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Abstract: Background/Objectives: Patients with Gaucher disease have a high risk of bone disease,
with osteonecrosis representing the most debilitating complication. The pathogenesis of osteonecrosis
has not been fully elucidated yet, and there is an unmet need for predictive biomarkers of bone
complications. We aimed to assess the utility of angiogenesis and bone turnover biomarkers as
predictors of osteonecrosis in Gaucher disease. Methods: Angiogenesis and bone turnover biomark-
ers were measured in 146 Gaucher disease patients (70M:76F, median age 49.5 [IQR 36.7 to 61])
with/without osteonecrosis enrolled in the UK-based registry GAUCHERITE [enrolment 2015–2017].
Receiver-operating characteristic curve analysis was used to compare the osteonecrosis predictive
value of angiogenesis and bone turnover biomarkers and determine the optimal cut-off values for
each biomarker. Results: Sixty-two patients had osteonecrosis before study enrolment, 11 had
osteonecrosis during follow-up, and 73 remained osteonecrosis-free. Patients with osteonecrosis
showed increased osteopontin and matrix metalloproteinase (MMP)-2 levels and decreased MMP-9
and vascular endothelial growth factor (VEGF)-C compared with those free from osteonecrosis.
MMP-9 predicted future osteonecrosis with higher sensitivity and specificity (area under the receiver
operating characteristic curve [AUC] 0.84 [95% CI 0.84–0.99]; sensitivity/specificity 82%/75%; cutoff
value ≤ 72,420 pg/mL) than osteopontin, MMP-2 and VEGF-C when taken alone. The combination
of MMP-9 and VEGF-C further increased the discriminating accuracy. Conclusions: The osteopontin–
MMPs–VEGF axis is dysregulated in Gaucher disease patients with osteonecrosis. The combination
of MMP-9 and VEGF-C circulating levels may serve to identify Gaucher disease patients at risk
of osteonecrosis.

Keywords: Gaucher disease; osteonecrosis; biomarker; osteopontin; matrix metalloproteinases;
vascular endothelial growth factor

1. Introduction

Gaucher disease is an inborn error of metabolism caused by biallelic mutations in
the glucocerebrosidase gene (GBA1), leading to deficiency of the enzyme glucocerebrosi-
dase and the progressive accumulation of its substrate (glucocerebroside, Gb1) and its
downstream metabolite (glucosylsphingosine, lyso-Gb1) in the lysosomes of mononu-
clear phagocytes. This results in systemic infiltration by Gaucher cells (glycolipid-laden
macrophages) and chronic inflammation [1]. A systemic phenotype arises involving mul-
tiple organs (liver, spleen, bone marrow and, occasionally, the lungs): this condition is
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known as type 1 (non-neuronopathic) Gaucher disease; in neuronopathic fulminant (type 2)
and chronic (type 3) Gaucher disease, progressive neurodegenerative manifestations oc-
cur [1]. Although the visceral changes can be dramatic in untreated patients, the most
debilitating symptoms result from a complex pattern of bone involvement that is usu-
ally poorly responsive to enzyme replacement treatment (ERT) and commonly involves
osteonecrosis (also known as avascular necrosis) at long bones (tibia, humerus, femur)
and vertebrae [2–4]. Figure 1 shows examples of heterogenous Gaucher bone marrow fat
signals (no osteonecrosis) and established bone osteonecrosis.
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Figure 1. Typical appearance of heterogenous Gaucher marrow fat signals with no evidence of os-
teonecrosis. (a) Coronal T1-weighted image shows several punctate low-signal foci scattered 
throughout the diaphyseal regions of both femora, corresponding to infiltration of the marrow by 
Gaucher cells in a 35-year-old woman with Gaucher disease type 1. (b) The corresponding coronal 
Short Tau Inversion Recovery (STIR) image. Typical appearance of an established osteonecrosis. (c) 
Coronal T1-weighted image shows irregularly bordered areas of hypointensity within the diaph-
yseal regions of both femora, corresponding to fibrosed and sclerosed bone marrow of established 
bone infarcts in a 50-year-old woman with Gaucher disease type 1. (d) The same areas show serpig-
inous inner rim of hyperintensity on the corresponding coronal Short Tau Inversion Recovery 
(STIR). 
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NCT03240653) at the time of this study, 232 had serum samples collected between May 
2015 and January 2018 that were available for analysis. Of this subset, 16 patients were <18 
years old at the time of recruitment and excluded from the study to avoid a confounding 
effect due to age-specific variability in bone and angiogenesis biomarkers (i.e., periods of 
growth and development with high rates of angiogenesis) [15–18]. The clinical data and 
imaging of the remaining 216 Gaucher patients were reviewed to stratify patients accord-
ing to their osteonecrosis status (presence/absence of osteonecrosis and presence/absence 

Figure 1. Typical appearance of heterogenous Gaucher marrow fat signals with no evidence of
osteonecrosis. (a) Coronal T1-weighted image shows several punctate low-signal foci scattered
throughout the diaphyseal regions of both femora, corresponding to infiltration of the marrow by
Gaucher cells in a 35-year-old woman with Gaucher disease type 1. (b) The corresponding coronal
Short Tau Inversion Recovery (STIR) image. Typical appearance of an established osteonecrosis.
(c) Coronal T1-weighted image shows irregularly bordered areas of hypointensity within the diaphy-
seal regions of both femora, corresponding to fibrosed and sclerosed bone marrow of established bone
infarcts in a 50-year-old woman with Gaucher disease type 1. (d) The same areas show serpiginous
inner rim of hyperintensity on the corresponding coronal Short Tau Inversion Recovery (STIR).

The mechanisms underlying the pathogenesis of osteonecrosis remain poorly un-
derstood and are believed to involve multiple mechanisms [5,6]. An association of os-
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teonecrosis risk with splenectomy, a palliative measure used before the introduction of
enzyme treatment, has been suggested—although the nature of this association remains
controversial [2,5,7]—as well as with other risk factors such as anaemia [8], GBA1 geno-
type (compound heterozygous N370S/other genotype), history of osteonecrosis prior to
treatment initiation, type of ERT, and high residual lyso-Gb1 levels [9].

Mounting evidence suggests that the bioactive lipids produced by Gaucher cells also
play an important role in the modulation of the function of other cell types, including
bone marrow cells and endothelial cells [10–12]. Alteration in the blood capillary endothe-
lium has been described in the skin biopsies of patients with Gaucher disease types 2 and
3 [10]. In the bone marrow of patients with Gaucher disease type 1, changes in the vas-
culature (such as increased microvascular density and abnormal microvessel architecture
and function) correlate with the abnormal expression of angiogenetic factors [increased
levels of angiopoietins (ANGPTs) and low expression of vascular endothelial growth fac-
tors (VEGFs)] [11]. Finally, in a murine model of neuronopathic Gaucher disease, it was
suggested that the reduction of cerebral vascularisation was associated with defective angio-
genesis due to impaired endothelial cytokinesis and migration related to the accumulation
of lyso-Gb1 [12]. Taken together, this evidence suggests that endothelial cells’ dysfunction
may play a role in several complications of Gaucher disease, such as osteonecrosis and
pulmonary vascular disease.

Understanding the interplay between angiogenesis and the pathogenesis of osteonecro-
sis could reveal novel pathogenic mechanisms and targetable pathways relevant not only to
Gaucher disease but also to other conditions associated with the development of osteonecro-
sis, such as haemoglobinopathies (e.g., sickle cell disease), corticosteroid use and connective
tissue disorders (e.g., systemic lupus erythematosus) [13], thus potentially leading to an
unifying model for the pathophysiology of osteonecrosis.

The Gaucher Investigative Therapy Evaluation (GAUCHERITE) is a UK clinical cohort
of 251 (250 at the time of the study) Gaucher disease patients with longitudinal observation
and collated imaging studies built to enable in-depth clinical phenotyping of the disease,
including bone manifestations [14]. In the present study, we aimed to elucidate the interplay
of angiogenic and bone turnover molecules in the pathogenesis of osteonecrosis in Gaucher
disease and their value as predictive biomarkers of osteonecrosis. To this end, we measured
circulating angiogenic and bone turnover factors in Gaucher disease patients free from
osteonecrosis and in those who experienced osteonecrosis either before study entry or
during the observation phase [14].

2. Materials and Methods
2.1. Patients

Of the 250 Gaucher patients enrolled in the GAUCHERITE cohort (Clinicaltrials.gov:
NCT03240653) at the time of this study, 232 had serum samples collected between May
2015 and January 2018 that were available for analysis. Of this subset, 16 patients were
<18 years old at the time of recruitment and excluded from the study to avoid a confounding
effect due to age-specific variability in bone and angiogenesis biomarkers (i.e., periods of
growth and development with high rates of angiogenesis) [15–18]. The clinical data and
imaging of the remaining 216 Gaucher patients were reviewed to stratify patients according
to their osteonecrosis status (presence/absence of osteonecrosis and presence/absence of
osteonecrosis during the study). Gaucher disease patients without osteonecrosis had no
history of previous symptomatic events nor evidence of osteonecrosis through imaging.
A further 4 patients with incident osteonecrosis were excluded from this study since they
did not have samples contemporaneous to the event (they either had only samples before
the event [n = 2] or before and after the event [n = 1]) or had other complications such as
osteomyelitis (n = 1).

The final study cohort consisted of 73 osteonecrosis cases—classified into 62 patients
with a prior history of osteonecrosis and 11 patients who had incident osteonecrosis
during follow-up—and 73 patients free from osteonecrosis (randomly selected). Before

Clinicaltrials.gov
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performing the analyses, we checked that the cohort was age- and sex-matched (as age and
sex imbalances would have constituted a confounding factor for the analyses). For patients
who had incident osteonecrosis, blood samples at different time points were available for
analysis as follows: 6 ± 2 months before osteonecrosis (n = 8), at the time of osteonecrosis
as documented by the MRI scan (n = 11) and 6 ± 2 months after the event (n = 8) (see
Figure 2 for details).
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Figure 2. Strobe flow chart shows patient selection. Of the 250 patients assessed for eligibility, 16 
were excluded from this study because of their age (<18 years) and 18 because they did not have 

Figure 2. Strobe flow chart shows patient selection. Of the 250 patients assessed for eligibility, 16 were
excluded from this study because of their age (<18 years) and 18 because they did not have samples
available for the analysis. Two hundred and sixteen patients were reviewed and stratified according
to their osteonecrosis status. Of these, 150 age- and sex-matched patients were identified: 62 patients
had a history of osteonecrosis and 15 patients had incident osteonecrosis during follow-up, while
73 patients remained free from osteonecrosis. Four patients with incident osteonecrosis were excluded
from the final analysis since they either had only samples collected before or after the osteonecrosis
event. Another patient also had osteomyelitis and was therefore excluded.

GBA1 genotyping was performed as part of the clinical phenotyping in the entire co-
hort by sequencing the genomic DNA at the University of Manchester Centre for Integrated
Genomic Medical Research as previously described [14].

The baseline characteristics of patients with no osteonecrosis, prior history of os-
teonecrosis and incident osteonecrosis during follow-up are shown in Table 1.
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Table 1. Demographic and clinical characteristics of the study cohort by osteonecrosis status.

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

N 73
(36M:37F)

62
(28M:34F)

11
(6M:5F)

Age, years,
median (IQR)

47
(34.4–60.3)

47.7
(35.8–60.9)

49.5
(39.2–66.8) 0.446

GENOTYPE, N %
Homozygous N370S/N370S 18 (25%) 4 (6.5%) 1 (9%)

0.036 +

Homozygous L444P/L444P 3 (4%) 6 (10%) -
Homozygous other/other a 1 (1%) - -
Heterozygous N370S/L444P 14 (19%) 11 (18%) 2 (18%)
Heterozygous N370S/other a 29 (39.7%) 32 (52%) 4 (36.5%)
Heterozygous L444P/other a 1 (1%) 4 (6.5%) -
Heterozygous other/other a 7 (10%) 5 (8%) 4 (36.5%)

TYPE OF GAUCHER DISEASE, N %
Type 1 68 (93%) 55 (89%) 10 (91%)

0.665 +Type 3 5 (7%) 7 (11%) 1 (9%)

Age at Gaucher disease presentation,
years, median (IQR)

26.5
(13.8–37.8)

8.2
(4.2–20.3)

6.5
(4.4–25.3)

<0.001
1, 2 ̸= 0 ‡

OSTEONECROSIS, N %
Symptomatic osteonecrosis events - 36 9

0.001 +Asymptomatic osteonecrosis events - 30 11

Age at first osteonecrosis, years, median
(IQR) - 25.07

(11.88–37.43)
21.95

(12.6–37.8) 0.845 #

FRACTURE, N %
No 69 (94.5%) 46 (74%) 7 (64%)

0.001 +Yes 4 (5.5%) 16 (26%) 4 (36%)

Age at first fracture, years,
median (IQR)

57.65
(16.85–61.59)

45.39
(25.15–52.95)

23.9
(13.7–34.8) 0.176

OSTEOARTHRITIS, N %
No 42 (58%) 27 (43.5%) 1 (9%)

0.007 +Yes 31 (42%) 35 (56.5%) 10 (91%)

Age at osteoarthritis diagnosis, years,
median (IQR)

43
(34.3–53.7)

41.8
(33.7–52.4)

40.4
(32.9–53.9) 0.885

ORTHOPEDIC PROCEDURE, N %
No 66 (90%) 34 (55%) 4 (36%)

<0.001 +Yes 7 (10%) 28 (45%) 7 (64%)

Age at first orthopaedic procedure,
years, median (IQR)

46.1
(13–55.2)

33.3
(14.83–47.65)

46.9
(19.1–54.3) 0.281

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

ERLENMEYER FLASK DEFORMITY (EFD), N %
No 49 (67%) 22 (35.5%) 4 (36%)

0.001 +Yes 24 (33%) 40 (64.5%) 7 (64%)

Age at EFD diagnosis, years,
median (IQR)

37.2
(25.5–48)

36.02
(22.8–49.35)

45.5
(34.3–49.4) 0.567
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Table 1. Cont.

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

LYTIC LESION, N %
No 71 (97%) 58 (94%) 10 (91%)

0.474 +Yes 2 (3%) 4 (6%) 1 (9%)

Age at first lytic lesion, years,
median (IQR)

48.0
(27.3–68.8)

30.6
(9.0–42.4)

47.2
(47.2–47.2) 0.343

GAUCHER DISEASE TYPE 1 SEVERITY SCORING SYSTEM (GD-DS3)

Bone domain, median (IQR) 2
(0.3–3)

4
(3–5)

4.5
(3–6.3)

<0.001
1, 2 ̸= 0

Haematologic domain, median (IQR) 0
(0–0.75)

0
(0–0)

0
(0–1)

0.435

Visceral domain, median (IQR) 0
(0–1)

0
(0–2)

1
(0–3.3) 0.057

Total Gaucher DS3 score, median (IQR) 2
(1–4)

4
(3–6)

6
(4–9)

<0.001
1, 2 ̸= 0 ‡

BONE MARROW TRANSPLANT, N %
No 73 (100%) 60 (97%) 11 (100%)

0.253 +Yes - 2 (3%) -

Age at bone marrow transplant, years,
median (IQR) - 6.3

(1.7–10.8) - -

SPLENECTOMY, N %
No 66 (90%) 37 (60%) 6 (55%)

<0.001 +Yes 7 (10%) 25 (40%) 5 (45%)

Age at splenectomy, years,
median (IQR)

27
(24.09–54.05)

11.72
(5.02–20.76)

15.4
(7.2–21.7)

0.011
1 ̸= 0 ‡

GAUCHER SPECIFIC TREATMENT, N %
No 7 (10%) 2 (3%) -

0.209 +Yes 66 (90%) 60 (97%) 11 (100%)

Age at Gaucher specific treatment
initiation, years, median (IQR)

34.5
(25.4–45.01)

29.25
(20.15–42.4)

35.4
(20.4–45.9) 0.555

Time from Gaucher disease presentation
and treatment initiation, years,
median (IQR)

3
(0.9–10.3)

15.4
(4.4–24.3)

16.9
(1–30.4)

<0.001
1, 2 ̸= 0 ‡

BONE TREATMENT, N %
No 28 (38%) 20 (32%) 3 (27%)

0.652 +Yes 45 (62%) 42 (68%) 8 (73%)

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

STEROID TREATMENT, N %
No 59 (81%) 52 (84%) 11 (100%)

0.277 +Yes 14 (19%) 10 (16%) -

Continuous variables presented as median (interquartile range, IQR). Categorical variables presented as numbers
(%). Kruskal–Wallis one-way ANOVA test; ‡ Dunn’s post-hoc test (0 = osteonecrosis-free; 1 = historical osteonecro-
sis; 2 = incident osteonecrosis); + Chi-square test; # Mann–Whitney test. a Other is defined as any allele other than
N370S or L444P.

2.2. Blood Sampling and Serum Storage

Written informed consent from patients was obtained during their routine visits.
Following consent, additional research blood samples were collected and centrifuged for
7 min at 4000 rpm (3200 RCF). After link-anonymisation, refrigerated serum samples were
shipped and stored at a controlled temperature at the Department of Clinical Biochemistry
(Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK), an accredited
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laboratory for diagnostics and monitoring sampling. Freezing and thawing cycles were
minimised by preparing aliquots.

Research blood was collected from patients at the same time as routine blood and urine
and transported, stored, accessed and processed in accordance with national legislation
relating to the use and storage of human tissue for research purposes, as set out in the 2004
Human Tissue Act [19] and the 2006 Human Tissue (Scotland) Act [20].

2.3. Biochemistry

Full blood count, bone metabolism, 25-hydroxyvitamin D, fibrinogen and biomark-
ers of Gaucher disease activity [21] [ferritin, enzyme chitotriosidase, CC chemokine pul-
monary and activation-regulated chemokine (PARC/CCL18), angiotensin-converting en-
zyme (ACE)] contemporaneous to research blood were also measured.

2.4. Biomarker Assays

The Meso Scale Discovery assays (MSD, 1601 Research Blvd., Rockville, MD 20850-
3173, USA) used for this study were all sandwich electrochemiluminescence immunoassays.
MSD provided a plate pre-coated with up to ten capture antibodies on independent and
well-defined spots. Sample, standards or quality controls (QCs) were added to the plate
and incubated at room temperature with mixing. After washing, a cocktail of detection
antibodies was added to the plate, which was then incubated at room temperature with
mixing. After washing, MSD read buffer was added to the plate. This provided the
appropriate chemical environment for electrochemiluminescence. The plate was loaded
into the MSD Sector S 600 instrument (MSD, 1601 Research Blvd., Rockville, MD 20850-3173,
USA) for analysis. Inside the MSD instrument, a voltage was applied to the plate electrodes,
which caused the labels bound to the electrode surface to emit light. The instrument
measured the intensity of emitted light from each well-defined spot to afford a quantitative
measure of each of the cytokines present in the sample. Results were calculated using MSD
Discovery Workbench software 4.0. All reagents and standards were supplied by MSD.

Standards, QCs and samples were loaded onto the plates using a Tecan Evo100
liquid-handling robot (Tecan Group Ltd., Seestrasse 103, 8708 Männedorf, Switzerland).
Washing of the plates was performed using a Thermo Scientific WellWash Versa plate
washer (Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA). Three
specific QC samples were used for this study. These were prepared in bulk at the start of
the study and stored as single-use aliquots frozen at below −70 ◦C and thawed on the day
of use. QC 1 and QC 2 were dilutions of the MSD-supplied standard material. QC 3 was
a pool of anonymised serum samples. All three controls were analysed at the beginning
(after the standards) and end (after the samples) of each plate.

Assay Specifics: MSD Bone Panel 2 (product number: K15147C-2; assays: osteocalcin,
osteonectin, osteopontin; sample dilution: 1:20; sample volume: 25 µL; incubation time for
samples: 2 h; incubation time for detector antibody: 1 h); MSD Human MMP 3-plex Ultra-
Sensitive (product number: K15034C-2; assays: MMP-1, MMP-3, MMP-9; sample dilution:
1:10; sample volume: 25 µL; incubation time for samples: 2 h; incubation time for detector
antibody: 2 h); MSD Human TIMP-1 (product number: K151JFC-2; assays: TIMP-1; sample
dilution: 1:100; sample volume: 25 µL; incubation time for samples: 2 h; incubation time
for detector antibody: 2 h); MSD V-plex Human Angiogenesis Panel 1 (product number:
K150190D; assays: VEGF-A, VEGF-C, VEGF-D, Tie-2, Flt-1, PIGF, β-FGF; sample dilution:
1:2; sample volume: 25 µL; incubation time for samples: 2 h; incubation time for detector
antibody: 2 h); MSD Human MMP 2-Plex Ultra-Sensitive (product number: K15033C-2;
assays: MMP-2, MMP-10; sample dilution: 1:2; sample volume: 12.5 µL; incubation time
for samples: 2 h; incubation time for detector antibody: 2 h); MSD R-Plex Human OPG
(product number: F21ZK-3; assays: osteoprotegerin; sample dilution: 1:2; sample volume:
12.5 µL; incubation time for samples: 1 h; incubation time for detector antibody: 1 h).

Biomarker analyses were performed in 2019 in bulk to avoid batch effects.
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2.5. Bone Disease Assessment

The presence and approximate onset of osteonecrosis were based on prior clinical
history or current evidence of characteristic symptoms and confirmed by supportive
radiological evidence of osteonecrosis on MRI or plain radiographs [2,14]. In patients
with asymptomatic osteonecrosis (i.e., radiological evidence of active bone ischaemia in the
absence of characteristic symptoms), the imaging date was considered as the approximate
date of onset. The presence of fragility fracture was based on a positive history of fracture
“that occurred as a result of a minimal trauma, such as a fall from standing height or
less, or no identifiable trauma”, as defined by the World Health Organization [22]; in
addition, radiologic imaging on thoracic and lumbar radiographs and spine MRI were
also reviewed to detect subclinical or undiagnosed vertebral fractures [23]. The presence
and grading of osteoarthritis were performed according to the Kellgren–Lawrence scale,
where osteoarthritis is diagnosed with a KL grade of two or greater [24] for both hip and
knee radiographs taken as non-weight-bearing standard views and interpreted in their
anteroposterior view. The presence of Erlenmeyer flask deformity was defined by a ratio
of the width of diametaphysis 4 cm from the physeal plate divided by the physeal plate
width ≥ 0.58 [25].

2.6. Gaucher Disease Severity Scoring System

The Gaucher disease type 1 disease severity scoring system (GD-DS3) is a validated
disease scoring system for adults with Gaucher disease type 1 and is based on bone,
hematologic and visceral domains. GD-DS3 expresses the disease burden and response to
treatment and is defined as follows: severe (GD-DS3 > 9); marked (GD-DS3 6–9); moderate
(GD-DS3 3–6); mild (GD-DS3 < 3.00) [26].

2.7. Statistical Analysis

Cases (patients with historical and incident osteonecrosis) and controls (patients free
from osteonecrosis) were matched with respect to sex and age. Comparisons between
groups (osteonecrosis-free; historical osteonecrosis; incident osteonecrosis) were assessed
by Kruskal–Wallis one-way analysis of variance followed by Dunn’s post-hoc test and
Pearson’s chi-squared test. Correlation coefficients were used to determine the relationship
between the variables. Receiver-operating characteristic (ROC) curve analysis estimated
the sensitivity/specificity and optimal cut-off values (highest sensitivity/specificity) of
biomarkers in predicting osteonecrosis risk in patients with incident osteonecrosis during
follow-up. All statistical analyses were conducted using NCSS software (v21.0.2; NCSS,
LCC); the null hypothesis was rejected when the p-value was ≤0.05.

3. Results
3.1. Characteristics of the Subjects

One-hundred and forty-six patients with Gaucher disease (70M:76F, median age
49.5 [IQR 36.7 to 61]) were included in the analysis (Table 1). Of these, 133 had a clinical
diagnosis of non-neuronopathic type 1 Gaucher disease and 13 of neuronopathic type
3 Gaucher disease. N370S/other GBA1 genotype was the commonest genotype among
the study cohort (65/146 [45%]). Other GBA1 variants included N370S/L444P (27/146
[19%]), N370S/N370S (23/146 [16%]), L444P/L444P (6/146 [6%]), L444P/other (5/146
[3%]) and other genotypes either in homozygosity (1/146 [<1%]) or heterozygosity (16/146
[11%]). Sixty-two (42.5%) patients had sustained one or multiple osteonecrosis before enrol-
ment, 11 (7.5%) patients developed a new osteonecrosis during follow-up, and 73 (50%)
patients remained free from osteonecrosis. Overall, 174 osteonecrosis events—some in-
volving multiple skeletal sites—were observed in the 73 patients with historical/incident
osteonecrosis included in this study. The most common site of osteonecrosis was the femur
(68/73 patients [93%] had sustained at least one femoral osteonecrosis).

Patients with either prior-history or incident osteonecrosis were much more likely
to have a younger age at Gaucher disease presentation (median age 8.2 years [IQR 4.2 to
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20.3] and 6.5 years [IQR 4.4 to 25.3], respectively) than those without osteonecrosis (median
age 26.5 years [IQR 13.8 to 37.8], p-value < 0.001 (Table 1)), confirming that early onset is
associated with a more severe disease course [5].

Patients with either prior-history or incident osteonecrosis showed a significantly
higher incidence of fragility fractures (16/62 [26%] and 4/11 [36%], respectively), os-
teoarthritis (35/62 [56.5%] and 10/11 [91%]), orthopaedic procedures (28/62 [45%] and 7/11
[64%], respectively) and presence of Erlenmeyer flask deformity (40/62 [64.5%] and 7 [64%])
compared with those free from osteonecrosis (fragility fractures 4/73 [5.5%], p = 0.001;
osteoarthritis 31/73 [42%], p = 0.007; orthopaedic procedures 7/73 [10%], p < 0.001; Erlen-
meyer flask deformity 24/73 [33%], p = 0.001) while the presence of lytic lesions was similar
across groups (Table 1).

Among Gaucher disease type 1 patients, GD-DS3 scores were calculated near the
study entry to assess disease severity (i.e., bone, hematologic and visceral domains and
overall disease severity score). Median GD-DS3 scores significantly differed (p < 0.001)
by osteonecrosis status and were within the mild severity range among patients without
osteonecrosis (median score 2 [IQR 1–4]), while they were in the moderate severity range
among patients with prior-history and incident osteonecrosis (median score 4 [IQR 3 to 6]
and 6 [IQR 4 to 9], respectively).

Two type 3 Gaucher disease patients in the historical osteonecrosis group had un-
dergone haematopoietic stem cell transplantation. Splenectomy was reported in 25 of the
62 (40%) patients with a prior history of osteonecrosis and in 5 of the 11 (45%) patients
with incident osteonecrosis, while only 7 of the 73 (10%) patients with no osteonecrosis had
prior history of splenectomy (p < 0.001). Most splenectomies had occurred prior to 1991, in
the pre-ERT era.

While the three groups differed very little regarding the age at which treatment was ini-
tiated, patients with a prior history of osteonecrosis and incident osteonecrosis had a longer
interval between Gaucher disease presentation and treatment initiation with Gaucher-
specific treatment (median 15.4 years [IQR 4.4–24] and 16.9 [IQR 1–30.4], respectively) than
those free from osteonecrosis (median 3 years [IQR 0.9–10.3], p < 0.001). However, the time
of treatment initiation has changed since ERT was approved in 1991. It must be noted that
6 of the 11 (55%) patients with incident osteonecrosis and 39 of the 62 (63%) with prior
history of osteonecrosis were diagnosed before 1991, compared with 22 of the 73 (29%)
patients free from osteonecrosis (p-value = 0.001). Additionally, there was an excess of
bone manifestations in the osteonecrosis groups with respect to treatment initiation: 38 of
the 62 patients with a prior history of osteonecrosis (61%) and 7 of the 11 with incident
osteonecrosis (64%) had a history of a major bone event (i.e., osteonecrosis, fragility fracture,
lytic lesion or orthopaedic procedure) prior to starting treatment, compared with 3 of 73 of
those free from osteonecrosis (4%, p-value < 0.001).

Plasma biochemistry was similar across groups, except for a significantly increased
platelet count and angiotensin-converting enzyme levels in patients with a prior history
of osteonecrosis (median 194 [IQR 160–252]; median 51 [IQR 38–80], respectively) than
those free from osteonecrosis (median 178 109/L [IQR 145–219], p = 0.043; median 40 109/L
[IQR 25–58], p = 0.040; details in Table 2). As expected, platelet counts were higher in
splenectomised patients (median 286 109/L [IQR 236 to 330]) compared with those not
splenectomised (median 173 109/L [IQR 146 to 209], p < 0.001).
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Table 2. Biochemistry parameters of the study cohort by osteonecrosis status.

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

Haemoglobin, g/L,
median (IQR)

139
(129–146.5)

136
(131–150)

137
(128–152) 0.873

White cell count, ×109/L,
median (IQR)

5.7
(4.7–7.5)

6.4
(5.0–8.4)

6.6
(3.7–9) 0.319

Platelets, ×109/L,
median (IQR)

178
(145–219)

194
(160–252)

237
(152–325)

0.043
2 ̸= 0 ‡

Alkaline phosphatase, U/L,
median (IQR)

67.5
(55.8–84)

67
(56–83)

73
(55.5–95.3) 0.864

Calcium, mmol/L,
median (IQR)

2.3
(2.3–2.4)

2.4
(2.3–2.4)

2.3
(2.3–2.4) 0.229

Corrected calcium, mmol/L,
median (IQR)

2.4
(2.3–2.5)

2.4
(2.3–2.5)

2.4
(2.4–2.4) 0.300

Vitamin D, ug/L,
median (IQR) 61.1 (43–84.5) 58.3

(39.8–82.0)
56.8

(40.1–67.7) 0.749

Vitamin B12, ng/L,
median (IQR)

405
(310–556)

399
(317.5–507)

425
(356–538) 0.861

Ferritin, ug/L,
median (IQR)

153
(76.3–535.3)

190
(119.2–371.1)

73.8
(27.8–460.5) 0.332

ACE, U/L,
median (IQR)

40
(25–58)

51
(38–80)

66
(35–87)

0.040
2 ̸= 0 ‡

Chitotriosidase, umol/L/h,
median (IQR)

303
(125.5–878)

519
(254.5–1301.5)

479.5
(199.5–2138.3) 0.128

PARC/CCL18, ng/mL,
median (IQR)

149.5
(104.3–251.5)

209
(117.3–378.8)

224
(171–391.8) 0.055

Fibrinogen, g/L,
median (IQR)

2.67
(2.02–3.17)

2.59
(2.16–2.83)

2.92
(2.66–3.1) 0.141

Continuous variables presented as median (interquartile range, IQR). ACE = angiotensin-converting enzyme;
PARC/CCL18 = CC chemokine pulmonary and activation-regulated chemokine. Kruskal–Wallis one-way ANOVA
test; ‡ Dunn’s post-hoc test (0 = osteonecrosis-free; 1 = historical osteonecrosis; 2 = incident osteonecrosis).

3.2. Circulating Markers of Angiogenesis and Bone Turnover Markers in Gaucher Disease Patients
Stratified by Osteonecrosis Status

We then studied the circulating markers of angiogenesis and bone turnover in Gaucher
disease patients stratified by osteonecrosis status (Figure 3 and Table 3). For patients with
incident osteonecrosis, samples contemporaneous to the approximate onset of osteonecrosis
were used for this analysis.

Patients with both historical and incident osteonecrosis showed a significant increase
in the levels of osteopontin (median 18,474 pg/mL [IQR 11,951.25 to 23,575.25] and median
24,113 pg/mL [IQR 13,754 to 34,091], respectively) and MMP-2 (median 116,699.5 pg/mL
[IQR 102,860.8 to 129,362.3] and median 119,970 pg/mL [IQR 113,784 to 127,694], respec-
tively) and a decrease in VEGF-C (median 304.3 pg/mL [IQR 81.05 to 471.4] and median
80.9 pg/mL [IQR 49.1 to 136.9], respectively) compared with subjects free from osteonecro-
sis (respectively, median 14,462 [IQR 10,057 to 22,202.5], p = 0.010, and median 342.4 pg/mL
[IQR 64.6 to 505.4]), p = 0.036, (Figure 3a,b,d). Decreased levels of MMP-9 were also
observed in patients with incident osteonecrosis (median 38,711 pg/mL [IQR 24,822 to
72,420]) compared with patients free from osteonecrosis (median 121,223 pg/mL [IQR
68,135.5 to 195,583.5]) and those with historical osteonecrosis (median 126,312 pg/mL [IQR
58,997–165,988.3], p = 0.001, Figure 3c).
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Figure 3. Differences in bone and angiogenesis biomarkers in Gaucher disease patients according
to their osteonecrosis status. Analysis of differences between groups indicated that patients with
Gaucher disease who experienced either historical or incidental osteonecrosis had greater levels of
(a) osteopontin (Kruskal–Wallis one-way ANOVA on ranks test: p-value = 0.010) and (b) MMP-2
(Kruskal–Wallis one-way ANOVA on ranks test: p-value = 0.017) and lower levels of (d) VEGF-C
(Kruskal–Wallis one-way ANOVA on ranks test: p-value = 0.036) compared with those osteonecrosis-
free. Patients with incident osteonecrosis had lower levels of (c) MMP-9 (Kruskal–Wallis one-way
ANOVA on ranks test: p-value = 0.001) compared with those free from osteonecrosis and those with
historical events. Boxes include the data between first and third quartiles, the central bar indicates
the median, and the whiskers show minimum and maximum values. The dots represent all patients.
In patients with Gaucher disease type 1, osteopontin was positively correlated to (e) bone disease
(r = 0.28, p-value = 0.001) and (i) disease severity (r = 0.37, p-value < 0.001), while MMP-2 was
positively correlated to (j) disease severity (r = 0.20, p-value = 0.022) but not with (f) bone disease.
MMP-9 and VEGF-C were negatively correlated to (g,h) bone disease (r = −0.23, p-value = 0.008 and
r = −0.37, p-value < 0.001, respectively) and (k,l) disease severity (r = −0.26, p-value = 0.003 and
r = −0.37, p < 0.001). The correlation between continuous variables was assessed with Spearman’s
rank correlation coefficient. GD-DS3 = Gaucher disease type 1 disease severity scoring system;
MMP = matrix metalloproteinase; ON = osteonecrosis; VEGF-C = vascular endothelial growth factor
C. (•) Osteonecrosis-free; (•) historical osteonecrosis; (•) incident osteonecrosis.
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Table 3. Bone and angiogenetic biomarkers of the study cohort by osteonecrosis.

Variable Osteonecrosis—
Free

Osteonecrosis—
Historical

Osteonecrosis—
Incident p-Value

Osteonectin, pg/mL, median
(IQR)

769,231
(508,562.5–971,934)

785,403.5
(585,508–1,003,565)

322,027
(124,400.5–857,722.5) 0.306

Osteopontin, pg/mL, median
(IQR)

14,462
(10,057–22,202.5)

18,474
(11,951.25–23,575.25)

24,113
(13,754–34,091)

0.010
1, 2 ̸= 0 ‡

Osteocalcin, pg/mL,
median (IQR)

28,629
(19,786–34,474.5)

26,751
(19,038–35,658.5)

28,341
(17,304–45,209) 0.576

MMP-1, pg/mL,
median (IQR)

4945
(1699–11,427)

5378.5
(2889.75–8872)

3058
(980–6332) 0.253

MMP-2, pg/mL,
median (IQR)

10,7193
(95,016.5–122,201)

116,699.5
(102,860.8–129,362.3)

119,970
(113,784–127,694)

0.017
1, 2 ̸= 0 ‡

MMP-3, pg/mL,
median (IQR)

12,663
(7838.5–18,749.5)

12,721.5
(9052.5–17,771.25)

12,314
(10,295–18,204) 0.627

MMP-9, pg/mL,
median (IQR)

121,223
(68,135.5–195,583.5)

126,312
(58,997–165,988.3)

38,711
(24,822–72,420)

0.001
2 ̸= 1,0 ‡

MMP-10, pg/mL,
median (IQR)

1113
(745.5–1408)

1095
(892.75–1425.25)

919
(571–974) 0.058

TIMP-1, pg/mL,
median (IQR)

299,558
(215,000.5–34,8074)

306,410.5
(190,432.5–360,033.5)

190,183
(161,362–285,583) 0.147

Osteoprotegerin, pg/mL, median
(IQR)

297
(229–381)

314
(251.75–407)

284
(239–406) 0.589

FGF, pg/mL,
median (IQR)

3
(1.85–5.1)

3.8
(2.4–6.125)

3
(2–3.7) 0.156

FLT-1, pg/mL,
median (IQR)

92.7
(70.75–113.55)

92.65
(72.1–116.8)

83.6
(67.1–127.8) 0.834

PLGF, pg/mL,
median (IQR)

6.8
(5.5–8.2)

6.1
(4.875–7.5)

5.8
(5.1–7.3) 0.098

TIE-2, pg/mL,
median (IQR)

5162
(4314.5–5693.5)

4786.5
(3964.75–5752.25)

4820
(4348–5088) 0.634

VEGF-A, pg/mL,
median (IQR)

185.7
(84.55–298.25)

182.35
(69.225–504.68)

73.1
(37–127) 0.056

VEGF-C, pg/mL,
median (IQR)

342.4
(64.6–505.4)

304.3
(81.05–471.4)

80.9
(49.1–136.9)

0.036
2 ̸= 1, 0 ‡

VEGF-D, pg/mL,
median (IQR)

1246
(1001.5–1880.5)

1260
(966–1735)

854
(696–1318) 0.072

Continuous variables presented as median (interquartile range, IQR). FGF = fibroblast growth factor; FLT-
1 = vascular endothelial growth factor receptor 1; MMP = matrix metalloproteinase; PLGF = placental growth
factor; TIE-2 = angiopoietin-1 receptor; TIMP-1 = tissue inhibitor of metalloproteinase 1; VEGF = vascular
endothelial growth factor. Kruskal–Wallis one-way ANOVA test; ‡ Dunn’s post-hoc test (0 = osteonecrosis-free;
1 = historical osteonecrosis; 2 = incident osteonecrosis).

A positive correlation was found between MMP-2 and osteopontin (r = 0.20,
p-value = 0.022) and between MMP-9 and VEGF-C (r = 0.52, p-value < 0.001, Figure 4a,b).
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Figure 4. Correlations of bone and angiogenesis biomarkers in Gaucher disease patients. In the
overall population, a positive correlation was observed between (a) MMP-2 and osteopontin (r = 0.20,
p-value = 0.022) and (b) MMP-9 and VEGF-C (r = 0.52, p-value < 0.001). Osteopontin was also
positively correlated with other markers of Gaucher disease severity, such as (c) ferritin (r = 0.42,
p-value = 0.001), (d) PARC/CCL18 (r = 0.21, p-value = 0.012), (e) ACE (r = 0.20, p-value = 0.044) and
(f) chitotriosidase (r = 0.18, p = 0.053). The correlation between continuous variables was assessed
with Spearman’s rank correlation coefficient. (•) Osteonecrosis-free; (•) historical osteonecrosis;
(•) incident osteonecrosis. ACE = angiotensin-converting enzyme; MMP = matrix metalloproteinase;
ON = osteonecrosis; PARC/CCL18 = CC chemokine pulmonary and activation-regulated chemokine;
VEGF-C = vascular endothelial growth factor C.
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In patients with Gaucher disease type 1, osteopontin positively correlated to bone
disease domain (r = 0.28, p-value = 0.001) and GD-DS3 (r = 0.37, p-value < 0.001), while
MMP-2 was positively correlated to GD-DS3 (r = 0.20, p-value = 0.022) but not to bone
disease. MMP-9 and VEGF-C were negatively correlated to both bone disease (r = −0.23,
p-value = 0.008 and r = −0.37, p-value < 0.001, respectively) and GD-DS3 (r = −0.26,
p-value = 0.003; r = −0.37, p < 0.001; details in Figure 3).

In the overall population, only osteopontin showed a positive correlation with other
markers of disease severity, such as ferritin (r = 0.42, p-value = 0.001), PARC/CCL18
(r = 0.21, p-value = 0.012), ACE (r = 0.20, p-value = 0.044) and chitotriosidase (r = 0.18,
p = 0.053, Figure 4). The lack of strong correlations between angiogenesis and bone markers
with established Gaucher disease-specific biomarkers of disease activity suggests a specific
effect of osteonecrosis on their circulating levels rather than a disease severity effect.

3.3. Sensitivity and Specificity of Angiogenesis and Bone Biomarkers for Detecting Osteonecrosis

ROC curve analyses were performed to estimate optimal cut-off values, sensitivity
and specificity for angiogenesis and bone markers to predict the risk of osteonecrosis
in Gaucher disease patients with incident osteonecrosis. We found similar area under
the receiver operating characteristic curves (AUCs) for osteopontin (0.73 [95% CI 0.56–
0.85]; sensitivity/specificity 100%/44%; cut-off value ≥ 13,085 pg/mL), MMP-2 (0.73
[95% CI 0.57–0.84]; sensitivity/specificity 100%/38%; cut-off value ≥ 101,993 pg/mL)
and VEGF-C (0.73 [95% CI 0.57–0.84]; sensitivity/specificity 82%/62%; cut-off value ≤
13,690 pg/mL; details in Figure 5a,b,d). MMP-9 showed the highest accuracy in the
prediction of osteonecrosis events (AUC of 0.84 [95% CI 0.68–0.92]; sensitivity/specificity
82%/75%; cutoff value ≤ 72,420 pg/mL; details in Figure 5c).

We further explored the predictive value of osteopontin, MMP-2, MMP-9 and VEGF-C
by testing their abundance in a subgroup of patients with incident osteonecrosis where
blood samples were available before, during and after the event and comparing their
values with those of patients who remained free from osteonecrosis. Notably, MMP-9 and
VEGF-C were significantly lower in patients with incident osteonecrosis before (p = 0.030
and p = 0.027, respectively), during (p = 001 and p = 0.004, respectively) and after (p < 0.001
and p = 0.006, respectively) the event (Figure 5g,h), suggesting their potential as predictive
biomarkers of ON in subjects at risk. Moreover, using the combination of MMP-9 and
VEGF-C and the cut-offs suggested by the ROC curve analysis, seven out of the eight
patients (88%) with samples before and during osteonecrosis were already showing values
of MMP-9 and/or VEGF-C below the cut-offs: the combination of these two biomarkers
could effectively predict the onset of osteonecrosis; however, these results need to be
validated in a larger cohort of patients with multiple data points and long-term follow-up.
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Figure 5. Accuracy of bone and angiogenesis biomarkers in predicting osteonecrosis in Gaucher
disease patients. ROC curve analysis with area under the curve, sensitivity and specificity of
(a) osteopontin, (b) MMP-2, (c) MMP-9 and (d) VEGF-C in the prediction of osteonecrosis. Cut-
offs for (e) osteopontin, (f) MMP-2, (g) MMP-9 and (h) VEGF-C in patients who remained free
from osteonecrosis and those who sustained osteonecrosis during follow-up. For each marker,
individual values are shown before, during and after the event. AUC = area under the curve;
MMP = matrix metalloproteinase; ON = osteonecrosis; VEGF-C = vascular endothelial growth factor
C. (•) Osteonecrosis-free; (•) incident osteonecrosis.
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4. Discussion

Nontraumatic osteonecrosis is a debilitating and progressive complication of Gaucher
disease that continues to represent a challenge to physicians since it is frequently associated
with the risk of joint collapse and no disease-modifying treatment exists [3]. This reflects
the lack of understanding of its underlying pathophysiology, which is a prerequisite to
developing novel therapeutic options for this disabling skeletal manifestation. However,
while the exact pathogenesis of osteonecrosis has not yet been elucidated and remains
controversial, most theories point toward the interaction of multiple factors, such as vas-
cular dysfunction, alterations of the bone–cell physiology and their microenvironment,
risk factors (e.g., corticosteroid use, alcohol abuse), and genetic predisposition, leading
to increased occurrence of ischaemia, bone death and, subsequently, the initiation of the
bone healing process [27]. In Gaucher disease, the progressive accumulation of glycolipids
within macrophages results in the release of pro-inflammatory chemokines and cytokines
that might also affect the balance of bone resorption and formation, thus contributing to
the pathophysiology of osteonecrosis [28].

Different molecules, including growth factors and MMPs, have emerged as key actors
of bone remodelling and osteonecrosis under pathological conditions: these secreted
factors physiologically maintain the homeostasis between bone matrix degradation and
reconstruction, ensuring the maintenance of the composition and mechanical characteristics
of bone tissue during bone repair [29].

In this study, we investigated the changes in circulating markers of bone turnover and
angiogenesis occurring during and after osteonecrosis in a cohort of patients with Gaucher
disease stratified according to their osteonecrosis status.

Osteopontin levels were found to be increased in both patients with historical and inci-
dent osteonecrosis compared with those free from osteonecrosis. Osteopontin, also known
as early T-lymphocyte activation 1 protein (ETA1), is a member of the SIBLING (Small
Integrin-Binding Ligand, N-linked Glycoprotein) proteins that are secreted by several
cell types, such as bone cells (i.e., osteoblasts, osteoclasts and osteocytes) and inflamma-
tory cells (e.g., macrophages); osteopontin is a substrate of MMPs (MMP-9 and, possibly,
MMP-2), and tartrate-resistant acid phosphatase (TRACP), which is increased in Gaucher
disease [30,31]. Osteopontin promotes the migration and adhesion of bone marrow mes-
enchymal cells, osteoblasts and osteoclasts on the bone resorption surface, where it regulates
bone development and maintenance [32]. Osteopontin is also a proinflammatory mediator
that activates inflammatory cells and osteoclasts and inhibits mineralisation [29,31,33]. Os-
teopontin levels thus correlate with a higher bone turnover and lower bone mineral density
and are associated with the risk of several bone-related diseases, such as osteoarthritis
and osteoporosis [32]. The elevated levels of osteopontin observed in patients with both
historical and incident osteonecrosis, as well as its correlations with several markers of
disease activity, suggest that bone remodelling goes beyond the acute event, potentially
having a role in the morphological formation and reconstruction of bone tissue after the
necrotic damage.

MMPs levels were differently expressed in patients with osteonecrosis (elevated MMP-
2 and decreased MMP-9) when compared with those free from osteonecrosis. MMP-2
and -9 are primarily produced by the osteoblasts and osteoclasts, respectively, and play a
complex role in bone formation and resorption, thus being implicated in the maintenance
of bone integrity and quality [29,34]. MMP-2 and MMP-9 also stimulate angiogenesis, a key
component of wound healing and bone repair [35–37]. MMP-9-deficient mice showed se-
vere defects in skeletal development and diminished angiogenesis, thus leading to reduced
restoration of microvascular perfusion capacity in response to ischemia [38]; moreover,
MMP-9 mRNA levels were lower in a mouse model of glucocorticoid-induced osteonecrosis
compared with controls [39], while its upregulation (e.g., after treatment with exosomes
released by bone mesenchymal stem cells in steroid-induced femoral head necrosis) pro-
moted osteogenesis and improved osteonecrosis [40]. Last, high levels of MMP-9 along
with an imbalance in the MMP-9/TIMP-1 ratio have been found in patients with idiopathic,
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alcohol- and steroid-induced nontraumatic osteonecrosis of the femoral head and correlated
with the development and severity of osteonecrosis [41]. Elevated levels of MMP-2 and de-
creased levels of MMP-9 have also been observed in patients with mucopolysaccharidosis
(MPS), suggesting that altered MMP expression may contribute to joint/bone abnormalities
in other lysosomal storage disorders [42,43]. Therefore, our results suggest that Gaucher
disease patients with osteonecrosis might suffer from an imbalance in mechanisms govern-
ing extracellular matrix catabolism, tissue remodelling, and angiogenesis: these processes
are needed to ensure adequate bone regeneration, although the underlying mechanism
may differ depending on the disease/model.

We also found that Gaucher patients with osteonecrosis had a reduction in the cir-
culating levels of VEGF-C (a critical mediator of angiogenesis) compared with subjects
who remained free from osteonecrosis. VEGFs have emerged as prominent modulators
of angiogenic–osteogenic coupling (required to obtain efficient vascularisation and bone
formation during bone repair): physiological VEGF levels modulate angiogenesis and main-
tain bone homeostasis by modulating osteoblast differentiation and bone resorption [44–48].
Moreover, several genetic polymorphisms of VEGF are associated with susceptibility to
nontraumatic osteonecrosis [49–51], while a reduction in circulating VEGF-C is associated
with the development of osteonecrosis of the jaw in patients receiving bisphosphonate [52].

Intriguingly, MMP-9 and VEGF-C were strongly correlated, and their changes were
evident before, during and after the occurrence of osteonecrosis, thus suggesting that the
molecular events that lead to their suppression (and to osteonecrosis) occur before the acute
event: these circulating factors can therefore act as predictive biomarkers of osteonecrosis.

Taken together, our results offer a novel set of potential biomarkers of osteonecrosis
in Gaucher disease as well as novel insights into the underlying mechanisms involved in
osteonecrosis, which may represent new targets for treatment.

This study has several limitations. First, the relatively small sample size, primarily
due to the rarity of Gaucher disease, may have resulted in underpowered tests for those
variables that returned non-statistically significant results. Second, this study only evalu-
ated the value of angiogenetic and bone turnover biomarkers in Gaucher disease, which
may limit the generalisability of the results. Third, the retrospective nature of this study
limited the ability to evaluate trends in biomarker profiles beyond the post-acute setting
after incident osteonecrosis. Last, research samples were stored for different lengths of time
(from 1 to 4 years); therefore, we cannot exclude an effect of different storage times on the
analyses.

5. Conclusions

In conclusion, the understanding of the mechanisms that underlie the onset of os-
teonecrosis in GD patients is in its infancy. A timely diagnosis of osteonecrosis, as well as
the capability to identify patients at risk, is a priority to prevent this painful GD compli-
cation and its progression. Hence, there is a need for biomarkers to stratify patients at a
higher risk of osteonecrosis. To the best of our knowledge, this is the first evidence that an
increase in circulating osteopontin and MMP-2 and a reduction in MMP-9 and VEGF-C
levels are directly linked to osteonecrosis in Gaucher disease. Our data point to several
potential candidate biomarkers of atraumatic osteonecrosis, with combined MMP-9 and
VEGF-C being the most promising. These results prompt the need for validation in a larger
longitudinal cohort.
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