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Abstract: Microbes produce various bioactive metabolites that can influence plant growth and stress
tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified
as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14
genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and
carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs),
specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi.
The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment
with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-
responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings,
causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these
characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated
seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting
the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity.
Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under
drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally,
exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress.
MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis.
Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin,
jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved
in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore,
MlS14 treatment increased the expression of several transcription factors associated with stress
responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played
significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and
carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways
essential for growth and adaptation to abiotic stress.

Keywords: microbial IAA; microbial carotenoids; auxin signal; ABA signal

1. Introduction

Rhizobacteria from different ecological niches exhibit diverse interactions with their
host plants, driven by the wide array of microbial metabolites that define these distinctive
plant–microbe relationships [1]. Indole-3-acetic acid (IAA), the most common auxin, is
produced by various microorganisms [2]. Auxin, a plant hormone, is essential for root
growth and development by regulating root gravitropism, facilitating lateral root formation,
and promoting root hair development [3]. Microorganisms isolated from the rhizosphere
of different crops can synthesize IAA as a secondary metabolite, promoting the growth of
lateral roots and root hairs, which are essential for nutrient uptake [4]. Siderophores are
small molecules synthesized by bacteria to capture iron from the environment. This process
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can enhance iron absorption in plants colonized by these microorganisms. Since iron is
essential for all living organisms, siderophores sequester iron, reducing its availability to
plant pathogens and thereby indirectly promoting plant growth and health [5].

Volatile organic compounds (VOCs) produced by microorganisms function as signal-
ing molecules, facilitating communication among different microbial species. Additionally,
these microbial VOCs can inhibit or eliminate competing fungi or bacteria [6]. Moreover,
VOCs emitted by rhizobacteria have the ability to modify root architecture in host plants,
thereby enhancing plant growth [7]. These VOCs can also enhance plant defense responses
against pathogens by triggering phytohormone-dependent signaling pathways [8]. Cer-
tain VOCs, such as acetoin and 2,3-butanediol, can promote plant growth by stimulating
root development, enhancing nutrient uptake, and triggering systemic resistance against
pathogens [9]. Microorganisms also synthesize various types of terpenoid VOCs that
exhibit antioxidant and antimicrobial activities [10].

Microorganisms produce various types of pigment compounds that are crucial for their
survival, protection, and interactions within their ecosystems. For example, carotenoids
are yellow, orange, or red pigments that protect microorganisms against oxidative damage
and UV radiation [11]. In plant cells, carotenoid pigments have antioxidant properties that
help reduce oxidative stress and improve photosynthetic efficiency [12]. Spermidine is a
polyamine that performs several essential functions in microorganisms, including facilitat-
ing biofilm formation, which is crucial for surface attachment, and providing protection
against environmental stressors such as oxidative stress [13]. Microbial spermidine can
function as a stress alleviator in colonized plants. Spermidine produced by Bacillus mega-
terium increases plant abscisic acid (ABA) levels, promoting plant growth and enhancing
drought stress tolerance [14]. Furthermore, spermidine secreted by B. subtilis strain OKB105
reduces plant ethylene levels, consequently enhancing plant growth [15]. Ethylene is a
gaseous plant hormone that plays a significant role in stress-related responses, including
growth inhibition, senescence, and tissue damage [16].

In natural environments, plants are subjected to various biotic and abiotic stresses. A
common response to these stressors is the accumulation of reactive oxygen species (ROS),
which can negatively impact plant growth and development [17]. Various plant hormones
orchestrate adaptive physiological responses that enable plants to withstand the adverse
effects of environmental stress. Among these, ABA is a key plant hormone that regulates
adaptive responses to various abiotic stress conditions [18]. It enhances stress tolerance
by controlling stomatal closure to reduce water loss during osmotic stress, modifying root
architecture to improve water and nutrient uptake, and activating antioxidant systems to
counteract oxidative stress induced by environmental challenges [19–21]. Salicylic acid (SA)
and jasmonic acid (JA) are crucial signaling molecules in plant defense mechanisms, with
SA primarily involved in systemic acquired resistance (SAR) and JA playing a key role in
induced systemic resistance (ISR) [22]. Additional roles of SA and JA in regulating abiotic
stress tolerance have been identified. Both SA and JA can enhance antioxidant activity to
manage oxidative stress under stressful environmental conditions [23,24]. Accumulating
evidence supports that PGPR are highly effective at enhancing plant tolerance to abiotic
stress. The rhizobacterial strain B. mycoides enhances tolerance to drought and heat stress
and activates JA and SA signaling pathways in Arabidopsis [25]. The B. licheniformis strain
CH102, which produces significant antifungal VOCs, improves plant growth vigor under
dehydration and high-temperature conditions. The application of this strain activated
genes associated with the JA and ABA signaling pathways [26]. Additionally, a spermidine-
producing B. megaterium strain activates ABA signaling to improve plant tolerance to water
deficit [14].

Micrococcus bacterial strains isolated from diverse environments exhibit the ability
to break down xenobiotic compounds and produce compounds with antioxidant and an-
timicrobial properties [11,27]. The Micrococcus genus has the ability to survive in extreme
environments. M. luteus SA211 has been identified as capable of tolerating high concentra-
tions of LiCl [28]. The M. luteus strain AS2 is resistant to heavy metals [27]. However, the
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bioactive metabolites produced by M. luteus that promote plant growth and enhance stress
tolerance remain unclear. In this study, MlS14 was identified as a new rhizobacterial strain
of M. luteus. Using de novo whole-genome assembly methods, three major gene groups
associated with the synthesis of metabolites, including IAA, terpenoids, and carotenoids,
were identified in the MlS14 genome. The plant growth-promoting functions of MlS14
were confirmed in Arabidopsis seedlings, including improvements in root development,
enhanced photosynthetic efficiency, and the activation of antioxidant defenses. Arabidopsis,
a well-established model organism, offers in-depth insights into the molecular mechanisms
that respond to abiotic stress [29]. Our results show that MlS14 treatment increased toler-
ance to abiotic stresses such as drought, heat, and salinity. Additionally, MlS14 triggered
the expression of genes involved in various hormone signaling pathways, including ABA,
auxin, JA, and SA.

2. Materials and Methods
2.1. Identification of the Bacterial Strain
2.1.1. Analysis of 16S rDNA Sequence

The bacterial strain S14 was isolated from compost prepared as a plant growth substrate.
The bacterial genomic DNA was isolated by following the procedure described by Griffiths
et al. (2000) [30]. The PCR fragment using primers targeting the 16S rDNA sequence was
analyzed using a 3730 DNA Analyzer (Applied Biosystems®; Foster City, CA, USA). The
forward and reverse PCR primer sequences were 5′AGAGTTTGATCCTGGCTCAG3′ and
5′ACGGTTACCTTGTTACGACTT3′, respectively. The 16S rDNA sequences were examined
using the Basic Local Alignment Search Tool (BLAST) available in the NCBI database
(https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 1 September 2023). The genomic
DNA of strain S14 was fragmented and used to prepare the whole genome sequence
assembly of strain S14, following the procedures described in Chang et al. (2024) [31].

2.1.2. De Novo Whole Genome Assembly

Bacterial genomic DNA was fragmented, and fragments exceeding 400 bp were pu-
rified for the construction of a genomic DNA library using the Celero DNA-Seq Library
Preparation Kit (Tecan Genomics, CA, USA). Paired-end DNA sequencing was performed
using the Illumina MiSeq system (Illumina, Inc., San Diego, CA, USA). The resulting DNA
sequences were analyzed according to the procedures described by Tsai et al. (2023) [32].

2.2. Analysis of Bioactivity of Microbial Metabolites
2.2.1. IAA Production

The isolated strain was cultured on nutrient agar (NA) and in nutrient broth (NB)
medium for 3 days to assess its bacterial morphology. To measure the IAA concentra-
tion, 1 mL of the supernatant from bacterial cultures grown in LB broth with tryptophan
(2 mg/mL) for 24, 48, and 72 h was combined with 2 mL of Salkowski reagent [33] and left
to react at room temperature for 30 min. The absorbance at 530 nm was measured, and the
IAA concentration was determined by comparison with a standard curve.

2.2.2. Antifungal Activity

To detect the antifungal activity of volatile metabolites produced by isolated bacterial
strain, methods outlined by Tsai et al. (2023) were adopted [32]. The tested bacterial strain
and the targeted fungal pathogens, including Fusarium oxysporum f. sp. cubense tropical race
4 (Foc TR4) and F. solani, were cultured separately on PDA medium. The fungal plate was
inverted and positioned on top of the bacterial plate, then sealed with parafilm. These co-
cultures of the tested bacterial strain and targeted fungal pathogens were incubated at 28 ◦C
for 4 days. The inhibition rate (I) was calculated using the formula I = (1 − T/C) × 100,
where C and T represent the mycelium diameter of fungal pathogens co-cultured with H2O
and the tested bacterial strain, respectively. The mean and standard error of the mycelium
inhibition rate were determined based on the results from three replicates.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.2.3. Salt Stress Resistance and Phosphate Solubilizing Activity

To analyze salt stress resistance, the bacterial strain was cultured in LB medium
supplemented with NaCl to achieve final concentrations of 1%, 2%, 4%, 6%, 8%, and 10%.
The absorbance of the bacterial culture at 600 nm was measured after overnight incubation.
To analyze phosphate solubilizing activity, Pilovskaya’s (PVK) agar medium was prepared
according to the method described by Chang et al. (2023) [34]. A single colony was
inoculated at the center of the Pilovskaya’s (PVK) agar plate and incubated at 28 ◦C for
14 days. The formation of a clear zone around the colony indicates phosphate solubilizing
activity. To quantify phosphate solubilizing activity, supernatants obtained from bacterial
cultures grown in PVK broth for 3 days were mixed with Vanadate–Molybdate reagent,
and the absorbance was measured at 470 nm after 1 h of reaction. Phosphate solubilizing
activity was then determined using a standard curve.

2.2.4. Nitrogen Fixation Activity

Qualitative analysis of nitrogen fixation activity was conducted by inoculating a single
bacterial colony into Jensen’s medium containing 2% sucrose, 0.1% K2HPO4, 0.05% MgSO4,
0.5% NaCl, 0.01% FeSO4, 0.0005% Na2MoO4·2H2O, 0.2% CaCO3, and 0.04% bromothymol
blue, and incubating it at 28 ◦C for 3 days. The nitrogen-fixing ability of the strain was
evaluated based on the color change of the medium. This nitrogen fixation activity was
quantified by adding the bacterial culture to Jensen’s medium and culturing for an addi-
tional 3 days. Supernatants from the bacterial cultures were collected, and the absorbance
at 630 nm was measured. Percentage of biological nitrogen fixation (BNF) was calculated
using the formula (ODreference − ODsample)/ODreference × 100, as described by Sharma and
Saharan (2017) [35].

2.3. Plant Growth Promotion Analysis
2.3.1. Histochemical Staining of β-Glucuronidase (GUS)

Four-day-old seedlings of Arabidopsis thaliana containing the BA3::GUS construct
were co-cultured with the tested bacterial strain for six days at 23 ◦C under a 16 h light
condition. The histochemical analysis of GUS activity was conducted by following the
methods described by Jefferson et al. (1987) [36]. The seedlings were then soaked in a
staining solution containing 50 mM NaHPO4 (pH 7.0), 1 mM 5-bromo-4-chloro-3-indolyl-
β-D-glucuronide (X-Gluc), 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6·3H2O, and 0.1% Triton
X-100, and incubated at 37 ◦C for one hour. Subsequently, the tissues were decolorized
with 95% ethanol.

2.3.2. Root Growth Assay

To investigate the interaction between the isolated bacterial strain and plant roots,
four-day-old seedlings of A. thaliana ecotype Columbia were transferred to 1/2 MS medium
and co-cultured with bacterial inoculants at 23 ◦C under a 16 h light condition. After six
days of co-cultivation, the number of lateral roots and root hairs was recorded.

2.3.3. Analysis of Plant Growth Promotion Effect

Two-week-old Arabidopsis seedlings, grown at 23 ◦C under a 16 h light condition, were
treated with the isolated bacterial strain at a density of 1 × 108 CFU/mL once a week
for three consecutive weeks. The bacterial isolate was prepared following the procedure
described by Tsai et al. (2023) [32]. The fresh weight of the plants was then recorded.
A fresh weight of 0.1 g of leaf tissue was extracted in 1 mL of 99% ethanol for 30 min
to quantify chlorophyll content, as described by Lichtenthaler (1987) [37]. Following
this, supernatants were collected and the absorbance was measured at wavelengths of
664 nm and 648 nm. The chlorophyll content (mg/mL) was calculated using the formula
5.24 × OD664 + 22.24 × OD648. The procedure described by Yemm and Willis (1954) [38]
was adopted to assay the total sugar content in Arabidopsis seedlings after a three-week
treatment. A fresh weight of 0.1 g of leaf tissue was ground in 1 mL of 80% ethanol. The
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extract was dried, resuspended in water, and used to react with 0.4% anthrone solution
prepared in concentrated sulfuric acid. The reaction mixture was placed in boiling water
for 10 min. The absorbance at a wavelength of 600 nm was measured, and the total sugar
content (µg/g) was calculated using a standard curve. To detect starch accumulation, the
procedure described by Tsai et al. (2009) [39] was performed. Arabidopsis seedlings were
dechlorophyllized by boiling in 95% ethanol for 3 min, followed by overlaying 100 µL of
Lugol’s solution onto the seedlings and waiting until the leaf samples turned blue-black.
Starch content was quantified by boiling Arabidopsis seedlings in 80% ethanol, followed by
mixing 900 µL of the boiled solution with 100 µL of Lugol’s solution. The absorbance of the
mixture was measured at 620 nm, and the starch content (mg/mL) was calculated using a
standard curve.

2.3.4. Antioxidant Enzyme Activity, Glucosinolates and Total Phenolic Compounds (TPC)

Arabidopsis seedlings were ground in an extraction buffer containing 50 mM potassium
phosphate, pH 7, 0.2 mM EDTA, and 1% polyvinylpyrrolidone (PVP). The supernatant was
collected for the analysis of antioxidant enzymes, including ascorbate peroxidase (APX) and
guaiacol peroxidase (POD), following the procedures described by Chang et al. (2023) [34].
Secondary metabolites, including glucosinolates and TPC, were also analyzed. To measure
glucosinolate content, Arabidopsis leaf tissues were extracted with 80% methanol, and the
glucosinolate content was determined following the procedures described by Mawlong
et al. (2017) [40]. To quantify the TPC content, the acetone extract of leaf tissues was added
to Folin–Ciocalteu reagent, and the TPC content was determined following the procedures
described by Deng et al. (2013) [41]. The TPC content was calculated using a standard
curve prepared with known concentrations of gallic acid, and the results were reported
in milligrams of gallic acid equivalents (GAE) per gram of extract. All analyses were
performed in triplicate.

2.3.5. Western Blot Analysis

Tissues of three-week-old seedlings treated with bacterial culture were collected for
protein extraction using methods described by Wang et al. (2003) [42]. Here, 15 µg of
total protein was resolved on 10% SDS-PAGE gels and polyclonal antibodies against
APX, glutathione peroxidase (GPX), dehydroascorbate reductase 1 (DHAR1), FtsZ1/2,
protochlorophilide oxidoreductase (POR), cytosolic fructose-1,6-bisphosphatase (cFBPase),
and fructose-1,6 bisphosphate aldolase (ALD) were used for hybridization. All antibodies
were obtained from Agrisera (Vännäs, Sweden). Hybridization images were captured using
a Chemi-Smart 5000 (Vilber Lourmat, Mlv, France).

2.4. Analysis of Abiotic Stress Response
2.4.1. Drought Stress Tolerance

Two-week-old Arabidopsis seedlings grown at 23 ◦C under 16 h light conditions were
treated with an isolated bacterial strain at a concentration of 1 × 108 CFU/mL. After treat-
ment, the seedlings were subjected to five days of water deprivation, and cellular oxidative
stress was evaluated by measuring H2O2 levels and the accumulation of malondialdehyde
(MDA), a product of lipid peroxidation. To analyze H2O2 content, 0.1 g of leaf tissue was
ground in 1 mL of 80% ethanol, and the resulting supernatant was collected to quantify
H2O2 using the ferrous ion oxidation xylenol orange (FOX) method described by Delong
et al. (2002) [43]. The MDA content was quantified by grinding 0.1 g of leaf tissue in 1 mL
of 0.25% thiobarbituric acid (TBA) dissolved in 10% trichloroacetic acid (TCA). The mixture
was heated at 95 ◦C for 15 min, and the absorbance of the supernatant was measured at
532 nm and 600 nm. MDA content was determined using the equation provided by Heath
and Packer (1968) [44]. After seven days of dehydration, the wilted seedlings were scored.
Water was then reintroduced to the dehydrated seedlings, and their fresh weights were
measured seven days later.
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2.4.2. Heat Stress Tolerance

To assess heat stress tolerance, two-week-old Arabidopsis seedlings treated with the
isolated bacterial strain were subjected to 45 ◦C for 10 min. The heat-stressed seedlings
were then analyzed for H2O2 and MDA levels as described above. To examine phenotypic
responses to heat stress tolerance, Arabidopsis seedlings treated with the isolated bacterial
strain underwent exposure to 45 ◦C for 20 min, after which they were shifted to a growth
temperature of 23 ◦C. Seedling wilting was evaluated 24 h post-treatment, and fresh weights
were measured following a seven-day recovery period at 23 ◦C.

2.4.3. Salt Stress Tolerance

To assess salt stress tolerance, two-week-old Arabidopsis seedlings treated with the
bacterial culture were irrigated with 200 mM NaCl every two days for a total of three
treatments. After completing the salt stress treatment, the fresh weights of the seedlings
were measured. Analyses of chlorophyll, starch, H2O2, and MDA levels were conducted
following the methods described above.

2.5. qPCR Analysis

Leaf tissues of three-week-old Arabidopsis seedlings treated with bacterial culture were
used to extract total RNA following the method described Parcy et al. (1994) [45]. Here,
1 µg of total RNA was used to synthesize cDNA using ImProm-II™ reverse transcriptase
(Promega, Madison, WI, USA). The resulting cDNA was used to perform qPCR analy-
sis using SYBR Green Master Mix in the StepOneTM Real-Time PCR System (Thermo
Fisher). Primer sequences targeting gene-specific regions were designed based on specific
criteria, including a G/C content of 40–60% and a melting temperature range of 58–60 ◦C,
as reported by Chester and Marshak (1993) [46]. The primer sequences used in qPCR
amplification are listed in Supplementary Table S1. The qPCR amplification conditions
started with an initial denaturation at 95 ◦C for 10 min, followed by 40 cycles consisting
of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 20 s, and extension at 72 ◦C for
32 s. Relative gene expression levels were calculated using the 2−∆∆Ct method, with actin 2
(ACT2) serving as the reference gene for normalization.

2.6. Statistical Analysis

Treatment means were analyzed with SAS statistical software (version 3.8) using
ANOVA and Tukey’s test. Differences were considered statistically significant at a p-value
below 0.05. The results are presented as the mean ± SD based on three replicates.

3. Results and Discussion
3.1. Characterization of Strain S14

The 16S rDNA sequence amplified from the genomic DNA of strain 14 showed 99%
sequence identity to bacterial strains of the Micrococcus genus (Figure 1A). The de novo
assembly of the whole genome of strain S14 revealed 2180 open reading frames (ORFs)
that were identified, showing 91.24% sequence similarity to a strain of the M. luteus species
(Figure 1B). Therefore, this bacterial strain was designated as MlS14. The genome size of
MlS14 is approximately 2.4 Mb, with a GC content of 73.1%, similar to that of other bacterial
species in this genus [47]. Genes responsible for synthesizing nine categories of metabolites
that potentially regulate plant growth were discovered in the MlS14 genome. Of these,
the three largest groups of gene clusters were those responsible for the synthesis of IAA,
terpenoids, and carotenoids (Figure 1C). Genes associated with plant growth-promoting
traits (PGPTs) identified in the MlS14 genome are listed in Table 1.



Microorganisms 2024, 12, 2283 7 of 22

Microorganisms 2024, 12, x FOR PEER REVIEW 7 of 22 
 

 

bacterial species in this genus [47]. Genes responsible for synthesizing nine categories of 
metabolites that potentially regulate plant growth were discovered in the MlS14 genome. 
Of these, the three largest groups of gene clusters were those responsible for the synthesis 
of IAA, terpenoids, and carotenoids (Figure 1C). Genes associated with plant growth-pro-
moting traits (PGPTs) identified in the MlS14 genome are listed in Table 1. 

 
Figure 1. Identification of MlS14. (A) The BLAST search results of the 16S rDNA sequences of Mi-
crococcus sp. (B) The BLASTN results of the genome sequence. (C) Gene groups identified in the 
MlS14 genome associated with plant growth-promoting traits. 

Table 1. The PGPT-associated genes. 

Acc. No. Gene Acc. No. Gene 
IAA synthesis 
WP_206480477 trpA EFD51043 trpB 
WP_098471668 trpC WP_206481878 trpB 
WP_101962912 trpD WP_060774686 trpE 
Spermidine synthesis 
WP_041103603 speE WP_002855478 speE 
Proline synthesis 
PFH05939 prodh PZP23918 proC 
Siderophore synthesis 
PFH06113 entC   
Polyketide synthesis 
WP_049159382 polyketide cyclase   
Terpenoids synthesis 
WP_192592997 CMK WP_095347529 ispDF 
WP_049158409 ispA OOL27499 ispG 
WP_065572632 ERG9   
Phosphate solubilizing 

Figure 1. Identification of MlS14. (A) The BLAST search results of the 16S rDNA sequences of
Micrococcus sp. (B) The BLASTN results of the genome sequence. (C) Gene groups identified in the
MlS14 genome associated with plant growth-promoting traits.

Table 1. The PGPT-associated genes.

Acc. No. Gene Acc. No. Gene

IAA synthesis
WP_206480477 trpA EFD51043 trpB
WP_098471668 trpC WP_206481878 trpB
WP_101962912 trpD WP_060774686 trpE

Spermidine synthesis
WP_041103603 speE WP_002855478 speE

Proline synthesis
PFH05939 prodh PZP23918 proC

Siderophore synthesis
PFH06113 entC

Polyketide synthesis
WP_049159382 polyketide cyclase

Terpenoids synthesis
WP_192592997 CMK WP_095347529 ispDF
WP_049158409 ispA OOL27499 ispG
WP_065572632 ERG9

Phosphate solubilizing
WP_201294449 phoD
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Table 1. Cont.

Acc. No. Gene Acc. No. Gene

Nitrogen fixation
WP_073115524 nif3

Carotenoid synthesis
WP_020626540 ubiA PFH06102 crtI
WP_049158405 crtYg WP_126860818 crtYh

The MlS14 genome contains five genes from the trp operon involved in the synthesis
of tryptophan, a precursor for IAA synthesis via tryptophan-dependent pathways [48].
Genes associated with terpenoid synthesis in the MlS14 genome include CMK, ERG9, ispA,
ispDF, and ispG [49–51]. MlS14 also harbors multiple genes, including crtI, crtYg, and
crtYh, which are involved in the biosynthesis of the C50 carotenoid sarcinaxanthin, which
accumulates in M. luteus [52]. Additionally, MlS14 contains the ubiA gene, encoding a
prenyltransferase that participates in C50 carotenoid biosynthesis [53]. Genes identified
in the MlS14 genome show potential to produce metabolites including IAA, terpenoids
and carotenoids. Microbial IAA is a natural form of auxin. IAA-producing rhizobacteria
enhance plant growth by influencing root development, potentially improving nutrient
acquisition efficiency and boosting plant growth vigor [48]. Terpenoids and carotenoids
exhibit both antioxidant and antimicrobial bioactivity [54,55].

A coding sequence in the MlS14 genome gene was identified to be phoD, an alkaline
phosphatase that plays a significant role in phosphate solubilizing activity in various PG-
PRs [56]. The nif3 gene [57], associated with nitrogen fixation, was also discovered in the
MlS14 genome. The microbial activity of phosphate solubilizing and nitrogen fixation
can increase soluble phosphate and nitrogen availability for plant nutrient supply [58].
Moreover, gene sequences such as speE, involved in the biosynthesis of the polyamine
spermidine, and proC and proDH, responsible for proline synthesis, were identified in the
MlS14 genome. Spermidine is a polyamine that plays several essential roles in microor-
ganisms, including promoting biofilm formation, which is vital for microbial survival [59].
Furthermore, spermidine acts as a free radical scavenger, helping to reduce oxidative dam-
age [60]. Research indicates that beneficial rhizobacteria can boost plant growth under salt
stress conditions by producing spermidine [61]. Proline is an amino acid that serves as
an osmoprotectant, accumulating in many bacterial and plant cells in response to osmotic
stress [62]. The genomic sequence of MlS14 revealed the presence of entC, a gene essential
for the production of the siderophore enterochelin, along with a gene encoding polyketide
cyclase, which plays a role in the synthesis of polyketides [63]. Enterochelin demonstrates
iron-scavenging activity and is employed as a biocontrol agent [64]. The primary function
of microbial polyketides is to serve as antimicrobial agents [65].

3.2. Analysis of Growth-Promoting Traits of MlS14

The genome of MlS14 revealed multiple ORFs involved in the synthesis of IAA
(Table 1). When evaluated for IAA production in the presence of 2 mg/mL tryptophan,
MlS14 exhibited a steady increase in IAA levels over time. Notably, MlS14 produced
approximately 29 ppm, 85 ppm, and 141 ppm of IAA on the first, second, and third days of
culture, respectively (Figure 2A). MlS14 produced 29–141 ppm of IAA over a three-day cul-
ture, categorizing it as a high IAA producer, since bacteria that can produce up to 200 ppm
of IAA are considered part of this group [66]. These results support the characterization of
the Micrococcus genus as a high IAA producer [67]. Five genes linked to the synthesis of
terpenoids were identified in the MlS14 genome (Table 1). Terpenoids are notable VOCs
produced by microorganisms. [68]. In addition to their antioxidant activity, various ter-
penoid metabolites have been observed to exhibit significant antimicrobial activity [10].
In this study, MlS14-produced volatile compounds showed antifungal activity, suppress-
ing the mycelial growth of Foc TR4 and F. solani, the pathogens responsible for banana
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Fusarium wilt and Phalaenopsis orchid yellow leaf disease, respectively (Figure 2B,C). Four
genes responsible for encoding proteins involved in carotenoid metabolite synthesis were
identified (Table 1). As a result, MlS14 consistently displayed a yellow colony morphology
when cultured on nutrient agar and caused the nutrient broth to turn orange after 72 h
of incubation (Figure 2D,E). The carotenoid biosynthesis pathway was identified in M.
luteus [52]. Carotenoids produced in Micrococcus sp. exhibit antioxidant and antibacterial
activity [11]. Bacteria are capable of synthesizing a range of osmoprotectants, including
glycine betaine, trehalose, and proline, to safeguard themselves against osmotic stress [69].
Two genes in the genome of MlS14 were identified as being involved in the synthesis of
proline (Table 1). To evaluate the salt stress tolerance of MlS14, the bacterial culture was
grown in media supplemented with varying NaCl concentrations ranging from 1% to 10%.
As shown in Figure 2F, the growth of MlS14 was significantly reduced in the presence
of 8% NaCl. The MlS14 genome was found to contain the phoD and nif3 gene copies,
which are associated with phosphate solubilizing and nitrogen fixation activities, respec-
tively [56,57]. However, our results demonstrate that MlS14 exhibited low activity levels
in both phosphate solubilization and nitrogen fixation. When grown on PVK medium,
a small clear zone was observed around the MlS14 colony after 14 days of cultivation,
and the quantified phosphate-solubilizing activity was approximately 5 ppm after three
days of incubation (Figure 2G). MlS14 grew slowly and showed approximately 3% BNF
(Figure 2H). These findings suggest that the primary bioactive metabolites produced by
MlS14 that may promote plant growth are IAA, terpenoids, and carotenoids.
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expression in a transgenic plant containing the BA3::GUS promoter construct, an auxin-
inducible promoter [70]. IAA, the predominant naturally occurring auxin in plant cells, is 

Figure 2. Characterization of MlS14. (A) IAA production after 24, 48, and 72 h of culture. Antifungal
activity of VOCs produced by MlS14 suppressing mycelial growth of Fusarium oxysporum f. sp. cubense
tropical race 4 (Foc TR4) (B) and F. solani (C). Yellow pigment accumulated in the bacterial colonies (D)
and culture (E). MlS14 culture under various NaCl concentrations (F). Phosphate-solubilizing activity
in PVK medium (arrow indicating clear zone area) (G). Detection of nitrogen fixation activity in
Jensen’s medium (arrow indicating colony location) (H). In each histogram, different letters indicate
statistical significance at p = 0.05.

3.3. Root Architecture Affected by MlS14

MlS14 produced a significant amount of IAA (approximately 141 ppm) after three-
day culture (Figure 2A). As shown in Figure 3A, the treatment of MlS14 activated GUS
expression in a transgenic plant containing the BA3::GUS promoter construct, an auxin-
inducible promoter [70]. IAA, the predominant naturally occurring auxin in plant cells,
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is essential for regulating lateral root development [71]. However, high concentrations
of exogenous auxin can inhibit primary root elongation [72]. Co-culturing Arabidopsis
seedlings with MlS14 resulted in changes in root architecture, including shortened primary
root growth and increased lateral root growth (Figure 3B). Moreover, the number of lateral
roots in the seedlings co-cultured with MlS14 was significantly higher than in the control
seedlings (Figure 3C). In the MlS14-treated seedlings, both the density and length of root
hairs increased (Figure 3D,E). Comparable changes in root architecture were observed
in Arabidopsis seedlings inoculated with a different M. luteus strain. Moreover, these
root phenotypic modifications depend on auxin signaling components [4]. Consistently,
MlS14 was able to activate the expression of GUS driven by a promoter containing auxin-
responsive elements, indicating the activation of auxin signaling in response to MlS14
treatment. Our results suggest that MlS14 is a high IAA producer, a potent promoter of root
development, and a strong activator of the auxin signaling pathway in Arabidopsis seedlings.
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Figure 3. Root development affected by MlS14. (A) Histochemical localization of GUS reporter
activity in the roots tissues. Six days after co-culture with MlS14, Arabidopsis seedlings exhibited
changes in root architecture (B), lateral root number (C), root hair morphology (D), and root hair
density (E). In each histogram, different letters indicate statistical significance at p = 0.05.

3.4. MlS14 Promoted Growth and Altered Metabolism in Arabidopsis

In soil-grown Arabidopsis seedlings, treatment with MlS14 led to an increase in seedling
size and fresh weight (Figure 4A,B). Seedlings treated with MlS14 exhibited significantly
higher chlorophyll and total soluble sugar content (Figure 4C,D). Additionally, the MlS14-
treated seedlings showed increased blue-black staining due to the starch–iodine reaction
(Figure 4E) and accumulated greater amounts of starch in the leaf tissues (Figure 4F).
To further confirm the effect of MlS14 on plant growth, the levels of proteins linked to
chloroplast function and photosynthesis efficiency were analyzed. As shown in Figure 4G,
treatment with MlS14 led to the accumulation of proteins related to photosystem function,
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including FtsZ1 for chloroplast division [73] and protochlorophyllide oxidoreductase (POR)
for chlorophyll biosynthesis [74], as well as cytosolic fructose-1,6-bisphosphatase (cFB-
Pase) and fructose-1,6-bisphosphate aldolase (ALD), both associated with photosynthesis
efficiency [75,76]. Exogenous IAA was found to be able to enhance plant photosynthesis
rate [77]. Moreover, CO2 produced by bacterial respiration in the roots can be transported
to the shoot and utilized for photosynthesis. After endophyte colonization, the host plant
undergoes changes in its photosynthetic apparatus, resulting in greater photosynthetic
efficiency, which in turn stimulate shoot growth and increase plant fresh weight [78]. Our
results demonstrate that MlS14 is a potent enhancer of plant photosynthesis, potentially due
to increased IAA signaling or elevated CO2 levels following its colonization in plant roots.
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Figure 4. MlS14 promoting Arabidopsis growth and metabolism. (A) Treatment of MlS14 increased
plant size (A) and fresh weight (B). The leaf tissues were used to analyze the chlorophyll content (C)
and total sugar content (D). Lugol’s iodine solution was used to detect starch–iodine complexes (E),
and the extracted starch was quantified (F). Total proteins isolated from MlS14-treated tissues were
used for Western blot analysis with antibodies against proteins, including FtsZ1, protochlorophyllide
oxidoreductase (POR), cytosolic fructose-1,6-bisphosphatase (cFBPase), and fructose-1,6-bisphosphate
aldolase (ALD). An asterisk indicates Ponceau-stained gels used to verify equal protein loading in
each lane (G). In each histogram, different letters indicate statistical significance at p = 0.05.

3.5. MlS14 Activated Antioxidant Defense in Arabidopsis

Treatment with MlS14 enhanced the antioxidant defense system, including the activa-
tion of antioxidant enzymes such as ascorbate peroxidase (APX) and guaiacol peroxidase
(POD) (Figure 5A,B), as well as the production of secondary metabolites, including glucosi-
nolates and phenolic compounds (Figure 5C,D). Western blot analyses also revealed the
increased accumulation of proteins involved in the ROS scavenging system, including APX,
GPX, and DHAR1, in Arabidopsis seedlings responding to MlS14 treatment (Figure 5E). APX
and DHAR are components of the ascorbate–glutathione cycle [79]. In plants, GPX activity
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is often linked to glutathione transferase (GST) activity, playing a role in detoxifying toxic
molecules generated under stress conditions [80]. In addition to antioxidant enzymes,
MlS14 induced the accumulation of glucosinolates and TPC, both of which possess an-
tioxidant activity [81]. Research has shown that bacterial strains from the Micrococcus
genus can stimulate plant antioxidant enzymes [82,83]. In contrast, our findings suggest
that MlS14 treatment effectively activates the antioxidant defense system in Arabidopsis
seedlings, including the ascorbate–glutathione cycle and secondary metabolites with ROS
scavenging properties.
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Figure 5. Antioxidant defense system activated by MlS14. Leaf tissues of Arabidopsis seedlings treated
with MlS14 were harvested for analyses of antioxidant enzymes’ activity including APX (A) and POD
(B), as well as secondary metabolites including glucosinolates (C) and total phenolic compounds
(TPC) (D). Total proteins extracted from Arabidopsis tissues were analyzed by Western blot using
antibodies against proteins, including APX, glutathione peroxidase (GPX), and dehydroascorbate
reductase 1 (DHAR1). An asterisk indicates Ponceau-stained gels used to verify equal protein loading
in each lane (E). In each histogram, different letters indicate statistical significance at p = 0.05.

3.6. MlS14 Alleviating Drought Stress Impact in Arabidopsis

To evaluate the protective effect of MlS14 on Arabidopsis seedlings under drought stress,
two-week-old seedlings treated with MlS14 were subjected to water-restricted conditions.
Five days after the cessation of water supply, MlS14-treated seedlings showed reduced
levels of H2O2 and MDA production compared to the control group (Figure 6A,B). After
seven days of water-restricted conditions, a higher percentage of MlS14-treated seedlings
remained unwilted, with approximately 69% of the treated plants remaining unwilted
compared to around 52% in the control group (Figure 6C). Seven days after rewatering,
the MlS14-treated seedlings showed a larger plant size compared to the control seedlings
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(Figure 6D). Moreover, the fresh weight of the MlS14-treated seedlings was approximately
66% higher than that of the control group (Figure 6E).
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Figure 6. Drought stress tolerance induced by MlS14. Two-week-old Arabidopsis seedlings treated
with MlS14 were subjected to water depletion for five days. The H2O2 (A) and malondialdehyde
(MDA) contents (B) were analyzed. Seven days after drought stress, unwilted seedlings were recorded
(C). Seedlings treated with MlS14 exhibited larger plant size (D) and greater fresh weight (E) seven
days after regaining water supply. In each histogram, different letters indicate statistical significance
at p = 0.05.

3.7. MlS14 Increased Heat Stress Tolerance in Arabidopsis

To investigate heat stress tolerance in Arabidopsis seedlings treated with MlS14, the
seedlings were pretreated with a bacterial inoculant and then exposed to 45 ◦C for 10 min.
During the post-heat stress period, MlS14-treated seedlings accumulated lower levels of
H2O2 and MDA (Figure 7A,B). Twenty-four hours after returning to a normal growth
temperature of 23 ◦C, a higher percentage of unwilted seedlings was observed in the MlS14-
pretreated group (Figure 7C), with approximately 68% of the MlS14-treated seedlings
remaining unwilted, compared to 20% in the control group (Figure 7D). Additionally,
seven days after returning to the normal growth temperature, the MlS14-treated seedlings
exhibited significantly larger plant size compared to the control group (Figure 7E), with
approximately three times the fresh weight of the control seedlings (Figure 7F).
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Figure 7. Heat stress tolerance induced by MlS14. Two-week-old Arabidopsis seedlings treated with
MlS14 were incubated at 45 ◦C for 10 min and assessed for H2O2 content (A) and MDA content (B).
Twenty-four hours after returning to 23 ◦C, the seedlings marked with an asterisk were the wilted
ones (C). The percentage of unwilted seedlings was then calculated (D). MlS14-treated seedlings
showed larger plant size seven days after heat stress (E) and gained more fresh weight (F). In each
histogram, different letters indicate statistical significance at p = 0.05.

3.8. MlS14 Attenuating Salt Stress Damage in Arabidopsis

Under treatment with 200 mM NaCl, Arabidopsis seedlings pretreated with MlS14
were exposed to salt stress by treatment with 200 mM NaCl. After salt stress treatment, the
MlS14-treated seedlings remained green, while the control seedlings showed a yellowish
appearance (Figure 8A). Moreover, the MlS14-treated seedlings accumulated higher chloro-
phyll contents (Figure 8B). Following salt stress, the MlS14-treated seedlings accumulated
greater amounts of starch, as evidenced by deeper blue-black staining (Figure 8C). Likewise,
the leaf tissues of treated seedlings had a higher starch content compared to the control
seedlings (Figure 8D). MlS14 alleviated salt stress damage in Arabidopsis by reducing H2O2
and MDA levels (Figure 8E,F). Moreover, the fresh weight of the treated seedlings was
greater than that of the control seedlings (Figure 8G).
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Figure 8. Salt stress tolerance induced by MlS14. Two-week-old Arabidopsis seedlings treated with
MlS14 were exposed to 200 mM NaCl. Seedling discoloration became evident at the end of the
salt stress treatment (A), and the chlorophyll contents were measured (B). Starch accumulation was
detected using lugol’s iodine solution (C) and the extracted starch was quantified (D). Seedlings
were also analyzed for H2O2 content (E), MDA content (F), and fresh weight (G). In each histogram,
different letters indicate statistical significance at p = 0.05.

Our results show that MlS14 treatment was effective in reducing damage caused by
multiple abiotic stress factors, including drought, heat, and salt stress. Various abiotic
stresses lead to the accumulation of oxidative stress, which negatively impacts plant
physiological functions [84]. Our findings suggest that MlS14 effectively enhances the plant
antioxidant defense system, and its biostimulant properties, which are tied to its ability to
alleviate oxidative stress, may play a crucial role in improving plant tolerance to abiotic
stress. Similarly, previous studies have shown that Micrococcus strains alleviate heavy metal
stress damage by activating antioxidant enzymes in tomato and rice plants [82,83].

3.9. MlS14 Affected Gene Expression in Arabidopsis

Our findings reveal that MlS14 had multifaceted effects on Arabidopsis growth. To
gain insights into the molecular mechanisms underlying the plant growth-promoting effect
mediated by MlS14, gene expression linked to various cellular pathways was investigated
in Arabidopsis seedlings responding to MlS14 treatment. The results of qPCR analysis show
that the expressions of Chlorophyll A/B binding protein 1 (CAB1) and PsbA/D1 encoding
photosystem II reaction center protein A were induced to higher levels (Figure 9A); the
functions of these two genes are associated with photosynthesis efficiency. Additionally, as
shown in Figure 9B, elevated transcript levels were detected for genes encoding antioxidant
enzymes such as ascorbate peroxidase 1 (APX1), glutathione peroxidase 7 (GPX7), and
superoxide dismutase 1 (SOD1), as well as for phenylalanine ammonia-lyase 1 (PAL1),
which plays a role in the synthesis of secondary metabolites with antioxidant properties [85].
The qPCR results for detecting gene expression related to photosynthesis and antioxidant
defense are consistent with the Western blot results shown in Figures 4G and 5E. Figure 9C



Microorganisms 2024, 12, 2283 16 of 22

shows that the MlS14 treatment strongly increased the gene expression of short-chain
dehydrogenase 4 (SDR4) and nine-cis-epoxycarotenoid dioxygenase 3 (NCED3) involved in
ABA biosynthesis [86,87]. Furthermore, increased expression was observed for genes
involved in auxin biosynthesis, including nitrilase 2 (NIT2) and YUCCA 8 [88,89]. Moreover,
genes involved in JA synthesis, such as lipoxygenase 1 (LOX1) and allene oxide synthase
(AOS) [90], as well as those involved in SA accumulation, such as isochorismate synthase 1
(ICS1) and enhanced disease susceptibility 1 (EDS1) [91,92], also exhibited higher expression
levels. In Figure 9D, MlS14 treatment triggered the expression of several transcription
factors involved in the regulation of cellular pathways associated with stress response.
These genes include abscisic acid insensitive 5 (ABI5), MYC2, systemic acquired resistance
deficient 1 (SARD1), calmodulin-binding protein 60g (CBP60g), dehydration-responsive element-
binding protein 2A (DREB2A), and C-Repeat Binding Factor 1 (CBF1). ABI5 encodes a basic
leucine zipper (bZIP) transcription factor involved in the ABA signaling pathway. Beyond
its essential role in controlling seed germination, ABI5 is crucial for regulating abiotic stress
tolerance [93]. MYC2, which codes for a protein containing a basic helix–loop–helix (bHLH),
plays a regulatory role in transducing JA signaling [94]. MYC2 also regulates abiotic stress
tolerance through the positive regulation of the ABA signaling pathway [95]. Furthermore,
SARD1 and CBP60g are two transcription regulators involved in SA biosynthesis [96].
DREB2A and CBF1 (also known as DREB1B) are members of the AP2/ERF family, playing
a significant role in the regulation of abiotic stress tolerance [97]. Furthermore, DREB2A
is a key transcription factor controlling the expression of numerous genes responsive to
drought, heat, and salt [98].

The qPCR results provide evidence of increased ABA signaling in MlS14-treated
seedlings, including elevated expression levels of the ABA biosynthesis genes SDR4
and NCED3, as well as ABI5, a positive regulator of ABA signaling [99]. In plant cells,
carotenoids serve as essential precursors for ABA biosynthesis [100]. It has been shown
that under salt stress conditions, ABA biosynthesis in root tissue depends on the induction
of carotenoid synthesis [101]. Therefore, it is plausible that carotenoids produced by MlS14
stimulate ABA synthesis and signaling in Arabidopsis. Research has demonstrated that in-
creased ABA signaling can enhance plant tolerance to abiotic stress by elevating antioxidant
activity [19,102]. A study also indicates that ABA is essential for the full expression of genes
involved in the photosystem function [103]. Furthermore, ATHB17, an ABA-responsive
HD-Zip transcription factor, regulates the expression of genes involved in the light reac-
tions of photosynthesis. The overexpression of AtHB17 results in increased tolerance to
abiotic stress [104]. These findings suggest that carotenoids produced by MlS14 could play
a key role in promoting growth and improving abiotic stress tolerance by activating ABA
signaling in Arabidopsis seedlings.

Auxin synthesis, like ABA, also depends on the presence of carotenoids. A study
demonstrated that the production of both ABA and auxin was impaired in a carotenoid-
deficient rice mutant [105]. Beyond its role in regulating root development, auxin con-
tributes to the plant’s adaptive response to abiotic stress. The activation of YUCCA6, a
key component of the tryptophan-dependent auxin biosynthesis pathway, may enhance
the plant’s resistance to drought stress [106]. Furthermore, reducing free auxin by over-
expressing the GH3 gene, which facilitates the conversion of free auxin to its conjugated
form, triggered a hypersensitive response to drought stress and lowered ABA concentra-
tion [107]. Further crosstalk between ABA and auxin signaling is demonstrated by the
fact that OsbZIP46, a transcription factor involved in the ABA signaling pathway, could
activate YUCCA8 expression and regulate root growth in rice [108]. Based on this study, the
activated auxin signaling in MlS14-treated plants may be attributed to IAA produced by
MlS14 or to increased ABA signaling induced by microbial carotenoids. MlS14 produced a
high level of IAA. Exogenous auxin has been reported to regulate photosynthetic efficiency
and antioxidant activity to mitigate copper toxicity in Brassica juncea [109]. The increased
auxin signal might play multiple roles in regulating root growth and stress tolerance in
Arabidopsis. The expression of genes involved in biosynthesis and the responses of JA and
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SA signals was up-regulated by MlS14. The JA and SA signaling pathways play a role
in induced disease resistance mediated by various beneficial bacteria [110]. Beyond their
involvement in defense against biotic stress, JA and SA also help improve plant tolerance
to abiotic stress by activating antioxidant activity [23,24]. A study has shown an interaction
between ABA and JA signaling, where ABA can affect JA biosynthesis and play a role in the
plant defense response [111]. An accumulation of oxidative stress may lead to an increase
in SA levels [112]. Therefore, the IAA and carotenoids produced by MLS14 may primarily
modulate ABA and auxin to positively influence plant growth and stress tolerance.
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Figure 9. qPCR analysis for gene expression activated by MlS14 treatment. Total RNA isolated
from the control and MlS14-treated tissues was used for qPCR analysis using primers specific to
genes including Chlorophyll A/B binding protein 1 (CAB1) and PsbA/D1 (A). Ascorbate peroxidase 1
(APX1), glutathione peroxidase 7 (GPX7), superoxide dismutase 1 (SOD1) and phenylalanine ammonia-lyase
1 (PAL1) (B). Nitrilase 2 (NIT2), YUCCA 8, short-chain dehydrogenase 4 (SDR4), nine-cis-epoxycarotenoid
dioxygenase 3 (NCED3), Lipoxygenase 1 (LOX1), allene oxide synthase (AOS), isochorismate synthase 1
(ICS1) and enhanced disease susceptibility 1 (EDS1) (C). Abscisic acid insensitive 5 (ABI5), MYC2, systemic
acquired resistance deficient 1 (SARD1), calmodulin-binding protein 60g (CBP60g), dehydration-responsive
element-binding protein 2A (DREB2A) and C-Repeat Binding Factor 1 (CBF1) (D).

4. Conclusions

Using de novo whole-genome assembly and biochemical analysis, IAA, terpenoids,
and carotenoids were identified as key bioactive metabolites produced by the bacterial
strain MlS14, potentially contributing to plant growth promotion. Treatment with MlS14
enhanced photosynthesis, strengthened the antioxidant defense system, and increased
Arabidopsis tolerance to drought, heat, and salt stress. This treatment also activated gene
expression associated with multiple hormone signaling pathways, including ABA, auxin,
JA, and SA, in Arabidopsis seedlings. Given the observed phenotypic changes and transcrip-
tional alterations, microbial IAA and carotenoids likely play primary roles in promoting
plant growth and enhancing stress tolerance in Arabidopsis by modulating ABA and auxin
signaling pathways.
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