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Abstract: Background: β-carotene is an essential antioxidant, providing protection against type
2 diabetes mellitus, cardiovascular illnesses, obesity, and metabolic syndrome. This study investigates
the impact of β-carotene on biochemical parameters and pancreatic insulin expression in mice
exposed to ethanol. Methods: Thirty-six C57BL/6 mice (Mus musculus) were divided into six
groups: 1. C (control), 2. LA (3% alcohol dose), 3. MA (7% alcohol dose), 4. B (0.52 mg/kg body
weight/day β-carotene), 5. LA+B (3% alcohol dose + 0.52 mg/kg body weight/day β-carotene), and
6. MA+B (7% alcohol dose plus 0.52 mg/kg body weight/day β-carotene). After 28 days, the animals
were euthanized for serum and pancreatic tissue collection. Biochemical analysis and pancreatic
insulin expression were performed. One-way ANOVA was used. Results: The B, LA+B, and MA+B
groups improved insulin levels and decreased HOMA-β versus the C group, with the LA+B and
MA+B groups also showing lower ADH and ALDH levels than their nonsupplemented counterparts
(p < 0.05). The B, LA+B, and MA+B groups showed a greater β-cell mass area compared to the
unsupplemented groups. Additionally, the LA+B and MA+B groups demonstrated significantly
increased β-cell area and integrated optical density compared to the LA and MA groups, respectively
(p < 0.001). Conclusions: In mice, β-cell loss led to increased glucose release due to decreased insulin
levels. β-carotene appeared to mitigate ethanol’s impact on these cells, resulting in reduced insulin
degradation when integrated optical density was used. These findings suggest that antioxidant
supplementation may be beneficial in treating ethanol-induced type 2 diabetes in animal models.
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1. Introduction

Alcohol consumption poses a significant public health concern, with an estimated
annual cost of EUR 155 billion attributed to related issues [1]. It is widely recognized as a
major risk factor for both acute and chronic pancreatitis, contributing to approximately 50%
to 80% of all documented cases [2]. Recent research highlights alcohol as the predominant
factor responsible for pancreatitis in the United States [3].

However, studies indicate that less than 5% of individuals who chronically consume
large amounts of alcohol are at risk of developing pancreatitis [4]. This discrepancy suggests
that the development of alcohol-induced pancreatitis may require additional risk factors,
influenced by genetic or environmental variables [5,6].

The complex and multifaceted effects of alcohol on the pancreas contribute to an in-
complete understanding of the etiology of alcohol-induced pancreatitis. Alcohol is believed
to damage pancreatic acinar cells, ductal epithelium, and stellate cells, potentially promot-
ing pancreatic fibrosis [7,8]. Alcohol-induced pancreatitis is likely to develop only when
compensatory mechanisms are exhausted or when other genetic or environmental stresses
increase pancreatic vulnerability. Findings from animal models support this hypothesis,
suggesting that the pancreas can mitigate alcohol-induced damage by initiating an adaptive
stress response [9,10].

Pancreatic acinar cells metabolize alcohol through both oxidative and nonoxidative
pathways [11–15]. The metabolic breakdown of alcohol in these cells generates toxic byprod-
ucts, including fatty acid ethyl esters (FAEEs), acetaldehyde, and reactive oxygen species
(ROS), which contribute to cellular damage [11,16,17]. This oxidative stress destabilizes
zymogen granules and lysosomes, as well as disrupts other organelle functions within the
cell [4,11,18].

Chronic pancreatitis is marked by recurring abdominal pain and is frequently accom-
panied by symptoms such as nausea and weight loss [19]. Persistent pancreatic damage
reduces the secretion of enzymes essential for digestion and fat absorption, leading to a
progressive decline in digestive function. Additionally, the destruction of pancreatic β-cells,
which produce, store, and release insulin, increases the risk of diabetes development [20].

Diabetes mellitus (DM) is a common chronic metabolic disorder characterized by
elevated blood glucose levels, arising from either insufficient insulin production or impair-
ments in insulin signaling [21,22]. As a growing global public health challenge, diabetes
incidence is anticipated to rise significantly in the coming decades, driven in part by aging
populations worldwide [23].

Both type 1 and type 2 diabetes (T2DM) involve pancreatic dysfunction, impairing the
β-cells’ capacity to meet increased insulin demands [24]. A family history of diabetes is
widely recognized as a significant risk factor for developing T2DM and pre-diabetes [25–27].

Evidence suggests that β-carotene supplementation enhances GSH concentration by
stimulating the activity of GSH synthetase. Previous research has shown that adding
β-carotene can stop the loss of GSH caused by ethanol by raising the amount of GSH inside
cells [28,29]. These studies indicate that it may be due to the stimulation of GSH synthetase
activity caused by β-carotene. Therefore, β-carotene supplementation may serve as an
effective approach to mitigate liver damage resulting from excessive alcohol consumption
and to prevent the progression of alcoholic disease to more severe conditions [14].

Previous studies have shown that ethanol exposure induces oxidative stress and apop-
tosis, leading to tissue damage, while β-carotene supplementation (0.52 mg/kg BW/day)
can alleviate ethanol-induced injury by reducing oxidative stress and inhibiting apoptosis
in tissues [30]. Additional findings also report an increase in serum total amylase levels and
a decrease in lipase levels in groups receiving 7% alcohol plus β-carotene supplementation
compared to those without it [15]. Histological analysis further revealed that perilobular
parenchyma, intralobular parenchyma, and fibrosis scores were lower in the 7% alcohol
plus β-carotene group compared to the groups given 3% alcohol, 7% alcohol, or 3% alcohol
plus β-carotene [15]. These findings suggest that antioxidant therapy could be beneficial in
addressing the effects of ethanol exposure in animal models.
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β-carotene, a member of the carotene family, is among the most prevalent carotenoids
in food sources and is also present in the human body. About 17–45% of the consumed β-
carotene remains intact in organisms, indicating its significant bioavailability, which refers
to its effective absorption and utilization capacity [31]. Research indicates that β-carotene
serves as a safeguard against several conditions, including type 2 diabetes mellitus (T2DM),
cardiovascular disease, obesity, and metabolic syndrome (MetS) [32–34]. β-carotene is
noted for its ability to enhance expression and secretion, which in turn improves insulin
sensitivity [35].

The consumption of β-carotene is linked to several outcomes, including a decrease in
the size of adipocytes and overall body adipose tissue; a decline in proinflammatory mark-
ers, low-density lipoprotein cholesterol (LDL-c), and very-low-density lipoprotein choles-
terol (VLDL-c); and an increase in high-density lipoprotein cholesterol (HDL-c) [36–39].
Furthermore, they have the potential to enhance insulin resistance and maintain insulin
receptors [37,39]. These actions take place to manage oxidative stress, which plays a role in
all of the diseases mentioned [40].

β-carotene has the ability to modulate lipid and carbohydrate metabolism, thereby en-
hancing the function of pancreatic cells and improving hyperglycemic conditions. The regu-
lation of β-pancreatic cell functions stimulates insulin secretion, regulates lipid metabolism,
and alleviates oxidative and inflammatory stress [39,41,42].

The American Diabetes Association defines diabetes as a condition marked by the
degeneration of insulin- and glucagon-producing cells. Histological examination reveals
fibrosis, the shrinkage of pancreatic acini, chronic inflammation, the deformation of pancre-
atic ducts with narrowed regions, and damage to ß- and α-cells [14,15,43].

Thus, a comprehensive histological evaluation is essential. In particular, assessing in-
sulin activity requires a multifaceted approach involving the analysis of serum biochemical
markers alongside the measurement of insulin production in pancreatic islets [15]. This as-
sessment may include evaluating the dimensions of the pancreatic islets or calculating their
integrated optical density (IOD), with average values typically presented per cell [44,45].
The final evaluation involves staining the pancreatic islets with specific markers, such
as immunohistochemistry staining, followed by image capture with a light microscope
equipped with specialized optical filters. The IOD quantifies the light absorption across the
entire pancreatic islet as captured in the images.

The cellular IOD serves as a quantitative metric. Previous research utilizing immuno-
histochemistry and Sirius Red staining on liver tissue observed significant increases in IOD
levels following moderate alcohol consumption and carotene supplementation [14]. Addi-
tionally, IOD can be instrumental in identifying morphologically and functionally distinct
cell subpopulations by maintaining consistent light contrast in imaging [14,45]. Conse-
quently, the IOD analysis of cell dynamics may correlate with various pathophysiological
states, offering valuable insights into disease processes.

Previous research has documented the effects of alcohol on the pancreas; however, the
potential benefits of antioxidant supplementation during chronic ethanol exposure remain
insufficiently understood. This study aimed to evaluate glucose and insulin serum levels,
as well as insulin expression within the endocrine pancreas, in C57BL/6 mice subjected to
ethanol exposure and/or β-carotene supplementation.

2. Results
2.1. Biochemistry

Table 1 presents the biochemical analyses of insulin, glucose, ADH, ALDH, HOMA-β,
and HOMA-IR indices. The LA+B group showed significantly lower HOMA-β levels
than the C, LA, MA, and B groups, while the MA+B group displayed reduced insulin and
HOMA-β levels but higher glucose levels relative to the C group (p < 0.05). β-carotene
supplementation improved the insulin levels and decreased HOMA-β versus the C group,
with the LA+B and MA+B groups also showing lower ADH and ALDH levels than their
nonsupplemented counterparts (p < 0.05).
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Table 1. Biochemical evaluation of male C57BL/6 mice following ethanol consumption and β-
carotene supplementation.

Media ± SD

C (n = 6) LA (n = 6) MA (n = 6) B (n = 6) LA+B (n = 6) MA+B (n = 6) p

Insulin (µU/mL) 28.60 ± 5.45 16.44 ± 7.27 a 14.96 ± 5.01 a 24.27 ± 9.58 abc 11.34 ± 3.91 ad 9.46 ± 1.55 acd <0.001
Glucose (mmol/L) 9.03 ± 0.53 13.45 ± 1.27 a 15.11 ± 0.45 ab 14.63 ± 0.84 ab 13.46 ± 0.43 acd 14.31 ± 0.86 a <0.001

ADH (nmol/min/mL) 20.42 ± 2.52 33.03 ± 3.42 a 36.15 ± 2.74 a 23.22 ± 5.58 bc 26.09 ± 3.16 abc 29.83 ± 3.51 acd <0.001
ALDH (pmol/min/mL) 11.81 ± 1.82 15.81 ± 1.62 a 17.04 ± 1.78 a 11.21 ± 1.30 bc 14.25 ± 1.67 acd 15.81 ± 1.77 ad <0.001

HOMA-β 104.41 ± 21.30 33.34 ± 15.51 a 25.77 ± 6.77 a 43.53 ± 15.51 a 22.77 ± 7.38 a 17.61 ± 3.19 ad <0.001
HOMA-IR 11.44 ± 1.49 9.83 ± 4.59 10.06 ± 2.76 15.84 ± 6.04 6.79 ± 2.21 d 6.01 ± 0.85 d <0.001

a significant differences (p < 0.05) with the C group. b significant differences (p < 0.05) with the LA group.
c significant differences (p < 0.05) with the MA group. d significant differences (p < 0.05) with the B group.
Differences were analyzed by one-way ANOVA.

2.2. Immunohistochemistry

The immunohistochemical localization of insulin was observed in the endocrine
pancreas across all the experimental groups (Figure 1). The histological analysis revealed
variations in immunolabeling patterns and intensity among the groups. The C group
exhibited a normal morphology of the beta-pancreatic islets, with the cells showing strong
positive immunostaining (Figure 1A).
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Figure 1. Pancreas of male C57BL/6 mice stained with anti-insulin IgG Guinea pig primary anti-
body. Insulin expression in the endocrine pancreas was observed in groups: control (A); low-dose
alcohol (B); moderate-dose alcohol (C); β-carotene (D); low-dose alcohol + β-carotene (E); and
moderate-dose alcohol + β-carotene (F). Pancreatic islets are in the segmented lines.

Figure 1D–F illustrate an association between β-carotene supplementation and an
increase in both the number and size of the pancreatic islets. Notably, no insulin marker
immunoreactivity was detected outside the beta-pancreatic islets or the endocrine pancreas.
Among the groups, the MA+B group displayed the highest immunostaining intensity
(Figure 1D).

2.3. Area

The groups supplemented with β-carotene (B, LA+B, and MA+B) exhibited at least a
30% increase in the β-cell mass area compared to those without β-carotene supplementation
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(C, LA, and MA) (Table 2). In ethanol-consuming mice (LA and MA vs. LA+B and MA+B,
respectively), β-carotene supplementation led to a 30–50% restoration of the median β-cell
mass relative to the C and MA+B groups (p < 0.05).

Table 2. Analysis of area and integrated optical density properties of β-cell in pancreatic islets of
C57BL/6 mice.

Media ± SD

C (n = 6) LA (n = 6) MA (n = 6) B (n = 6) LA+B (n = 6) MA+B (n = 6) p

Area (µm2) 194.78 ± 38.30 270.44 ± 107.99 a 69.24 ± 22.61 ab 429.50 ± 246.77 ac 330.79 ± 117.64 ac 1028.27 ± 356.19 ac <0.001
Integrated optical

density (lum/µm2)
26,006.67 ±

5063.97
35,661.82 ±
13,921.15 a

9722.07 ±
3049.34 ab

51,611.28 ±
29,343.24 ac

43,537.44 ±
15,480.09 ac

54,324.13 ±
29,600.55 ac <0.001

a significant differences (p < 0.05) with the C group. b significant differences (p < 0.05) with the LA group.
c significant differences (p < 0.05) with the MA group. A total of 144 pancreatic islets were evaluated, 24 pancreatic
islets by group. Differences were analyzed by one-way ANOVA.

2.4. Integrated Optical Density Analysis

The immunohistochemistry analysis demonstrated the immunolabeling of β-cells
throughout different regions of the beta-pancreatic islets in all the experimental groups.
The concentration and intensity of insulin within the islets were higher in the groups
supplemented with β-carotene (Table 2).

3. Discussion
3.1. Summary of Key Findings and Interpretation

Studies have shown a positive correlation between higher alcohol consumption and an
increased incidence of T2DM [46]. In contrast, research also suggests that moderate alcohol
intake may be linked to a reduced risk of T2DM [47]. Animal model studies investigating
insulin production after ethanol exposure indicate that antioxidants can be effective in
managing elevated blood glucose levels [14,48].

Although the specific mechanisms through which alcohol influences insulin remain
unclear, numerous studies have identified a U-shaped or J-shaped relationship between
alcohol consumption and insulin sensitivity or plasma insulin concentrations [49–52]. In
individuals with T2DM, insulin production continues during the early stages of the disease;
however, the body becomes resistant to insulin’s effects, as reflected in our results. Initially,
the pancreas compensates for this resistance by increasing insulin synthesis, but eventually,
it reaches a threshold where it can no longer produce adequate insulin.

3.2. Biochemistry

The HOMA-IR is considered a straightforward, cost-effective, and trustworthy indica-
tor of insulin resistance, whereas the HOMA-β index has been identified as an effective
measure of β-cell function [53]. Our results show that the groups that regularly consumed
low and moderate amounts of ethanol had a lower HOMA-IR index and better insulin
sensitivity (Table 1), which is in line with what other researchers have found. Nonetheless,
the HOMA-β index in the mice subjected to prolonged ethanol consumption varies from
what has been previously stated.

Chronic alcoholics experience an increase in alcohol metabolism [54]. This is often
regarded as a significant factor contributing to alcohol-induced injury [55]. The primary
enzymes involved in alcohol metabolism include alcohol dehydrogenase (ADH), mitochon-
drial aldehyde dehydrogenase (ALDH), and cytochrome P450 2E1 (CYP2E1). The alcohol is
broken down into acetaldehyde by ADH and then further converted into acetate by ALDH.
Therefore, significant toxicity caused by ethanol may be linked to the functions of ADH
and ALDH [56].



Pharmaceuticals 2024, 17, 1478 6 of 14

3.3. Immunohistochemistry

Immunocytochemistry is a highly effective and sensitive method for detecting insulin
and assessing its expression levels in pancreatic islets [57]. In this study, immunohisto-
chemical labeling proved to be a valuable tool for identifying and distinguishing insulin-
expressing cells in the pancreatic islets of C57BL/6 mice. The results showed that the islets
predominantly contain insulin-producing cells with a lobular shape, consistent with the
findings from previous studies [58,59].

This study employed ethanol exposure to induce diabetes in C57BL/6 mice. In the
male mice of this strain, ethanol administration leads to elevated blood glucose levels,
indicating that ethanol exerts a cytotoxic effect on pancreatic β-cells, likely through the
generation of free radicals. The resulting destruction of β-cells reduces or entirely depletes
insulin, thereby causing hyperglycemia [60]. However, in the mice that received β-carotene
supplementation alongside ethanol, there was a notable increase in both the number and
size of pancreatic islets (Figure 1D–F). The MA+B group exhibited the highest immunos-
taining intensity among the groups, as shown in Figure 1D. These findings suggest that
β-carotene, as an antioxidant, may reduce free radical presence and mitigate ethanol’s
cytotoxic effects on pancreatic cells.

3.4. Integrated Optical Density Analysis

Analyzing the mean gray value of each object within a digital image allows for the
calculation of optical density (OD), a measurable parameter. Integrated optical density
(IOD) represents the relationship between OD and a specific area of an image [61]. Pixel
density quantifies the number of pixels per unit area, enabling an assessment of the object
of interest relative to the image background. IOD facilitates the evaluation of immunohisto-
chemical labeling by measuring color variations at the pixel level, which are then converted
into numerical values to establish a quantifiable parameter.

In C57BL/6 mice, Table 2 presents the measured area and IOD characteristics of
pancreatic islets. IOD properties varied across the experimental groups, with each group
demonstrating statistically significant differences from the C group (p < 0.05). Notably, the
β-cell mass area was larger in the β-carotene-supplemented groups (B, LA+B, and MA+B)
compared to the unsupplemented groups (C, LA, and MA) (Table 2). Additionally, the
β-carotene-supplemented groups showed elevated insulin concentration and potency in
the islets, as displayed in Table 1.

Insulin resistance is defined as an inadequate response of tissues to insulin’s action
in the bloodstream and is widely recognized as a key indicator for the development of
metabolic disorders such as T2DM and metabolic syndrome [62]. Previous studies have
explored the relationship between carotenoid consumption and impaired glucose tolerance,
finding an inverse linear correlation between the concentrations of β-carotene and lycopene
and the level of glucose tolerance, as shown by glucose tolerance test results [59]. These
findings suggest that carotenoids may improve insulin sensitivity. Studies by Facchini et al.
and Sugiura et al. have shown that lower plasma carotenoid levels are associated with
higher insulin resistance in healthy individuals [63,64].

In this study, insulin expression in the pancreatic islets varied among the groups.
The LA group demonstrated increased β-cell area and IOD (270.44 ± 107.99 µm2 and
35661.82 ± 13921.15 lum/µm2, respectively) compared to the C group (194.78 ± 38.30 µm2

and 26006.67 ± 5063.97 lum/µm2, respectively), potentially indicating heightened insulin
sensitivity (p < 0.001). Although no significant differences in the serum glucose levels were
found between the LA and C groups using the same experimental models, the LA group
exhibited lower serum insulin content relative to the C group [60].

When β-carotene was administered concurrently with ethanol (in the LA+B and
MA+B groups), there was a significant increase in the β-cell area and IOD compared to the
groups without the β-carotene supplementation (LA and MA), although no differences
were observed in the serum insulin or glucose levels. This effect could be attributed to
several potential mechanisms: (1) β-carotene may reduce ethanol-induced β-cell damage
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while increasing insulin sensitivity [11,12,16]; (2) β-carotene alone may enhance insulin
sensitivity [52,65,66]; or (3) β-carotene could mitigate ethanol damage in β-cells while
jointly enhancing insulin sensitivity with ethanol [11,12,16,52,65,66].

3.5. Limitations

Our data offer new insights into the relationship between alcohol-induced diabetes
and antioxidant therapies, specifically β-carotene. However, this study has a limitation in
that it does not examine the interactions between alcohol metabolism byproducts and other
pancreatic hormones, such as glucagon, somatostatin, amylin, or pancreatic polypeptide,
in the context of antioxidant treatments. Future research should, therefore, focus on
investigating the effects of β-carotene in cultured pancreatic cells and identifying the
specific molecules and signaling pathways involved. Nevertheless, our findings suggest
that β-carotene exposure may mitigate ethanol-induced damage to β-cells and enhance
insulin sensitivity, even during ethanol consumption.

4. Materials and Methods
4.1. Sample Size

The study was a comparative analysis of independent groups, with parameters set at
an alpha of 0.10, beta of 0.05, standard deviation of 0.05, a minimum detectable difference
between groups of 0.1, and an anticipated follow-up loss proportion of 0.2 [67–69]. The
sample size calculation was conducted using the G*Power 3.1.9.7 Software (Heinrich-Heine-
Universität Düsseldorf, Düsseldorf, Germany).

4.2. Animals

Thirty-six male C57BL/6 mice (Mus musculus), aged fifty days, were obtained from
the Public Health Institute of Chile. They were housed in the Animal Facility at the Center
of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera,
for 30 days to acclimate to their environment. During this period, the mice were provided
with a standard laboratory diet (AIN-93M) and water ad libitum. Lighting conditions were
maintained on a 12 h light/dark cycle from 08:00 to 20:00 and 20:00 to 08:00. Animal care
followed the guidelines from the Institute for Laboratory Animal Research’s Committee for
the Update of the Guide for the Care and Use of Laboratory Animals [70].

On the first day of the experiment, the mice were divided into six groups (n = 6
per group):

Control group (Group C): No alcohol or β-carotene administration.
Low-dose alcohol group (Group LA): Administered 3% v/v alcohol ad libitum for 28 days
based on studies suggesting low alcohol intake enhances insulin sensitivity [49,71–73].
Moderate-dose alcohol group (Group MA): Administered 7% v/v alcohol ad libitum for
28 days, as moderate intake is also linked to increased insulin sensitivity [49,71–73].
β-carotene group (Group B): Administered 0.52 mg/kg body weight/day β-carotene for
28 days, as this dose has been shown to mitigate alcohol-induced liver damage by reducing
oxidative stress and inhibiting apoptosis [30].
Low-dose alcohol + β-carotene group (Group LA+B): Administered low-dose alcohol
plus 0.52 mg/kg body weight/day β-carotene for 28 days.
Moderate-dose alcohol + β-carotene group (Group MA+B): Administered moderate-dose
alcohol plus 0.52 mg/kg body weight/day β-carotene for 28 days. Figure 2 illustrates the
experimental design.

Chronic ethanol was administered using a modified Lieber–DeCarli liquid diet [71,73],
while β-carotene was provided orally at a dosage of 0.52 mg/kg body weight per day [15].
This experimental model has been previously applied in animal studies [14,15,18,60].
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administration of 28-day 0.52 mg/kg body weight/day of β-carotene. After the experimental phase,
the animals were euthanized and samples (the blood and tissues) were obtained.

4.3. Alcoholism and Treatments

A chronic plus single binge ethanol consumption (referred to as Lieber–DeCarli alco-
holic diet) was used [71,74,75].

The ethanol groups were provided a liquid diet containing either 3% (LA or LA+B)
or 7% (MA or MA+B) alcohol over a period of 28 days, while the control groups (C or B)
were pair-fed an equivalent control diet for the same duration. On day 29, the mice in the
ethanol groups were administered a single oral dose of ethanol (5 g/kg body weight, 20%
ethanol), while the control groups received isocaloric dextrin maltose. Ethanol was sourced
from Merck KGaA (107017, Darmstadt, Germany). The liquid diets were freshly prepared
and administered daily [76].

β-carotene was administered in a dose of 0.52 mg/kg body weight/day (C9750, Sigma-
Aldrich Co., St. Louis, MO, USA). β-carotene was diluted in water for the groups C, LA,
MA, and B, whereas alcohol was used for the dissolution in the groups LA+B and MA+B. β-
carotene was administered once a day by oral gavage (C9750, Sigma-Aldrich Co., St. Louis,
MO, USA).

4.4. Euthanasia

On day 28, the animals were deprived of food for 6 h and then euthanized with
sodium pentobarbital.

4.5. Biochemical Analyses

Centrifugation at 3500 rpm for 15 min separated the serum, which we then stored
at −80 ◦C until analysis. In the biochemical analysis, we used a colorimetric kit (Sigma-
Aldrich Co., St. Louis, MO, USA) to quantify the physiological concentration of glucose and
a mouse-specific ELISA kit (Sigma-Aldrich Co., St. Louis, MO, USA) to measure insulin
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levels. The enzymatic activity of ADH and ALDH was assessed using the respective kit
provided by Sigma-Aldrich Co. (St. Louis, MO, USA).

4.6. Homeostasis Model Assessment of β-Cell Function (HOMA-SS)

The HOMA-ß index was determined using Equation (1) [77]:[
20 × fasting insulin

(
uU
mL

)]
[
fasting glucose

(
mmoL

L

)
− 3.5

] (1)

4.7. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR)

The HOMA-IR index was determined using Equation (2) [78]:[
fasting insulin

(
uU
mL

)
× fasting glucose

(
mmoL

L

)]
22.5

(2)

4.8. Processing and Staining of Pancreas

To ensure random sampling, multiple sections were obtained from each pancreas,
capitalizing on the tissue’s isotropic characteristics. After a 48 h fixation in 4% buffered
formalin (1.27 mol/L formaldehyde in 0.1 M phosphate buffer, pH 7.2; Sigma-Aldrich,
St. Louis, MO, USA), the samples were dehydrated and embedded in Paraplast Plus
(Sigma-Aldrich, St. Louis, MO, USA). Each block was sectioned into four groups, with
5 µm cuts spaced 120 µm apart using a microtome (Leica® RM2255, Leica Biosystems,
Nussloch, Germany).

4.9. Immunohistochemistry

In summary, the paraffin sections were hydrated using a series of alcohols in decreas-
ing concentrations following the standard procedure for traditional histological staining.
Subsequently, they were immersed in distilled water for a duration of five minutes to
restore their moisture content. Each histological section was washed in 1× PBS (Sigma-
Aldrich Co., St. Louis, MO, USA) twice. They were treated with H2O2 (v/v) (ab64264,
Abcam, Cambridge, UK) for 15 min to block the activity of endogenous peroxidase. Then,
antigenic recovery was performed with HistoReveal (ab103720, Abcam, Cambridge, UK)
for 10 min at room temperature. Next, each histological section was washed in 1× PBS
three times. Then, the unspecific background was blocked using Protein Block (ab64207,
Abcam, Cambridge, UK) for 15 min at room temperature. Each washing was performed
with 1× PBS three times. First, the sections were incubated with anti-insulin IgG Guinea pig
primary antibody (ab7842, Abcam, Cambridge, UK), dilution 1:50, in PBS overnight at 4 ◦C
under a wet chamber. Second, each washing was performed with 1× PBS, four times. After
washing with PBS, the sections were incubated with a biotinylated goat anti-polyvalent
antibody (ab64207, Abcam, Cambridge, UK) for 10 min at room temperature in a wet
chamber. Next, each wash was performed with 1× PBS four times. Then, the sections
were incubated with streptavidin peroxidase (ab64207, Abcam, Cambridge, UK) for 10 min
at room temperature. Afterward, each washing was performed with 1× PBS, four times.
Finally, they were incubated with diaminobenzidine-peroxidase (ab64207, Abcam, Cam-
bridge, UK) for visualization for ten minutes and washed with 1× PBS four times. The
nuclear counterstain was performed with Harris hematoxylin (Sigma-Aldrich Co., St. Louis,
MO, USA) for 50 s. The slides were dehydrated using a series of alcohols (Sigma-Aldrich
Co., St. Louis, MO, USA) in increasing concentrations, following the standard procedure
for traditional histological staining. A total of four pancreatic islets by slide were observed
under a light microscope (Leica® LED750, Leica Biosystems, Nussloch, Germany) and
photographed (Leica® ICC50W, Leica Biosystems, Nussloch, Germany). A total of 144 pan-
creatic islets were evaluated. For each immunohistochemical reaction, negative controls
were used, which were incubated in PBS, omitting the primary antibody (ab7842, Abcam,
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Cambridge, UK). Table 3 shows the labeled process used for positive and negative control.
The immunolabeling was quantified by the area (mm2) occupied in each field, and the
IOD analysis was expressed as lum/µm2 [79]. Both measurements were made using the
Image-ProPremier 9.1 software (Media Cybernetics, Warrendale, PA, USA). Figure 3 shows
the positive and negative controls.

Table 3. Labeled process used for positive and negative controls to determine insulin in pancreatic
islets of C57BL/6 mice.

Block
Peroxidase

Antigenic
Recovery

Unspecific
Background

Primary
Antibody

Secondary
Antibody Labeled Detection

Positive control
(protein of interest) H2O2 HistoReveal Protein Block

Anti-insulin IgG
guinea pig primary

antibody

Biotinylated goat
anti-polyvalent

antibody

Streptavidin
peroxidase

Diaminobenzidine-
peroxidase

Negative control
(without protein of

interest)
H2O2 HistoReveal Protein Block Saline solution

Biotinylated goat
anti-polyvalent

antibody

Streptavidin
peroxidase

Diaminobenzidine-
peroxidase

Samples
(pancreas cuts) H2O2 HistoReveal Protein Block

Anti-insulin IgG
guinea pig primary

antibody

Biotinylated goat
anti-polyvalent

antibody

Streptavidin
peroxidase

Diaminobenzidine-
peroxidase
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are in segmented lines.

4.10. Statistical Analysis

Levene’s test was applied to assess the homoscedasticity of variances, while the
Kolmogorov–Smirnov test was used to evaluate data normality. These tests were conducted
to assess disparities in the quantitative data. Group differences were analyzed using one-
way ANOVA, followed by either Dunnett’s T3 test or Tukey’s post hoc HSD test, as
appropriate. Statistical significance was determined at a p-value of less than 0.05 using IBM
SPSS Statistics, Version 21 (IBM Corp., Armonk, NY, USA).

5. Conclusions

Insulin expression in pancreatic islets varied among the groups. In mice, β-cell loss
led to increased glucose release due to decreased insulin levels. β-carotene appeared to
mitigate ethanol’s impact on these cells, resulting in reduced insulin degradation. In the
pancreatic islets of the C57BL/6 mice, β-carotene exposure improved insulin sensitivity and
lessened ethanol-induced β-cell damage. These findings suggest that antioxidant supple-
mentation may be beneficial in treating ethanol-induced T2DM in animal models. Further
research is necessary to better understand the interaction between alcohol consumption
and antioxidant therapy, including studies using specific cell lines and clinical trials.
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