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Abstract: Butterfly pea flower (BPF), roselle calyx (RC), and grape skin (GS) are rich in bioactive
phenolics with health benefits. Due to its simplicity, safety, and environmental friendliness, this
study used water as a solvent to explore different extraction conditions in these plant materials
and compared the heat stability of anthocyanins in the aqueous extracts. To maximize the total
anthocyanins and polyphenols in the aqueous extracts, the powders of BPF, GS, and RC should be
extracted for 30 min at 90 ◦C; 30 min and 120 min at 90 ◦C; and 30 min and 60 min at 60 ◦C, respectively.
Among the tested plant materials, the content of total anthocyanins was RC > GS > BPF, while the
total phenolic content was GS > BPF > RC. Anthocyanins of the aqueous extracts underwent rapid
thermal degradation at high temperatures and high pH values. The thermal stability of anthocyanins
in the materials was in the order: BPF > GS > RC. This is likely related to the types and structures of
the anthocyanins such as the degree of acylation and glycosylation. The study demonstrates that hot
water extraction is efficient and practical for these materials, yielding extracts suitable for food and
nutraceutical applications.
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1. Introduction

Anthocyanins are important natural water-soluble phenolic pigments of plants com-
monly found in vegetables, fruits, and cereals. In addition to displaying a variety of
colors, they also possess numerous physiological benefits including antioxidant, anti-
inflammatory, cardiovascular, hypoglycemic, and prebiotic effects [1–3]. More than
700 anthocyanins have been identified to date [4] and are composed of anthocyanidins
and sugars, which are sometimes bound to aliphatic or aromatic organic acids [5]. Del-
phinidin, cyanidin, pelargonidin, malvidin, petunidin, and peonidin are the six most
common anthocyanidins.

Due to the electron-deficient flavylium cation, anthocyanins are highly reactive in
chemical reactions, which cause their structure to change, leading to fading or discol-
oration. The stability of anthocyanins is affected by their chemical structure and various
environmental factors including pH, temperature, light, oxygen, metal ions, enzymes, and
water activity [6,7]. The glycosylation of anthocyanidins generally leads to an increase in
stability and water solubility and a decrease in antioxidation [8]. Acylated anthocyanins
have a higher stability and antioxidant capacity than non-acylated anthocyanins because
the former improve color stability via copigmentation and self-association reactions [5,7].
Heating at high temperatures causes the thermal degradation of anthocyanins, which
generally fits well with a first-order reaction kinetic model [9]. Anthocyanins are stable in
acidic conditions, but their degradation is often promoted in neutral and alkaline pH [10].
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By utilizing the pH sensitivity and color changes of anthocyanins, pigment-based films
can be used to visually monitor the freshness of protein-rich food products [7,11].

Both butterfly pea and roselle flowers are widely used as natural colorants in foods and
beverages. Due to its rich content of bioactive anthocyanins, polyphenolics, phytosterols,
and tocopherols, butterfly pea flower (BPF) has the ability to combat oxidative stress and
promote overall wellness [12,13]. BPF contains a large amount of blue ternatins, which are
polyacylated derivatives of delphinidin 3,3′,5′-triglucoside [14]. Roselle calyx (RC) contains
bioactive compounds such as anthocyanins, organic acids, flavonoids, phenolic acids, and
ascorbic acid and is known for its antibacterial, antioxidant, antihypertensive, antidiabetic,
hepatoprotective, and nephroprotective effects [15,16]. Sambubiosides of both delphinidin
and cyanidin are the main anthocyanins in RC extracts [17]. Grape skin (GS), a by-product
of juice and wine production, is abundant in phytochemicals including anthocyanins, proan-
thocyanidins, flavonoids, resveratrol, stilbenoids, and dietary fiber, which give it potential
as a functional food ingredient [18,19]. The variety of grape affects the types of anthocyanins
in GS. The skin of black grape varieties has high levels of malvidin-3-O-glucoside, while
red grape varieties primarily contain the glucosides of cyanidin and delphinidin [1,20].
Morata et al. indicated that bluish-red grapes contained more acylated anthocyanins than
red-orange grapes such as malvidin-3-O-(6-O-p-coumaroyl)-glucoside, malvidin-3-O-(6-O-
acetyl)-glucoside, and petunidin-3-O-(6-O-p-coumaroyl)-glucoside [21].

The choice of solvent for the extraction of bioactive substances plays a crucial role
in determining their stability and extraction efficiency. Organic alcohol (methanol or
ethanol) and acetone are often employed to extract anthocyanins from plant materials, as
these solvents can penetrate the plant cell walls more effectively and dissolve bioactive
components [1,22,23]. Recent reports [24–26] have highlighted the use of green extraction
techniques such as ultrasound-assisted, microwave-assisted, high-pressure processing,
ohmic heating, and supercritical fluid extraction. These green techniques offer benefits
including shorter extraction times, lower extraction temperatures, and energy consumption
as well as higher extraction yields. However, water as a solvent has several advantages:
it is simple, non-toxic, inexpensive, safe, and environmentally friendly, making it more
suitable for the food and nutraceutical industries [6,27,28]. However, there is still limited
systematic research exploring the water extraction of biophenolics and the antioxidant
properties of BPF, RC, and GS.

Powders of BPF, RC, and GS were prepared and used in this study. The aqueous extrac-
tion process was conducted at different temperatures (30–90 ◦C) and periods (30–120 min).
The bioactive phenolics and antioxidant activities of the resulting aqueous extracts (i.e., but-
terfly pea flower extract (BPFE), roselle calyx extract (RCE), and grape skin extract (GSE))
were then determined. This research aimed to identify the optimal extraction conditions for
these anthocyanin-rich plant materials. Additionally, traditional 60% ethanol, extracted at
40 ◦C for 30 min, was used as the solvent in the control group to compare with the effects
of water extraction. Finally, the thermal stability of the anthocyanins in the extracts was
examined under various heating temperatures (60–90 ◦C), heating times (0–5 h), and pH
levels (2.5–5.5).

2. Results and Discussion
2.1. Bioactive Phenolics of Extracts

The pH values of the BPFE, GSE, and RCE prepared was 5.82–5.91, 4.74–4.79, and
2.65–2.71, respectively, and they were not obviously changed by various extraction con-
ditions. The roselle extract had a strong tart flavor due to the high amounts (11.31%) of
organic acids including malic acid, tartaric acid, citric acid, hibiscus acid, and hydroxycitric
acid [15,17,29].
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Figure 1 shows the influence of extraction temperature on the total monomeric an-
thocyanin (TMA) and total phenolic content (TPC) of BPFE, GSE, and RCE. With a fixed
extraction time of 30 min, the TMA and TPC of both the BPFE and GSE showed a signif-
icant increase as the extraction temperature was raised from 30 ◦C to 90 ◦C. Within this
temperature range, the TMA and TPC of the BPFE were greatly increased by 30.24% and
42.79%, while GSE was increased by 58.55% and 164.94%, respectively. However, both the
TMA and TPC of the RCE (Figure 1C) showed the highest values when extracted at 60 ◦C.
The enhancement of these bioactive compounds with higher extraction temperatures was
partly due to the increase in internal energy of the molecules, which resulted in greater
molecular diffusivity and solubility. Furthermore, extraction at high temperature could
influence the plant cell membrane structure and permeability, thus enhancing the extraction
of cellular solutes by aqueous solvents. The thermal stability of bioactive compounds dur-
ing extraction is also an important factor affecting extraction yield. The combined effects of
these factors resulted in varying TMA and TPC extraction yields for the BPFE, GSE, and
RCE at different extraction conditions.

Extraction temperature and time can influence the content of bioactive substances
and their bioactivity. Table 1 lists the effect of extraction time on the TMA and TPC of
the BPFE, GSE, and RCE. The TMAs of the BPFE and GSE extracted at 90 ◦C and RCE at
60 ◦C gradually decreased as the extraction time increased from 30 to 120 min, with their
respective reductions reaching 8.53%, 20.31%, and 7.18% after 120 min of extraction. To
acquire the highest TMA, the BPFP, GSP, and RCP should be extracted for 30–90 min at
90 ◦C, 30 min at 90 ◦C, and 30–60 min at 60 ◦C, respectively. The order of TMA values in
the tested materials from highest to lowest was RCE (4.04 mg/g), GSE (2.79 mg/g), and
BPFE (1.75 mg/g).

Table 1. Influence of extraction time on the bioactive phenolics and antioxidation activities of BPFE,
GSE, and RCE.

Sample Extraction
Time (min)

TMA
(mg/g)

TPC
(mg FAE/g)

DPPH Scavenging Activity
(mg TE/g)

Reducing Power
(mg TE/g)

BPFE 30 1.75 ± 0.05 a 29.73 ± 0.70 a 26.51 ± 0.66 b 33.84 ± 0.95 a

BPFE 60 1.70 ± 0.05 ab 30.50 ± 0.64 a 27.04 ± 0.68 b 34.07 ± 0.92 a

BPFE 90 1.66 ± 0.05 ab 31.09 ± 0.44 a 27.74 ± 0.70 ab 34.41 ± 0.96 a

BPFE 120 1.59 ± 0.04 b 31.10 ± 0.47 a 28.42 ± 0.72 a 34.78 ± 0.96 a

GSE 30 2.79 ± 0.09 a 60.55 ± 0.84 d 109.96 ± 2.19 c 111.01 ± 2.75 a

GSE 60 2.56 ± 0.08 b 65.01 ± 0.70 c 112.81 ± 2.22 b 112.14 ± 2.52 a

GSE 90 2.49 ± 0.09 b 67.51 ± 0.86 b 120.32 ± 2.61 a 113.86 ± 2.69 a

GSE 120 2.22 ± 0.08 c 69.18 ± 0.81 a 123.32 ± 2.83 a 115.61 ± 2.85 a

RCE 30 4.04 ± 0.07 a 23.58 ± 0.62 b 35.78 ± 0.88 a 41.93 ± 0.71 b

RCE 60 3.95 ± 0.08 ab 24.56 ± 0.69 ab 35.87 ± 0.81 a 47.10 ± 0.82 a

RCE 90 3.87 ± 0.07 bc 25.41 ± 0.50 a 35.43 ± 0.88 a 47.35 ± 0.78 a

RCE 120 3.75 ± 0.06 c 25.62 ± 0.57 a 35.32 ± 0.82 a 47.63 ± 0.75 a

Values are means ± standard deviations (n = 3), and means with different letters in the same column and section
are significantly different (p < 0.05). BPFE: butterfly pea flower extract; GSE: grape skin extract; RCE: roselle
calyx extract.
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phenolic content (TPC) of aqueous extracts under a fixed 30-min extraction time: (A) BPFE; (B) GSE;
(C) RCE.
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Generally, a longer extraction time can enhance the extractability of a heat-tolerant
substance enclosed within strong cell walls. Although the TPC of BPFE was insignificantly
affected by extraction time (p > 0.05), the TPCs of both GSE and RCE significantly increased
with extraction time, with ratios of 14.25% and 8.65%, respectively. Hence, the total
polyphenols present in these materials may be relatively heat-stable. A longer extraction
time was beneficial for the yield of total polyphenolics from these materials, especially GSP.
This may be due to the tissue structure of the fruit peel being stronger or having a thicker
cell wall compared to that of the fruit pulp and flowers [21]. Under the optimal extraction
conditions, the TPC of the test materials followed the order: GSE (69.2 mg FAE/g, 120 min
at 90 ◦C) > BPFE (30.0 mg FAE/g, 30–120 min at 90 ◦C) > RCE (25.4 mg FAE/g, 90 min
at 60 ◦C).

Some studies on anthocyanin extraction using hot water as a solvent have indicated the
optimal extraction conditions for plant materials. For butterfly pea flower, these conditions
included 60 ◦C for 60 min [30], 80 ◦C for 30 min [14], 90 ◦C for 5 min [31], 100 ◦C for
5 min [32], and 100 ◦C for 30 min [33]. The variation in results could be attributed to factors
such as the range of extraction temperatures, times and pressures tested, particle size of
the samples, solid-to-solvent ratio, stirring conditions, and the analytical methods used for
anthocyanins [3,27].

Our TPC results for butterfly pea flower aligned with previous studies (41–69 mg GAE/g
extract) [34,35]. However, Ratha et al. reported a higher TPC of 160 mg GAE/g extract
for aqueous extracts produced at 90 ◦C for 30 min [36]. Escher et al. found no significant
differences in TPC between low and high extraction temperatures (11.7–60 ◦C) across
different times (15, 30, 45 min) [34]. Phenolic compounds identified in the extract included
sinapic, ellagic, 2,4-dihydroxybenzoic, protocatechuic, gallic, and caffeic acids [34,36].

The optimal extraction conditions for anthocyanins from roselle in this study were
in an agreement with those in the study [3], which reported that extraction temperatures
above 60 ◦C were unfavorable for roselle, as the anthocyanin yield significantly decreased
with longer extraction times (60–300 min) at 80–90 ◦C. However, Wong et al. indicated that
the optimal extraction condition for hibiscus anthocyanins was 60 ◦C hot water extraction
for 3.5 h by response surface methodology [16]. Under this condition, the amount of
anthocyanins obtained was 11% higher compared to using a blended method of 100 ◦C
boiling water (non-isothermal extraction). Sindi et al. reported that when using water at
different temperatures to extract roselle powder for 10 min, the total anthocyanin content
was as follows: 100 ◦C > 50 ◦C > 25 ◦C [37]. The highest total anthocyanin content in roselle
calyx was achieved using 70% ethanol for 35 min at 60 ◦C with ultrasound assistance [1].

The TPC of roselle calyx ranges from 0.78 to 291.78 mg GAE/g, depending on the cul-
tivar and extraction conditions [38]. Using water extraction at three different temperatures
for 10 min, the TPC of roselle decreased in the following order: 50 ◦C > 100 ◦C > 25 ◦C [37].
Optimal extraction with 70% ethanol at 60 ◦C for 35 min yielded 32.67 mg GAE/g [1].
Caffeic, chlorogenic, and p-coumaric acids, along with catechin, quercetin, and hesperidin,
were identified in the methanolic roselle extracts by HPLC analysis [39].

Grape pomace is a good source of polyphenolic compounds, with a TPC ranging from
69 to 104 mg GAE/g residue using 80% ethanol extraction. The identified polyphenolic
compounds included syringic acid, catechin, gallic acid, caffeic acid, and epicatechin [18].
To our knowledge, there is limited research on the aqueous extraction of bioactive pheno-
lics from grape skins. Higher water extraction temperatures (100 ◦C and 70 ◦C) resulted
in higher total anthocyanin and polyphenol contents in grape skins compared to room
temperature extraction [40]. Moreover, the total anthocyanins and polyphenols extracted
with boiling water were lower (67% and 64%, respectively) than with 70% ethanol. Despite
this, heated water extraction was as effective as, or better than, 70% ethanol for recovering
individual hydrophilic polyphenols. The optimal temperatures for pressurized liquid ex-
traction of total anthocyanins (monoglucosides plus acylated forms) from grape skins were
80–100 ◦C with acidified water [41]. As the extraction temperature increased from 20 ◦C to
80 ◦C, the total anthocyanin yield rose significantly, while the ratio of monoglucosides to
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acylated anthocyanins decreased from 6.63 to 3.90. Liazid et al. reported that the antho-
cyanins in red grape skins were stable at temperatures up to 100 ◦C during pressurized
liquid extraction. However, degradation levels of 40% to 50% were observed at 125 ◦C [24].

The type of solvent affects the extraction yield and composition of the bioactive
compounds in plant materials since different solvents have varying polarities. The polarity
of common solvents, from highest to lowest, is as follows: water > methanol > ethanol >
acetone > ethyl acetate > hexane. In this study, the TMA and TPC of BPF powders extracted
using the conventional 60% ethanol method at 40 ◦C for 30 min were 1.98 ± 0.05 mg/g
and 33.56 ± 0.54 mg/g, respectively. Under the optimal conditions shown in Table 1
(90 ◦C for 30–120 min), the TMA and TPC of BPFE were 11.6% and 7.3–11.4% lower,
respectively, compared to the ethanol extraction. These findings are consistent with the
study of Ludin et al. [22], who found that absolute ethanol extracted more anthocyanins
from butterfly pea flowers than water or nonpolar solvents. However, Netravati et al.
observed similar TPC levels in aqueous and 50% ethanolic extracts of butterfly pea petals
at 45 ◦C for 45 min [42].

For the RC powders, the TMA and TPC extracted using the conventional ethanol
method in this study were 3.77 ± 0.08 mg/g and 25.02 ± 0.62 mg/g, respectively. The
anthocyanin content was 6.7% lower than that of the aqueous extract (4.04 mg/g) obtained
after 30 min at 60 ◦C, as shown in Table 1, while the TPC levels obtained by both the
ethanol and aqueous methods were comparable. The variations in total anthocyanins
and polyphenols between the two solvents in RC and BPF were inconsistent. This is
likely because the main anthocyanins in roselle are anthocyanin glycosides, which are
highly polar and more water-soluble, making aqueous extraction more suitable. In contrast,
the primary anthocyanins in butterfly pea flowers are acylated anthocyanins, which are
slightly less polar, making ethanol a more effective solvent. There have been reports on
studies showing that the water extraction of anthocyanins from roselle is more effective
than alcohol extraction. Sindi et al. reported that the aqueous extract of roselle flowers
contained significantly higher total anthocyanin levels than the methanolic extract at the
same extraction temperatures for 10 min [37]. Aryanti et al. reported that roselle extracted
with distilled water yielded significantly higher total anthocyanin contents than when
extracted with ethanol at room temperature for 24 h [2]. However, the total anthocyanin
and phenolic contents of roselle, extracted using water at room temperature for 24 h, or by
blending with boiling water and allowing it to stand for 5 min, were comparable to those
extracted using 80% ethanol at 25 ◦C for 24 h or 2 h, respectively [17,39].

2.2. Antioxidation Capacity of Extracts

Similar to the TMA and TPC shown in Figure 1, the 2,2-diphenyl-1-picrylhydrazy
(DPPH) scavenging activity and reducing power of both the BPFE and GSE significantly
increased as the extraction temperature was raised from 30 ◦C to 90 ◦C (Figure 2). Within
this temperature range, the DPPH scavenging activity and reducing power of the BPFE
increased by 27.18% and 34.82%, respectively, while the GSE increased by 56.65% and
62.93%, respectively. However, the antioxidant capacity of RCE (Figure 3C) was highest
when extracted at 60 ◦C, with its DPPH scavenging activity and reducing power increasing
by 18.68% and 8.04%, respectively. However, the antioxidant capacity of RCE (Figure 3C)
was highest when extracted at 60 ◦C, with its DPPH scavenging activity and reducing
power increasing by 18.68% and 8.04%, respectively.



Molecules 2024, 29, 5256 7 of 16

Molecules 2024, 29, x FOR PEER REVIEW  7  of  16 
 

 

 

Figure 2. Influence of extraction temperature on the 2,2‐diphenyl‐1‐picrylhydrazy (DPPH) radical 

scavenging activity and reducing power of aqueous extracts under a fixed 30‐min extraction time: 

(A) BPFE; (B) GSE; (C) RCE. 

Figure 2. Influence of extraction temperature on the 2,2-diphenyl-1-picrylhydrazy (DPPH) radical
scavenging activity and reducing power of aqueous extracts under a fixed 30-min extraction time:
(A) BPFE; (B) GSE; (C) RCE.



Molecules 2024, 29, 5256 8 of 16
Molecules 2024, 29, x FOR PEER REVIEW  8  of  16 
 

 

 

Figure  3. Thermal degradation  curves of  anthocyanins  at pH  5.5  in different plant  extracts:  (A) 

BPFE;  (B) GSE;  (C)  RCE: C0  is  the  initial monomeric  anthocyanin  content; C  is  the monomeric 

anthocyanin content after a certain heating time at a given temperature. 

As  the extraction  time  increased  from 30  to 120 min at 90 °C  (Table 1),  the DPPH 

scavenging  activity  of  BPFE  and  GSE  increased  by  7.21%  and  15.29%,  respectively. 

However,  the DPPH scavenging activity of  the RCE was not obviously affected by  the 

extraction  time at 60 °C. Conversely,  the extraction  time did not significantly  influence 

the reducing power of the BPFE and GSE (p > 0.05), while the reducing power of the RCE 

increased  by  13.59%. To  acquire  the  optimal DPPH  scavenging  activity  and  reducing 

power, the BPFP, GSP, and RCP could be extracted for 120 and 30 min at 90 °C, 90 min 

and  30 min  at  90  °C,  and  30  and  60 min  at  60  °C,  respectively.  The  order  of  two 

antioxidation activities in the tested extracts, from highest to lowest, was GSE, RCE, and 

BPFE. 

The  antioxidant  capacity of various anthocyanidins  increases with  the number of 

hydroxyl groups on their B‐ring and decreases with an increase in methoxy groups. The 

antioxidant  activity  of  the  six  anthocyanidins  decreased  in  the  following  order: 

Figure 3. Thermal degradation curves of anthocyanins at pH 5.5 in different plant extracts: (A) BPFE;
(B) GSE; (C) RCE: C0 is the initial monomeric anthocyanin content; C is the monomeric anthocyanin
content after a certain heating time at a given temperature.

As the extraction time increased from 30 to 120 min at 90 ◦C (Table 1), the DPPH
scavenging activity of BPFE and GSE increased by 7.21% and 15.29%, respectively. However,
the DPPH scavenging activity of the RCE was not obviously affected by the extraction time
at 60 ◦C. Conversely, the extraction time did not significantly influence the reducing power
of the BPFE and GSE (p > 0.05), while the reducing power of the RCE increased by 13.59%.
To acquire the optimal DPPH scavenging activity and reducing power, the BPFP, GSP, and
RCP could be extracted for 120 and 30 min at 90 ◦C, 90 min and 30 min at 90 ◦C, and
30 and 60 min at 60 ◦C, respectively. The order of two antioxidation activities in the tested
extracts, from highest to lowest, was GSE, RCE, and BPFE.

The antioxidant capacity of various anthocyanidins increases with the number of
hydroxyl groups on their B-ring and decreases with an increase in methoxy groups. The
antioxidant activity of the six anthocyanidins decreased in the following order: delphinidin
> petunidin > cyanidin > malvidin > pelargonidin > peonidin [37,43]. Ternatins in BPFE
had the fewest hydroxyl groups on the B-ring, as many had been substituted with sugars
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and organic acids. This may have led to BPFE showing the lowest antioxidant activity
among the various plant extracts in Table 1.

Generally, substances rich in bioactive phenolics exhibit good antioxidant capacity [37,44].
In the BPFE, there were significantly positive correlations (p < 0.05 or 0.01) between TMA as
well as TPC and both the DPPH scavenging activity and reducing power, with correlation
coefficients (r values) ranging from 0.72 to 0.99. The TMA of GSE positively correlated
with reducing power (r = 0.72*), while the TPC positively correlated with both the DPPH
scavenging activity and reducing power (r = 0.97* and 0.99**, respectively). However, for
RCE, only positive correlations between TPC and both the DPPH scavenging activity and
reducing power were observed, with r values of 0.96** and 0.99**, respectively. Across all of
the tested extracts, statistical analysis showed that only the TPC and antioxidant activities
had a significantly positive correlation, with r values ranging between 0.89** and 0.90**.

2.3. Anthocyanin Stability of Extracts

The heat stability of aqueous extracts from BPP, GSP, and RCP was assessed at different
heating temperatures (60–90 ◦C), heating durations (0–5 h), and pH values (2.5–5.5). The
results showed that all thermal degradation data (six points for each treatment) of the
anthocyanin-rich extracts fit well with a first-order reaction kinetic model, with a determi-
nation coefficient (R2) range of 0.83 to 0.99. The thermal degradation of anthocyanins from
the BPFE, GSE, and RCE at pH 5.5 is depicted in Figure 3. The figure demonstrates that
the anthocyanin retention in these aqueous extracts of various plant materials obviously
decreased with increasing heating time and temperature.

Table 2 lists the kinetic degradation parameters of anthocyanins in different extracts at
various heating temperatures and pH values. Generally, the rate constant (k value) of an-
thocyanins in these extracts gradually and significantly (p < 0.05) increased with increasing
heating temperature and pH values, ranging from 0.0131 to 0.3408 h−1. Conversely, the
half-life time (t0.5), which ranged from 2.03 to 52.94 h, decreased as the heating temperature
and pH values increased. Among all the treatments tested, the anthocyanins in roselle
calyx at 90 ◦C and pH 5.5 had the highest k value (0.3408 h−1) and the lowest t0.5 value
(2.03 h), while anthocyanins in butterfly pea at 60 ◦C and pH 2.5 had the lowest k value
(0.0131 h−1) and the highest t0.5 value (52.94 h).

Table 2. Thermal degradation parameters of anthocyanins in various extracts at different heating
temperatures and pH.

pH Heating BPFE BPFE GSE GSE RCE RCE

Temperature
(◦C)

k × 100
(h−1)

t0.5
(h)

k × 100
(h−1)

t0.5
(h)

k × 100
(h−1)

t0.5
(h)

2.5 60 1.31 ± 0.05 h 52.94 ± 2.41 a 1.93 ± 0.10 i 35.91 ± 1.82 a 3.04 ± 0.14 g 22.80 ± 1.15 a

2.5 70 1.44 ± 0.06 h 48.16 ± 2.08 b 3.22 ± 0.19 hi 21.53 ± 1.30 c 7.29 ± 0.45 f 9.51 ± 0.57 c

2.5 80 2.42 ± 0.21 fg 28.64 ± 2.47 d 5.58 ± 0.36 ef 12.42 ± 0.82 e 10.64 ± 0.74 e 6.51 ± 0.43 de

2.5 90 5.00 ± 0.46 ab 13.87 ± 1.18 i 13.09 ± 1.03 b 5.30 ± 0.42 gh 26.70 ± 2.12 c 2.60 ± 0.21 g

3.5 60 1.95 ± 0.12 gh 35.56 ± 2.51 c 2.75 ± 0.12 hi 25.21 ± 1.17 b 3.05 ± 0.14 g 22.73 ± 1.06 a

3.5 70 2.74 ± 0.28 def 25.37 ± 2.80 def 3.91 ± 0.24 gh 17.73 ± 1.10 d 7.50 ± 0.46 f 9.24 ± 0.57 c

3.5 80 3.26 ± 0.39 cd 21.25 ± 2.74 fg 6.97 ± 0.45 de 9.94 ± 0.65 f 12.22 ± 0.79 e 5.67 ± 0.36 ef

3.5 90 5.41 ± 0.59 a 12.87 ± 1.34 i 17.44 ± 1.42 a 3.97 ± 0.32 h 29.80 ± 2.45 b 2.33 ± 0.19 g

4.5 60 2.32 ± 0.24 fg 29.88 ± 3.12 d 3.78 ± 0.14 gh 18.34 ± 0.67 d 3.60 ± 0.12 g 19.25 ± 0.70 b

4.5 70 3.04 ± 0.32 cdef 22.80 ± 2.47 efg 4.99 ± 0.24 fg 13.89 ± 0.66 e 9.49 ± 0.45 ef 7.30 ± 0.35 d

4.5 80 3.49 ± 0.35 c 19.86 ± 2.18 g 7.50 ± 0.44 d 9.24 ± 0.62 f 15.61 ± 1.04 d 4.44 ± 0.29 f

4.5 90 4.66 ± 0.35 b 14.91 ± 1.12 hi 16.99 ± 1.30 a 4.08 ± 0.31 h 33.41 ± 2.70 a 2.07 ± 0.15 g

5.5 60 2.52 ± 0.15 efg 27.51 ± 2.12 de 5.22 ± 0.26 fg 13.28 ± 0.67 e 3.67 ± 0.18 g 18.89 ± 0.96 b

5.5 70 3.20 ± 0.19 cde 21.68 ± 1.35 fg 7.35 ± 0.43 d 9.43 ± 0.56 f 10.53 ± 0.63 e 6.58 ± 0.39 de

5.5 80 3.66 ± 0.32 c 18.97 ± 1.65 gh 10.15 ± 0.67 c 6.83 ± 0.45 g 15.64 ± 1.04 d 4.43 ± 0.29 f

5.5 90 4.61 ± 0.31 b 15.07 ± 1.01 hi 17.87 ± 1.41 a 3.88 ± 0.31 h 34.08 ± 2.70 a 2.03 ± 0.15 g

Values are the means ± standard deviations (n = 2), and means with different letters in the same column are
significantly different (p < 0.05). BPFE: butterfly pea flower extract; GSE: grape skin extract; RCE: roselle calyx
extract; k: rate constant; t0.5: half-time.



Molecules 2024, 29, 5256 10 of 16

High temperatures can significantly accelerate the breakdown of anthocyanin struc-
tures, leading to degradation and color loss. An increase in heating temperature from 60 to
80 ◦C increased the rate constant of anthocyanin degradation in BPF-containing beverages,
while reducing the half-life [45]. The half-life of grape juices from various varieties, with
pH values ranging from 3.32 to 3.87, was between 2.76 and 43.31 h at different heating
temperatures (60–90 ◦C) [46]. The stability of anthocyanins is also influenced by pH,
with degradation often occurring more rapidly under neutral and alkaline conditions. As
the pH gradually shifts from acidic to weakly acidic, neutral, and alkaline, the structure
of anthocyanins also changes, transitioning sequentially from a stable flavylium cation
to an unstable carbinol pseudobase, quinoidal base, and chalcone. Anthocyanins from
butterfly pea flowers appeared to have a higher stability at pH 4.0–8.0 [47], while the
roselle anthocyanins degraded very quickly in a low-acid environment [9]. The half-lives
of anthocyanins from the purple sweet potato extract at high temperature (90 ◦C) were
10.27, 12.42, and 4.66 h at pH 3.0, 5.0, and 7.0, respectively [10]. The degradation rate of
anthocyanins from red onion increased nearly 17-fold as the pH rose from 1.0 to 9.0 at room
temperature [23].

Under the same heating conditions, the RCE exhibited the highest rate constant and
the lowest half-life time for anthocyanin degradation, whereas BPFE had the lowest rate
constant and the highest half-life time. Therefore, the heat stability of anthocyanins among
the three materials tested followed the descending order: butterfly pea > grape skin > roselle
calyx. The results should be attributed to the types and chemical structure of anthocyanins
that occurred in the plant materials. Liazid et al. indicated that the glucosyl anthocyanins
were found to be more susceptible to degradation than the acylated derivatives, especially
at high temperatures and in the presence of oxygen [24]. Ternatins, the main anthocyanins
in BPF, are polyacylated delphinidin glucoside derivatives [14]. Black and bluish-red
grape skins are rich in malvidin-3-O-glucoside and its monoacylated forms [20,21]. Natural
roselle flowers are rich in sambubiosides of both delphinidin and cyanidin [17], but acylated
anthocyanins in the flowers have not been reported.

Under the heating conditions of 90 ◦C at pH 5.5, 90 ◦C at pH 4.5, and 60 ◦C at pH 2.5,
the k values for the BPFE, GSE, and RCE in Table 2 were 0.0461, 0.0750, and 0.0304 h−1,
respectively. According to Equation (2) in the Materials and Methods section, after 2 h
of heating, the anthocyanin contents should be 91.2%, 86.1%, and 94.1% of their original
values. Therefore, the decreases in TMA (9.1%, 20.4%, and 7.2%), as shown in Table 1, are
reasonable, considering the long extraction times for BPP, GSP, and RCP at 90 ◦C, 90 ◦C,
and 60 ◦C, respectively.

The Arrhenius model is an empirical equation used for chemical reactions and can
describe the temperature dependence of the degradation reaction rate of anthocyanins.

k = k0e−
Ea
RT

where k is the reaction rate constant, k0 is the pre-exponential factor, Ea is the activation en-
ergy (J/mol), R is the gas constant (8.314 J/(mol·K)), and T is the absolute temperature (K).

Figure 4 illustrates that the rate constants of thermal degradation are temperature-
dependent and follow the Arrhenius relationship, which is in agreement with other stud-
ies [9,48]. The determination coefficients (R2) for BPFE, GSE, and RCE ranged from
0.90 to 0.98, 0.93 to 0.98, and 0.97 to 0.99, respectively. The activation energies for the
thermal degradation of anthocyanins in BPFE at pH 2.5, 3.5, 4.5, and 5.5 were 45.23, 32.43,
22.36, and 19.52 kJ/mol, respectively. For the GSE anthocyanins, the activation energies
were 63.02, 61.14, 49.07, and 40.02 kJ/mol, respectively. For the RCE anthocyanins, the
activation energies were 69.25, 73.60, 72.26, and 71.29 kJ/mol, respectively.
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Among the three tested materials, the order of activation energy from highest to lowest
was roselle, grape skin, and butterfly pea flower. This indicates that the degradation reaction
of the anthocyanins in roselle was the most sensitive to changes in reaction temperature,
while the butterfly pea flower was the least sensitive. Furthermore, the activation energy
of grape skin and butterfly pea flower obviously increased as the medium pH decreased,
whereas the activation energy of roselle was less affected by pH. This shows that the
thermal degradation reaction of anthocyanins in grape skin and butterfly pea flower was
most sensitive at pH 2.5.
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The activation energy of BPFE-containing beverages, formulated with different levels
of sugar, salt, and ascorbic acid, ranged from 4.0 to 23.3 kJ/mol at pH 2.5 [45]. However, the
activation energy for anthocyanin degradation in the BPF extract, stored at temperatures
ranging from 7 ◦C to 90 ◦C and at neutral pH, varied from 83.2 to 101.2 kJ/mol [49]. For
the RCE anthocyanins, the activation energies in this study were consistent with previous
reports, which indicated Ea values for 30% ethanol and aqueous extracts from roselle
ranging from 53.6 to 75.6 kJ/mol at pH 2.0–5.0 [9], 47–61 kJ/mol at pH 2.2–2.6 [32], and
66.22 kJ/mol at an unknown pH [50]. The activation energy for the GSE anthocyanins at
pH 3.5 in this study was consistent with the value (64.89 kJ/mol) reported for grape juices
at pH 3.34 [48], but was higher than the activation energies (44.2–45.1 kJ/mol) of grape
juices from various varieties at pH 3.32–3.87 [46].

3. Materials and Methods
3.1. Materials

Ten kilograms (5 kg per batch) of fresh butterfly pea flowers (Clitoria ternatea) and
roselle calyces (Hibiscus sabdariffa L.) were purchased from local farmers. Thirty kilograms of
blackish-purple grapes (Vitis vinifera Kyoho) were purchased from a local fruit market, 10 kg
per batch. GS was peeled from the grapes by hand, then immersed in water (1:20, v/v) and
washed three times. The washed grape skins, BPF, and RC were dried in an oven overnight
at 50 ◦C. Finally, the powders (i.e., BPFP, RCP, and GSP) were prepared by grinding,
sifting through a 40-mesh sieve, and blending the particulates from different batches. The
moisture contents of BPFP, RCP, and GSP were 9.06%, 13.20%, and 9.17%, respectively.
DPPH, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ferulic acid, and
sodium acetate were obtained from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
Folin–Ciocalteu phenol reagent and ferric chloride hexahydrate were obtained from Merck
(Darmstadt, Germany). All chemicals used in the food analysis were of analytical grade,
with a purity greater than 98%.

3.2. Preparation of Aqueous Extracts

Distilled water was employed as the solvent for extracting bioactive substances from
BPFP, RCP, and GSP. The 2% (w/v) extracts (BPFE, RCE and GSE) were prepared in a
reciprocating water bath constant temperature oscillator (Model SHZ-88A, Suzhou Peiying
Experimental Equipment Co., Ltd., Suzhou, China) by mixing 4.00 g of the powder samples
with 200 mL of distilled water. The extraction process lasted for different temperatures
(30–90 ◦C) and periods (30–120 min) at 60 revolutions per minute. After extraction, the
solutions were immediately filtered and cooled, then a small amount (about 4–10 mL) of
distilled water was added to reach a final volume of 200 mL. Furthermore, the conventional
60% ethanol (v/v) extraction method, carried out at 40 ◦C for 30 min, was used as a control
for comparison [34].

3.3. Determination of Total Monomeric Anthocyanin (TMA)

According to the pH differential method [51], the TMAs of the aqueous extracts
were measured. In brief, an aliquot of 1.00 mL of the extract sample was mixed with
either 4 mL of pH 1.0 buffer containing 0.025 mol/L KCl or 4 mL of pH 4.5 buffer con-
taining 0.4 mol/L sodium acetate. The absorbance of the mixtures was determined at
520 and 700 nm wavelengths using an UV–Visible spectrophotometer (Model 752W, Shang-
hai Xinmao Instrument Co., Ltd., Shanghai, China). TMAs of the aqueous extracts were
calculated by the following equation:

TMA(mg/kg, DB) = A × F × MW × 1000 × V/(ε× X × W) (1)

where A = [(A520nm − A700nm)pH 1.0 − (A520nm − A700nm)pH 4.5]; F = dilution factor;
MW = 449.2 g/mol (molecular weight of cyanidin-3-glucoside); ε = 26,900 L/mol/cm
(molar extinction coefficient of cyanidin-3-glucoside); x = path length (cm); V = volume
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of extract (mL); W = sample weight (g); DB = dry weight basis. The absorbance of each
anthocyanin sample was measured three times.

3.4. Determination of Total Phenolics

The TPC of the aqueous extracts was measured using the Folin–Ciocalteu reagent,
based on the method of [28], with ferulic acid as the standard. The TPC was reported as
milligrams of ferulic acid equivalent per kilogram of sample on a dry weight basis (DB).
The measurements were repeated three times.

3.5. Determination of Antioxidant Capacity

The radical scavenging activity of the aqueous extracts was evaluated using the DPPH
assay, following the method described by Liyana-Pathirana and Shahidi [52], with Trolox
as the standard. The results were expressed as milligrams of Trolox equivalents (TE)
per gram of sample on a dry weight basis (DB). Additionally, the reducing power of the
aqueous extracts was performed according to the method in [53]. A mixture consisting of
2.5 mL of the extract sample, 2.5 mL of 0.2 mol/L phosphate buffer (pH 6.6), and 2.5 mL of
1% potassium ferricyanide was incubated at 50 ◦C for 20 min. After incubation, 2.5 mL of
10% trichloroacetic acid was added, and the mixture was centrifuged at 3000 rpm for 10 min.
Then, 2.5 mL of the supernatant was mixed with 2 mL of distilled water and 0.5 mL of 0.1%
ferric chloride, followed by incubation at room temperature for 15 min. The absorbance
was recorded at 700 nm against a blank (water), with the results expressed as mg TE per g
sample (DB). The measurements of antioxidant capacity were repeated three times.

3.6. Determination of Anthocyanin Stability

The thermal degradation of anthocyanins in aqueous plant extracts was conducted at
varying temperatures (60–90 ◦C), heating durations (0–5 h), and pH levels (2.5–5.5) in the
water bath oscillator. The procedure involved transferring 4 mL of the aqueous extract into
a glass test tube with a screw cap, followed by the addition of 4 mL of buffer (0.1 mol/L
citric acid and 0.2 mol/L Na2HPO4) to adjust the pH of the sample solution to 2.5–5.5,
respectively. After thorough mixing, the sample solution was heated for different periods
at a specified temperature. The thermal degradation kinetics of the anthocyanins were
analyzed using a first-order reaction model, expressed by Equation (2):

ln
(

Ct

C0

)
= −k × t (2)

where C0 is the initial monomeric anthocyanin content, Ct is the monomeric anthocyanin
content after heating for t hours at a given temperature and pH, and k is the reaction
rate constant.

The half-life time (t0.5), representing the time required for 50% degradation of antho-
cyanins, was calculated using the equation:

t0.5 =
ln2
k

(3)

3.7. Statistical Analysis

The data in triplicate or duplicate for different treatments were analyzed by one-way
ANOVA and Duncan’s new multiple range test to determine the statistical significance of
differences among the values using IBM SPSS Statistics 20.

4. Conclusions

In this study, 2% (w/v) aqueous extracts of butterfly pea flower, grape skin, and roselle
calyx were prepared. To maximize the total anthocyanins and polyphenols in these extracts,
powders of BPF, GS, and RC were extracted for 30 min at 90 ◦C; 30 min and 120 min at
90 ◦C; and 30 min and 60 min at 60 ◦C, respectively. The TMA values of the plant materials,



Molecules 2024, 29, 5256 14 of 16

in descending order, were RCE (4.04 mg/g), GSE (2.79 mg/g), and BPFE (1.75 mg/g), while
the TPC (mg FAE/g) followed the order: GSE (69.2) > BPFE (30.0) > RCE (25.4). Among
the tested plant materials, BPF exhibited the lowest antioxidant activities (radical DPPH
scavenging activity and reducing power), likely due to having fewer hydroxyl groups on
the B-ring of its anthocyanin structure. The correlations between TPC and antioxidant
activities were stronger than those between TMA and antioxidant activities.

The thermal degradation of anthocyanins from the plant materials followed a first-
order reaction model. All rate constants of thermal degradation for BPE, GSE, and RCE
increased with rising heating temperatures. However, the half-life of the extracts decreased
as the temperature increased. BPE, GSE, and RCE exhibited better heat stability of the
anthocyanins at lower pH levels. The temperature-dependent rate constants followed the
Arrhenius relationship. The activation energy of the three extracts in decreasing order was:
RCE > GSE > BPE. The Ea values for BPE and GSE decreased with an increase in the pH of
the extract. Butterfly pea flower had the highest heat stability of anthocyanins, while roselle
calyx had the least heat stability. The results may be attributed to the degree of acylation in
the anthocyanin structures in the various plant materials. Finally, this study confirms that
hot water extraction is feasible for butterfly pea flower, roselle calyx, and grape skin. Under
appropriate extraction conditions of temperature and time, the resulting extracts are rich in
anthocyanins and total polyphenols, with high antioxidant capacity, and are convenient
and safe to apply in food products such as yogurts, jellies, confectioneries, noodles, and
functional beverages [6,7,28].
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