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Abstract: To validate the prevalence and biodiversity of ticks and tick-borne pathogens in Chongqing,
a total of 601 ticks were collected from dogs, cattle, and goats within the Ta-pa Mountain range in
Chongging, China. Five distinct tick species were identified, including Ixodes ovatus (1.66%, 10/601),
L acutitarsus (0.50%, 3/601), Haemaphysalis flava (10.32%, 62/601), Ha. hystricis (9.82%, 59/601), and Ha.
longicornis (77.70%, 467 /601). A suit of semi-nest PCR and nest PCR primers were custom-synthesized
for the detection of tick-borne pathogens. The analysis yielded positive results for 7.15% Rickettsia
(Candidatus R. principis, R. japonica, and R. raoultii), 3.49% Anaplasma (A. bovis and A. capra), 1.16%
Ehrlichia, 1.83% Coxiella burnetii, and 3.49% protozoa (Theileria. capreoli, T. orientalis, T. luwenshuni,
and Babesia sp.) in ticks. Notably, Ca. R. principis was identified for the first time in I. ovatus and
Ha. longicornis. These findings underscore the significant prevalence and diversity of ticks and their
associated pathogens within the Chongging Ta-pa Mountain region. This study accordingly provides
an extensive dataset that contributes to the epidemiological understanding and disease prevention
strategies for tick-borne illnesses in the local area.
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1. Introduction

Ticks are obligate hematophagous ectoparasites of the suborder Ixodida that feed on
the blood of mammals, birds, reptiles, and other hosts [1,2]. Since Smith and Kilbourne’s
discovery, in the late 19th century, that ticks transmit babesiosis to cattle, ticks have been
identified as vectors and reservoirs of pathogens [3,4]. Even today, ticks are the most
prominent vectors of disease-causing pathogens in domestic and wild animals, second only
to mosquitoes worldwide as vectors of human diseases [2]. A diverse array of tick-borne
pathogens has been documented globally, encompassing bacteria, protozoa, helminths,
and viruses. In addition, an explosive increase in the population of ticks and an expanding
range of their activity have been observed, leading to the proliferation of suitable habitats
for these arthropod vectors and the pathogens they transmit [5].

Tick-borne diseases (TBDs) have emerged as a significant global public health con-
cern [6]. Tick-borne diseases such as rickettsioses, ehrlichiosis, Lyme disease, Q fever, and
protozoan parasites are prevalent worldwide. For instance, between 1906 and 2021, a
total of 66,133 human cases of spotted fever group of rickettsiae (SFGR) infections were
reported worldwide, especially in North America, the Mediterranean region, and East
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Asia [7]. Among all 48 SFGR species, 46 species are found in 140 species of hard ticks that
belong to seven genera; of these, 24 are known to be associated with human infections. The
prevalence of human granulocytic anaplasmosis (HGA) caused by A. phagocytophilum has
greatly increased in the USA (351 cases in 2000, 1053 cases in 2008, and 3656 cases in 2015),
and sporadic and clustered cases have been reported in Europe and China [8,9]. Lyme
disease is highly prevalent in moderate climates of the northern hemisphere, and it is esti-
mated that approximately 476,000 cases are diagnosed and treated annually in the United
States, and over 200,000 cases per year in Europe [10]. Q fever infections have occurred
in numerous countries, including Spain, Switzerland, Great Britain, Germany, France, the
United States, Australia, and China [11]. Unprecedented outbreaks of the Q fever epidemic
were reported in the Netherlands from 2007 to 2010, with over 4000 identified human cases
and 74 deaths [12,13]. Furthermore, about 80% of the world’s cattle population is affected
by ticks and tick-borne pathogens, which causes severe economic losses due to the costs
associated with parasite control, as well as due to reduced fertility, body weight, and milk
production [14].

In China, as the incidence of TBDs has risen in recent years, there has been a height-
ened focus on, as well as extensive research conducted into, ticks and their vector-borne
agents. Approximately 124 tick species and over 100 tick-borne agents have been doc-
umented, with records spanning 1134 counties, representing roughly 39% of all coun-
ties on the Chinese mainland [15]. By the end of 2018, a total of 2786, 415, 215, 129,
and 95 human cases had been confirmed for infections with Borrelia, Anaplasmataceae,
Babesia spp., SFGR, and Co. burnetii in China, respectively [15]. The majority of tick
bites occur unbeknownst to the affected individual, and they can present with atypi-
cal or chronic symptoms, which can be diagnostically challenging to differentiate from
one another. This may pose a higher risk of morbidity or mortality for older adults,
individuals with underlying health conditions, or those with weakened immune sys-
tems [5]. Consequently, a comprehensive understanding of ticks and tick-borne pathogens
in various regions is crucial for more effective prevention and management of locally
acquired TBDs.

Chonggqing (28°10'~32°13' N, 105°11’~110°11" E) is located in the southwestern region
of China. The municipality features a subtropical monsoon humid climate, characterized by
high humidity, and a relatively low annual sunshine duration. Reports of human infections
with Lyme disease and babesiosis caused by the species Bo. afzelii and uncharacterized
species of Babesia, respectively, within the region of Chongging highlight the possible
risks associated with tick-borne pathogens [16,17]. In recent years, the expansion of tea
cultivation, livestock breeding, and agricultural operations may serve to heighten the risk
of infection among both humans and domestic animals. Nevertheless, the 2019 National
Tick Monitoring Report of China has revealed a significant knowledge gap in ticks and
their associated pathogens due to the lack of effective sampling strategies and robust
surveillance mechanisms [18]. To determine the prevalence and biodiversity of ticks
and vector-borne agents, and to devise an effective sampling strategy for subsequent
surveillance efforts within the region, our team conducted tick surveillance in Chengkou
County, Chongging.

2. Materials and Methods
2.1. Specimen Collection and Identification

Chengkou County (31°37'~32°13' N, 108°15'~109°16’ E), a jurisdiction within the
municipality of Chongging, boasts a north subtropical mountainous climate. It is located at
the southern base of the Ta-pa Mountains (Figure 1). Between May and July 2024 (average
temperature at 19.5-25 °C, relative humidity at 74-82%), a total of 601 questing ticks were
collected from the surfaces of goats, cattle, and dogs in Chengkou, while no free-living ticks
were harvested by the drag—flag method within the environment. Ticks were identified
using a light microscope referring to the standard taxonomic keys, followed by polymerase
chain reaction (PCR) amplification based on the mitochondrial COI gene [19]. The primers
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targeting the 165 rRNA gene sequence were employed for the subsequent identification
of tick species [20]. Primers for ticks and tick-borne pathogens detection are depicted in
Table S1.
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Figure 1. Sampling sites in Chengkou County, Chongqing.

2.2. Nucleic Acid Extraction

Ticks were washed with bromogeramine (5%), alcohol (75%), and phosphate-buffered
saline (PBS) individually for 15 min each. Following air-drying, the ticks were individually
homogenized, and DNA extraction was performed using the QIAamp DNA Mini Kit
(Qiagen, Hilden, Germany). All DNA samples were stored at —20 °C.

2.3. PCR Assays and Sequencing

PCR, nested PCR, or semi-nested PCR amplification was employed to detect genes
associated with ticks and tick-borne pathogens, including Rickettsia spp. [21], Anaplasma
spp. [22-25], Ehrlichia spp. [1], Coxiella spp. [26], Borrelia spp. [27,28], Babesia spp., Theileria
spp., and Hepatozoon spp. [29] (Table S1). Primers were custom-synthesized by Sangon
Biotech Co., Ltd. (Shanghai, China). Fragments of the anticipated size were verified
through agarose gel electrophoresis and subsequent Sanger sequencing (Tianyi Huiyuan
Biotechnology Company, Beijing, China).

2.4. Phylogenetic Analyses

Sequences were edited and assembled using the SeqMan software (DNASTAR, Madi-
son, WI, USA, SeqMan Pro 12.1.0). Basic Local Alignment Search Tool (BLAST) analyses
were conducted to compare them with sequences available in GenBank. Furthermore,
the neighbor-joining (NJ) method was employed for multiple alignments, resulting in the
construction of a phylogenetic tree in MEGA 7.0. To evaluate the reliability of the results, a
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bootstrap method with 1000 replications was utilized. All representative sequences were
deposited in GenBank.

3. Results
3.1. Tick Species Identification

A total of 601 adult ticks were collected from Dongan, Miaoba, Pingba, Gaoyan, and
Bashan, five towns in Chengkou in the Ta-pa Mountain area (Figure 1, Table S2). And a map
was constructed based on the Digital Mountain Map of China dataset [30,31]. According to
the results of the morphological examination and COI sequence analysis, five specific tick
species were identified as I. ovatus (1.66%, 10/601), L. acutitarsus (0.50%, 3/601), Ha. flava
(10.32%, 62/601), Ha. hystricis (9.82%, 59/601), and Ha. longicornis (77.70%, 467 /601). In
the I. ovatus group, eight ticks showed 90.02-90.79% identity (Query cover: 100%, E-value:
0.0) with previously reported I. ovatus (MH319666), while they were still on the same
branch in the phylogenetic tree. Further molecular analysis utilizing the 16S rRNA gene
sequence revealed that these ticks exhibited a sequence similarity of 96.15-96.65% (Query
cover: 100%, E-value <1 x 10_88) when matched against sequences documented from the
China-Myanmar border county (MH319616, MH319598). They were also positioned within
the I. ovatus clade in the phylogenetic tree (Table S3, Figure S1). Additionally, five ticks of
the Ha. flava species showed 97.51-94.52% identity (Query cover: 100%, E-value: 0.0) with
those found in other regions of China (KY021805, Figure 2). Other COI gene sequences
of ticks shared 99.00-100.00% identity with those of the aforementioned five tick species
present in GenBank (Table S3). In Chengkou County, Ha. longicornis exhibits the highest
prevalence, with specimens being recovered from Miaoba, Gaoyan, and Bashan. The main
hosts include cattle and goats, along with a few dogs. Specifically, three species (1. ovatus,
Ha. flava, and Ha. hystricis) were exclusively found on dogs, while I. acutitarsus was solely
detected on goats (Table S2).
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Figure 2. Phylogenetic analysis of ticks based on the nucleotide sequences of COI. Sequences obtained
in this study are marked with black triangles before their names.
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3.2. Tick-Borne Pathogens: Identification and Prevalence Analysis
3.2.1. Rickettsia (Total Prevalence 7.15%)

Nucleotide alignment and phylogenetic analysis of Rickettsia spp. were performed
based on the 165 rRNA, gltA, and groEL genes. In the phylogenetic tree, these genes clustered
together with the corresponding genes of Ca. R. principis, R. japonica, and R. raoultii (negative
in 165 rRNA semi-nested PCR), accompanied by high homology (Figure 3a—c). Although
one group of Rickettsia species was closest to an uncultured Rickettsia sp. (ON016521), with
99.92% identity according to the 165 rRNA BLASTN, they also showed high homology
(99.91%, Query cover: 81%, E-value: 0.0) with the 16S rRNA of Ca. R. principis (PP825138).
Phylogenetic analysis based on the gltA and groEL genes confirmed these strains as Ca. R.
principis. So, we proposed that three Rickettsia species were detected in ticks, including
Ca. R. principis (6.66%), R. japonica (0.17%), and R. raoultii (0.33%). Ca. Rickettsia principis
existed in I. ovatus, Ha. flava, and Ha. Longicornis, while R. japonica and R. raoultii were found
in Ha. hystricis and Ha. Longicornis, respectively (Table 1).
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Figure 3. Phylogenetic analysis based on the nucleotide sequences of 165 rRNA (a), gltA (b), and
groEL (c) of Rickettsia strains and on the 165 rRNA (d), gltA (e), and groEL (f) of Anaplasma strains.
Sequences obtained in this study are marked with black triangles before their names.
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Table 1. Prevalence of tick-borne pathogens in 601 ticks collected from the Ta-pa Mountain area in

Chongqing, China.
. Tick Species Host Geographical Distribution o

Pathogen Species (Positive Ticks No.) (Positive Ticks No.) (Positive Ticks No.) Total Prevalence %

Ha. flava (36), .
Ca. R. principis Ha. longicornis (2), daot%s ((318))’ goats (1), I]?i?\n%)zn(ﬁz)l) ,Gl\;ha(;‘t;la(gl)), 6.66% (40/601)

L ovatus (2) cattle & s 520y
R. japonica Ha. hystricis (1) dogs (1) Pingba (1) 0.17% (1/601)
R. raoultii Ha. longicornis (2) goats (2) Gaoyan (2) 0.33% (2/601)

.y Ha. flava (4), . o
Ehrlichia sp. Ha. hystricis (3) dogs (7) Dongan (3), Pingba (4) 1.16% (7/601)
Dongan (1), Miaoba (5),

A. bovis Ha.ﬂava' 2), . dogs (2), goats (10) Pingba (1), Gaoyan (3), 2.00% (12/601)

Ha. longicornis (10)

Bashan (2)
A. capra Ha. longicornis (9) goats (9) Miaoba (9) 1.50% (9/601)
Babesia sp. Ha. flava (1) dogs (1) Dongan (1) 0.17% (1/601)
T. capreoli Ha. flava (1) dogs (1) Dongan (1) 0.17% (1/601)
T. orientalis Ha. longicornis (1) cattle (1) Miaoba (1) 0.17% (1/601)
. L acutitarsus (1), Dongan (1), Miaoba (14), o

T. luwenshuni Ha. longicornis (17) goats (17), cattle (1) Gaoyan (2), Bashan (1) 3.00% (18/601)
Co. burnetii I ovatus (3), Ha. flava (3), dogs (6), goats (4), Dongan (6), Miaoba (5) 1.83% (11/601)

Ha. longicornis (5)

cattle (1)

3.2.2. Anaplasma (Total Prevalence 3.49%)

Analysis based on the 165 rRNA, gltA, and groEL genes indicated that two Anaplasma
species were identified in the current study. The phylogenetic tree showed that our se-
quences were located in the A. bovis and A. capra cluster (Figure 3d—f). Except for one
genotype of groEL in A. bovis, which was 99.86% similar to the A. bovis found in South
Korea, others were identical to previous A. bovis and A. capra (Table S3). In the prevalence
analysis, A. bovis was detected in 12 (2.00%) ticks, including Ha. flava and Ha. longicornis.
A. capra was present in nine (1.50%) ticks, only found in Ha. longicornis.

3.2.3. Ehrlichia (Total Prevalence 1.16%)

Ehrlichia sp. was detected in seven (1.16%) ticks based on the genetic sequences of
16S rRNA and groEL. The 16S rRNA and groEL gene sequences of the strains (CQPB-dog-
CQC11, CQDA-dog-CQ27, CQPB-dog-CQA55, CQPB-dog-CQC02, and CQPB-dog-CQA42)
showed 99.12-100.00% identity to diverse Ehrlichia species in GenBank. These strains were
identified as unspecific Ehrlichia sp. Strain CQDA-dog-CQ23 showed the highest identity,
at 99.53% (Query cover: 100%, E-value: 0.0) and 94.42% (Query cover: 100%, E-value: 0.0),
to the 16S rRNA and groEL genes of E. chaffeensis str. Arkansas, respectively. Another strain,
CQDA-dog-CQ28, showed the highest identity, at 100.00% (Query cover: 100%, E-value:
0.0) and 94.41% (Query cover: 100%, E-value: 0.0), to the 165 rRNA and groEL genes of
uncultured Ehrlichia sp. clone Kh-Hj27 from Russia, respectively (Figure 4, Table S3).

3.2.4. Coxiella burnetii (Total Prevalence 1.83%)

I. ovatus, Ha. flava, and Ha. longicornis were confirmed to harbor Co. burnetii, with
positive strains detected in eight (1.83%) ticks from Dongan and Miaoba. These 1S1111-
positive sequences were identical to those obtained from the previous strains and clustered
together with Co. burnetii, as reported in Xinjiang, in a phylogenetic tree (Figure 5).
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Figure 4. Phylogenetic analysis of Ehrlichia strains based on the nucleotide sequences of 16S rRNA (a)
and groEL (b). Sequences obtained in this study are marked with black triangles before their names.
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Figure 5. Phylogenetic analysis of Co. burnetii strains based on the nucleotide sequences of IS1111.
Sequences obtained in this study are marked with black triangles before their names.

3.2.5. Protozoa (Total Prevalence 3.49%)

Primers based on the 185 rRNA gene for Babesia spp., Theileria spp., and Hepatozoon
spp. were used in this study [29]. Babesia sp. was detected in one Ha. flava tick (0.17%)
which was sorted in the same cluster as Babesia sp. from Japan (AB935167) (Figure 6), with
identical 18S rRNA gene sequences. In addition, three Theileria species were detected in
Chongqing, including T. capreoli (0.17%), T. orientalis (0.17%), and T. luwenshuni (3.00%).
T. luwenshuni, detected in ticks from goats and cattle, was the dominant protozoan in
Dongan, Miaoba, Gaoyan, and Bashan. A Ha. flava collected from a dog in Dongan was
found to be infected with T. capreoli. Its 185 rRNA gene showed 99.93% identity with that
detected in the blood of a white-lipped deer (JX134577). T. orientalis was carried by a Ha.
longicornis collected from cattle in Miaoba, with an identical 185 rRNA gene sequence to
that of T. orientalis isolated in Rhipicephalus microplus (MH208641).
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Figure 6. Phylogenetic analysis of Theileria and Babesia based on the nucleotide sequences of 185
rRNA. Sequences obtained in this study are marked with black triangles before their names.

3.2.6. Borrelia

No strains were detected using nested PCR based on the ospA and 165 rRNA genes of
Borrelia spp. in this study.

4. Discussion

A total of 601 hard ticks collected from Chengkou County within the Ta-pa Mountains
were identified. The species consisted of I. ovatus, I. acutitarsus, Ha. flava, Ha. hystricis, and
Ha. longicornis. Furthermore, eight individuals of the species I. ovatus showed 90.02-90.79%
identity with those collected in a China-Myanmar border county, and five samples of
the species Ha. flava demonstrated an identity of 97.51% to 94.52% with counterparts
distributed across various regions of China. Our findings underscore the biodiversity of
tick populations within the Chongqing area. In terms of prevalence, Ha. longicornis is the
predominant hard tick species (77.70%, 467 /601) in Chengkou, hosting various pathogens,
including Ca. R. principis, R. raoultii, A. capra, A. bovis, T. orientalis, T. luwenshuni, and Co.
burnetii. This species is also the predominant tick in China and has been reported in at
least 17 provinces and associated with over 49 pathogen species, including pathogens that
are responsible for confirmed human infections like Rickettsia, Anaplasmataceae, Borrelia,
Babesia spp., various viruses, and so on [15,32]. This highlights the potential risk of tick-
borne pathogens of Ha. longicornis in Chongqing. And there is an immediate necessity
to intensify the control and surveillance of local tick populations. In terms of the overall
prevalence of positive pathogen detection rates, the tick species Ha. flava represents the
most significant threat, with 64.91% (37/57), whereas Ha. longicornis was found in 8.75%
of the individuals surveyed and found to be infected with pathogens, including Ca. R.
principis, A. bovis, Ehrlichia sp., Babesia sp., T. capreoli, and Co. burnetii. Reports have
revealed a broad distribution of Ha. flava across Asia, encompassing regions such as China,
Japan, Vietnam, and South Korea [33]. The species is capable of inflicting bites on a diverse
array of hosts, which include humans, domestic animals, and various wildlife [34-36]. All
Ha. flava individuals in the present study were sourced from canine hosts, highlighting the
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critical role that dogs play in the transmission and reservoir maintenance of ticks. Strategies
for local tick and tick-borne disease prevention and control should prioritize pet owners’
implementation of appropriate deworming and husbandry practices for their dogs.

Among the tick-borne bacteria identified in the Chongqing Ta-pa Mountain area, Rick-
ettsia species exhibited the highest overall prevalence rate, accounting for 7.15% of the ticks.
This finding suggests that heightened attention should be given to the prevention of rick-
ettsioses. Three Rickettsia species (Ca. R. principis, R. japonica, and R. raoultii) were identified
in reference to the criteria for identifying novel Rickettsia sp. based on gene sequences
established previously [37]. Ca. R. principis was the predominant species among these
three Rickettsia species, and it also represented the dominant species among all tick-borne
pathogens in this study. Notably, it displayed a higher prevalence in Ha. flava (57.89%, 33/57)
than in ticks of the species Ixodes (15.38%, 2/13) or Ha. longicornis (0.43%, 2/467). To the best
of our knowledge, Ca. R. principis was detected for the first time in I. ovatus and Ha. Longi-
cornis, and this strain had been found in Ha. japonica, Ha. megaspinosa, Ha. flava, Ha. danieli,
Ha. ginghaiensis, and I. persulcatus ticks according to previous reports [38—42]. Although the
pathogenicity of this Rickettsia species to humans remains unknown, further investigation
and risk mitigation measures are warranted, given that many Rickettsia species previously
considered non-pathogenic are now associated with human diseases [43]. Additionally, this
study identified two other Rickettsia species, R. japonica and R. raoultii, as being responsible
for infectious diseases in humans [42,44,45]. The data suggest a risk of rickettsioses in
Chonggqing. It is crucial that healthcare personnel in the local area be equipped with training
in the identification, diagnosis, and management of these conditions.

In addition to the aforementioned findings, the presence of other tick-borne pathogens
capable of causing severe zoonotic diseases has been confirmed in Chongqging. Anaplas-
mosis can be caused by A. bovis and A. capra [8,46], and these two Anaplasma species were
detected at an overall prevalence rate of 3.49% in the Chonggqing Ta-pa Mountain area. We
suggest that local farmers need to enhance preventive and control measures during the
summer season, as infection rates are markedly higher then compared to other seasons [47].
Co. burnetii serves as the etiological agent of Q fever, and its presence has been identified in
Chongging. Farmers and agricultural workers should receive comprehensive training to
guard themselves against infections, as individuals are particularly susceptible to infection
through the inhalation of contaminated air or direct contact with animals harboring the
pathogen and their secretions, such as excreta, urine, milk, and other bodily fluids [48,49].
The detection of Ehrlichia species in Chongqing underscores the peril of ehrlichioses. The
presence of numerous Ehrlichia genotypes in Chongqing denotes the intricacy of these
strains, indicating that they remain to be fully elucidated.

In the screening of protozoa, three Theileria species (T. capreoli, T. orientalis, and T. luwen-
shuni) and a Babesia species were identified. Theileria species are known to infect both
domestic animals and wildlife, and Ha. longicornis is particularly recognized as a key trans-
mission vector for these parasites [50-52]. The prevalence of Ha. longicornis in Chongging
indicates a potential risk of theileriosis. To alleviate the economic losses sustained by grazers
and to safeguard the wildlife population within the Chongqing Ta-pa Mountain area, it is
recommended that livestock farmers in these areas (particularly those who raise free-range
livestock) adopt preventive measures to forestall the cross-contamination of Theileria species
between domestic livestock and wildlife via tick vectors. It is noteworthy that the detection
of Babesia species in Chengkou County serves as a reminder of the series of human para-
sitemia incidents attributed to suspected Babesia species that occurred from 1931 to 1944
in Beibei, Chonggqing [17]. Regrettably, due to age, we cannot obtain more relevant data
to prove whether the Babesia sp. we obtained are related to the parasites reported in the
literature. This also underscores the necessity for stringent preventive and control measures
to forestall the re-emergence of diseases caused by Babesia species.

Overall, the absence of reports involving tick bite cases in Chongqing has led to a
persistent underestimation of the risk associated with tick-borne diseases in that region. Our
study has demonstrated the biodiversity and prevalence of ticks and tick-borne pathogens
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in Chonggqing, offering an effective sampling strategy for subsequent surveillance efforts
within the region. Concurrently, we have provided appropriate prevention and control
recommendations for the risk points posed by ticks and tick-borne pathogens in the local
area. However, limitations do exist within this study. The acquisition of ticks was limited
to a few livestock species, including goats, cattle, and dogs, and the drag—flag method did
not acquire any free-living tick samples. This limitation has narrowed the ecological scope
of this study, which could potentially impact the assessment of tick biodiversity and the
incidence of associated pathogens. In 2011, B. afzelii strains were isolated from the blood of
patients in Chongqing [16]. The authors emphasize that Ha. bispinosa could potentially act
as one of the vectors for Lyme disease transmission in southern China. The absence of the
detection of Ha. bispinosa and Borrelia spp. during the course of our investigation highlights
the substantial geographical variation exhibited by these tick species and the associated
pathogens they harbor. Furthermore, this lacuna underscores the inherent limitations of
our current study, thereby underscoring the imperative need for enhanced and continuous
surveillance initiatives within the Chongqing area.

5. Conclusions

This study represents the first comprehensive documentation of the prevalence and
biodiversity of ticks and tick-borne pathogens in the Chongging Ta-pa Mountain area.
Five distinct tick species, including I. ovatus, I. acutitarsus, Ha. flava, Ha. hystricis, and
Ha. longicornis, have been identified. The positive detection of Rickettsia (Ca. R. principis,
R. japonica, and R. raoultii), Anaplasma (A. bovis and A. capra), Ehrlichia sp., Co. burnetii,
and protozoa (T. capreoli, T. orientalis, T. luwenshuni, and Babesia sp.) suggests that public
health officials need to be vigilant about potential risks. This report has yielded some
recommendations for these possible risks, and it also affords a viable sampling strategy
that can be adopted by local communities. This would be helpful in the development and
execution of regional strategies aimed at the prevention and control of tick-borne diseases.
Nevertheless, the temporal, geographical, and source restrictions of sampling, which
were exclusively obtained from goats, cattle, and dogs, impose limitations on our dataset.
Consequently, there is a pressing need for subsequent continuous and comprehensive
surveillance efforts.
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