
catalysis, which minimized the scope for the formation of AuCl→Sb(V) linkage. As a
result, despite containing an Sb(V) center, species 73 showed only a modicum of catalytic
activity (Scheme 21C). In order to explain the above catalytic results, Gabbaï and coworkers
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computed the structure of the presumed adduct 74, formed between precatalyst 72 and the
alkenyl substrate. The computationally optimized structure of adduct 74 displayed coordi-
nation of the alkyne to the Au center, with a simultaneous formation of an AuCl→Sb(V)
linkage (shown by the blue dashed bond in the inset of Scheme 21), with the Au center
being more exposed and consequently more active towards electrophilic addition.
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7. Perspectives

In contrast to readily and commercially available dppf and its bulky bisphosphanyl
ferrocene analogs (e.g., 1,1′-bis(di-tert-butylphosphanyl)ferrocene), their non-phosphanyl
counterparts are relatively unexplored. Nevertheless, the so-far reported investigations
indicate their application potential for redox-responsive molecular switches, ligands, and
ion-recognition receptors. Although a new variety of redox-switchable catalysts for ring-
opening polymerization of cyclic lactides and lactones could be developed from diamino-
substituted ferrocenylenes, the catalytic activities for their distibanyl and mixed phos-
phanylstibanyl counterparts fall short compared to dppf for cross-coupling reactions.
One of the key features for diamino-substituted ferrocenylenes is their ability to host
(hetero)carbenes, which allow for the exploration of ferrocene-bridged N-heterocyclic sys-
tems with low-coordinate group 14 elements in the ansa-bridge. Intermetallic interactions
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(Fe→M) have further been explored within the framework of the ferrocenylene scaffolds,
featuring extreme Fe→M distances with mixed N and P donor sites, based on experimental
and computational evidence. The readily accessible mesoionic and Fischer-type carbenes
further highlight the relevance of the mixed P,N-substituted ferrocenylene scaffold. Over-
all, pnictogen-substituted non-phosphanyl ferrocenes have found their major chemical
impact in non-catalytic sectors, but their catalytic potential is just starting to emerge, and
consequently, provides the scope for future investigation and development.

Supplementary Materials: The following supporting information (SI) can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29225283/s1, Table S1: Survey of SCXRD char-
acterized complexes and compounds from 1,1’-bispnictogen substituted dppf-analogs, Table S2:
Molecular parameters of cationic Ni(II), Pd(II), Sc(III), Lu(III) complexes of dppf and its 1,1’-diamino-,
selected 1,1’-bisphosphanyl- and 1,1’-aminophosphanylferrocenes with Fe→Pd bonding interactions,
Table S3: Survey of oxidation potentials (EO) for 1,1’-bispnictogen substituted dppf analogs and their
complexes with potentials converted to the (C5Me5)2Fe/(C5Me5)2Fe+ scale. Other than the so-far
cited references, a few additional reports have further been cited in the SI file [156–166].
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120. Bárta, O.; Gyepes, R.; Císařová, I.; Alemayehu, A.; Štěpnička, P. Synthesis and study of Fe→Pd interactions in unsymmetric Pd(ii)
complexes with phosphinoferrocene guanidine ligands. Dalton Trans. 2020, 49, 4225–4229. [CrossRef]
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