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Abstract: Sitafloxacin is a 4th generation fluoroquinolone antibiotic with broad activity against a
wide range of Gram-negative and Gram-positive bacteria. It is approved in Japan and used to treat
pneumonia and urinary tract infections (UTIs) as well as other upper and lower respiratory infections,
genitourinary infections, oral infections and otitis media. Compared to other fluoroquinolones,
sitafloxacin displays a low minimal inhibitory concentration (MIC) for many bacterial species but
also activity against anaerobes, intracellular bacteria, and persisters. Furthermore, it has also shown
strong activity against biofilms of P. aeruginosa and S. aureus in vitro, which was recently validated
in vivo with murine models of S. aureus implant-associated bone infection. Although limited in
scale at present, the published literature supports the further evaluation of sitafloxacin in implant-
related infections and other biofilm-related infections. The aim of this review is to summarize the
chemical-positioning-based mechanisms, activity, resistance profile, and future clinical potential
of sitafloxacin.
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1. Introduction

Sitafloxacin (DU-6859a) is a broad spectrum, 4th generation fluoroquinolone antibiotic
clinically approved in Japan in 2008 and produced under the name Gracevit by Daiichi
Sankyo company [1]. Sitafloxacin is utilized against a wide range of Gram-positive and
-negative bacterial infections [2]. Most commonly, sitafloxacin is prescribed for pneumonia
and urinary tract infections (UTIs); however, it is also approved for other upper and lower
respiratory infections (sinusitis, tonsillitis, laryngopharyngitis, and acute bronchitis), geni-
tourinary infections (cervicitis and urethritis), oral infections (periodontitis, pericoronitis,
and osteitis of the jaw), and otitis media [1]. It is also a third-line antibiotic for rescue
therapy of resistant Helicobacter pylori and a second- or third-line treatment against non-
gonococcal urethritis caused by both Mycoplasma genitalium and Chlamydia trachomatis [3,4].
As sitafloxacin is still a relatively new antibiotic, further indications may emerge in the
future, particularly since it seems to have potential in infections that are recalcitrant to
other treatments. This review explains the mode of action of sitafloxacin, starting with
its chemical composition, and summarizes its activity in vitro, in vivo, and in clinical im-
plementation. Finally, the review concludes with potential future applications where the
clinical impact and indications for which sitafloxacin may be beneficial are discussed.
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2. Chemical Composition and Properties

As a 4th generation fluoroquinolone, sitafloxacin has been substantially altered from
the initial 1st generation quinolones. The early quinolones originated from the development
of nalidixic acid in the 1960s, which is a by-product of the synthesis of the anti-malaria
drug chloroquine [5]. These early quinolones evolved into the 2nd generation with the
addition of a fluorine and a piperazine ring with norfloxacin and ciprofloxacin being two
prominent examples [6–15]. Subsequently, 3rd and 4th generation fluoroquinolones were
introduced in the following decades, which included various additional features such as
a broader spectrum of activity (streptococci, anaerobes), longer half-life (enabling once
daily dosing) or dual DNA gyrase and topoisomerase IV activity. Prominent examples of
these latter generation fluoroquinolones are gemifloxacin, levofloxacin, sparfloxacin and
moxifloxacin [16–26]. However, the distinction between the different generations is not
clinically important [27].

As is typical for all quinolones, sitafloxacin consists of the quinolone core (quinoline
ring fused to pyridone ring) with a keto group (C=O) at position 4 and a carboxylic acid
at position 3 (Figure 1). These two groups are essential for binding to the DNA–gyrase
complex, which is the target of these antibiotics [27,28]. Small groups like hydrogen (H) are
favored at position 2 so as not to interfere with enzyme binding. As a fluoroquinolone, it
also has a fluorine at the 6th carbon on the quinoline ring, enhancing antibacterial activity
and gyrase potency. In contrast to the 2nd generation fluoroquinolones, the piperazine ring
at the 7th carbon in sitafloxacin is replaced with a piperazine derivative (pyrrolidine with
an amine and integrated cyclopropane). The addition of this group has contributed toward
increased potency against Gram-positive bacteria compared to the original piperazine
ring, which enhances activity against Gram-negative bacteria. Similar to some other
fluoroquinolones, sitafloxacin also contains an alkyl substitution that contributes to even
higher activity against Gram-positive bacteria and increased serum half-life. At the N1
position, it further contains a non-polar cyclopropyl (three-membered carbon ring) group,
which was shown to be the best group to improve overall potency and pharmacokinetics.
In contrast to other fluoroquinolones, the cyclopropyl in sitafloxacin contains a fluoride
substitution (fluorocyclopropyl). At the 8th carbon of the main quinolone ring, sitafloxacin
has a chloride substitution, which improves oral uptake and activity against anaerobic
bacteria [28]. The fluorine on the cyclopropyl and the chlorine collectively pull the electrons
from the neighboring carbon atoms closer. This increases the hydrophobicity of sitafloxacin
compared to other fluoroquinolones, which can influence the uptake of sitafloxacin through
the bacterial envelope [29,30].
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Figure 1. Chemical composition of sitafloxacin with composition-based activity. In blue are the
chemical groups typical for all fluoroquinolones. In red are the side-groups that are also present in other
fluoroquinolones, and in pink are specific for sitafloxacin. This diagram was adapted from [27,28].

Fluoroquinolones have been shown to have reduced activity at low pH [31], which
may be due to changes in charge of the functional groups at different pH values. For
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example, the carboxylic acid can lose a proton at high pH (-COO−), while the amine group
can become protonated at low pH (-NH3

+). However, whether sitafloxacin has reduced
efficacy at low pH has not been determined to date to the best of our knowledge.

In addition to influencing pH-dependent activity, the carbonyl groups of the main
quinolone composition are responsible for the interaction with the DNA gyrase complex
within bacteria [32–35].

3. Mechanism of Action

Like all fluoroquinolones, sitafloxacin targets prokaryotic DNA gyrase and topoiso-
merase IV enzymes. DNA gyrase is responsible for the catalytic relaxation of negatively
supercoiled DNA and topoisomerase IV disentangles newly replicated DNA, both of which
are essential for transcription and replication [36–39]. DNA gyrase is composed of two
subunits, GyrA and GyrB. Topoisomerase IV is composed of the subunits ParC and ParE.
Both protein complexes bind two double strands of DNA and cleave one of them. This
allows the second DNA to pass through the gap, after which it is united again (Figure 2).
The inhibition of these enzymes by fluoroquinolones is not fully understood, but binding
of the fluoroquinolone to both DNA gyrase or topoisomerase IV and DNA is believed to be
important [38,40]. All fluoroquinolones block the topology changes of DNA, and the whole
complex leads to double-strand breaks, which results in cell death [41–45]. Only the latter
generation fluoroquinolones, such as sitafloxacin, can target both enzymes with similar
affinity, which is called dual targeting [46].
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Figure 2. Graphical representation of antibacterial mechanism proposed for sitafloxacin. The regular
function of the enzymes DNA gyrase and topoisomerase IV is to first bind one double-stranded (ds)
DNA strand (blue strand) (A), which is followed by binding to a second dsDNA (purple strand) (B).
Together, these enzymes lead to a controlled break in one of the dsDNA strands (C). The resultant gap
allows the second dsDNA to pass through and the re-ligation of the DNA (D). This serves to change
DNA topology (relax or supercoil). Gyrase consists of the subunits GyrA and GyrB, topoisomerase
IV consists of the subunits ParC and ParE. Fluoroquinolones such as sitafloxacin interfere in this
process (at C) by binding to the DNA and both subunits of the enzyme, which stabilizes the cleavage
complex. This blocks DNA replication and transcription, leading to the accumulation of reactive
oxygen species (ROS) and DNA double-strand breaks, which results in bacterial cell death [27]. Made
with BioRender.



Pharmaceuticals 2024, 17, 1537 4 of 16

Sitafloxacin has a balanced inhibition of both enzymes, as revealed by its IC50 ra-
tio of 1.4. This compares with other fluoroquinolones, such as moxifloxacin (6.24) and
ciprofloxacin (110), which have a greater activity against one of the enzymes. Further-
more, sitafloxacin showed the highest direct inhibitory activity against purified DNA
gyrase and topoisomerase IV in vitro compared to levofloxacin, ciprofloxacin, gatifloxacin,
tosufloxacin, and sparfloxacin [47–49].

4. Spectrum of Activity

Sitafloxacin is utilized against a wide range of Gram-positive and -negative bacte-
rial infections, including Staphylococcus spp., Streptococcus pneumoniae, other Streptococcus
spp., Enterococcus spp., Moraxella catarrhalis, Escherichia coli, Citrobacter spp., Klebsiella spp.,
Enterobacter spp., Serratia spp., Proteus spp., Morganella morganii, Haemophilus influenzae,
Pseudomonas aeruginosa, Legionella pneumophila, Peptostreptococcus spp., Prevotella spp., Por-
phyromonas spp., Fusobacterium spp., C. trachomatis, Chlamydophila pneumoniae, and Mycobac-
terium pneumoniae [2]. Sitafloxacin has remarkably low minimal inhibitory concentrations
(MICs) compared to other fluoroquinolones for a number of medically important bacterial
species. For example, its MIC(90) was 0.06 µg/mL against clinical isolates of Streptococcus
milleri, which is 8-fold lower than that of ciprofloxacin and 16-fold lower than that of lev-
ofloxacin [50–58]. Why this is the case is not quite understood. It is not related to the drug
accumulation within the bacteria, as sitafloxacin showed very low accumulation compared
to other quinolone antibiotics in S. pneumoniae [59]. Sitafloxacin also has a lower in vitro
MIC against more anaerobic bacteria than older fluoroquinolones such as ciprofloxacin or
ofloxacin [60–62].

A common factor limiting antibiotic efficacy is related to bacterial metabolic and
respiratory activity, which is altered in small colony variants (SCVs) and so-called persis-
ters [63–65].

SCVs can be found in patients with chronic Staphylococcal infections, which are in
most cases linked to device or prosthetic joint-related infections or osteomyelitis [66–69].
Antibiotics, including the aminoglycoside gentamicin and the fluoroquinolone moxi-
floxacin, could not reduce the bacterial numbers of chronic SCVs in vitro and in vivo
in an osteomyelitis mouse model. Moxifloxacin was even shown to induce increased SCV
formation [70]. However, another study identified sitafloxacin as a potent bactericidal
treatment for SCVs of Staphylococcus aureus [71]. The study was especially interesting, as
sitafloxacin not only killed SCVs of methicillin-susceptible S. aureus (MSSA) but also of
methicillin-resistant S. aureus (MRSA) [71].

Persisters are bacterial sub-populations, which are, amongst other things, more tolerant
to antibiotics. They are often connected to recurrent infections and are especially abundant
in biofilms [72–74]. Sitafloxacin has been proven to kill persisters of P. aeruginosa [75].
As S. aureus and P. aeruginosa can both lead to very problematic infections by forming
biofilms [76–81], it is especially crucial to note that these studies also saw a potent anti-
biofilm activity of sitafloxacin against these two pathogens. Sitafloxacin lead to a 4 log10
reduction in surviving bacteria within S. aureus biofilms, which is 100-fold more effective
than gentamicin [71]. It also eliminated biofilms of P. aeruginosa in vitro by 7 logs and
reduced the biofilm survival of an in vivo implant-related infection mouse model by at
least 2 logs [75].

Sitafloxacin also displayed greater activity against intracellular S. aureus in infected
murine macrophages in vitro than levofloxacin or moxifloxacin and showed good antibac-
terial activity in a mouse peritonitis in vivo model [82]. Fluoroquinolones generally seem
to accumulate within monocytes [83]; however, this is not universal within this class of
antibiotics, as moxifloxacin does accumulate, but levofloxacin does not [84]. With regard
to cytotoxicity, sitafloxacin did not show adverse effects (AEs) against human embryonic
kidney 293T cells up to a concentration of 64 µg/mL [71].
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5. Antibiotic Resistance

As fluoroquinolones have been heavily prescribed in recent decades, resistance is
rising [85–91]. However, few studies have been published so far concerning resistance
to sitafloxacin. Resistance has been shown to develop during treatment with 1 out of 10
patients carrying sitafloxacin-resistant M. genitalium after treatment failure in one clinical
report [4]. Still, resistance to sitafloxacin usually increases the MIC much less in comparison
with other fluoroquinolones [46,53]; for example, a point mutation in gyrA led to a 16-fold
increase in MIC for sparfloxacin or moxifloxacin but only a 4-fold increase in MIC for
sitafloxacin [47].

The dual targeting of sitafloxacin against both DNA gyrase and topoisomerase IV
might lead to reduced resistance formation, as suggested for the similar fluoroquinolone
moxifloxacin [92–95]. This might be because the most common mechanism for antibiotic
resistance in fluoroquinolones is point mutation in the quinolone-resistance-determining
regions (QRDRs) of gyrA and/or parC. In Gram-negative bacteria, weaker resistance has
been shown to usually only come from mutations in gyrA, while stronger resistance seems
to originate from mutations in both gyrA and parC genes [96,97]. Mutations in parC are
more likely to be found in Gram-positive bacteria [98,99]. In a combination treatment with
doxycycline, sitafloxacin was shown to be more efficient in treating patients infected by M.
genitalium having a mutation in parC. Still, this mutation was found in 50% of cases with
failed doxycycline-sitafloxacin treatment, and treatment failure was even more likely if
there was also a gyrA mutation [100]. Another clinical study checked for mutations prior to
initiating sitafloxacin monotherapy against fluoroquinolone-resistant M. genitalium. They
found a 100% cure rate for patients infected with M. genitalium without having any parC or
gyrA mutations, while it was 92.9% for parC only mutations and 41.7% for parC and gyrA
double mutants [101].

In S. pneumoniae, the mutant prevention concentration (MPC) was much lower for
sitafloxacin (1 mg/L) compared to other fluoroquinolones such as ciprofloxacin (128 mg/L),
levofloxacin (64 mg/L) and moxifloxacin (8 mg/L) and further showed less mutant fre-
quencies [47]. Alteration of the drug transport mechanism, for example, the upregulation of
efflux pump genes, can also lead to resistance in certain cases, specifically for the 2nd gener-
ation fluoroquinolones ciprofloxacin and norfloxacin [59,102]. In S. pneumoniae, sitafloxacin
accumulated the least compared to all other fluoroquinolones tested, which might sug-
gest it is pumped out by efflux systems. However, inhibiting potential efflux pumps did
not change the intra-bacterial concentrations of sitafloxacin nor its activity measured in
MIC [59]. Therefore, efflux pumps do not seem to be the primary resistance mechanism
against sitafloxacin, at least not in S. pneumoniae.

Another mechanism for increased fluoroquinolone resistance is downregulation of
the target enzyme, such as topoisomerase IV in S. aureus, which increases the MIC drasti-
cally [103]. Furthermore, the AAC(6′)-Ib-cr mutant protein has been found to be carried on
a plasmid in several clinical isolates of Gram-negative bacteria, which makes some fluoro-
quinolones ineffective. Those enzymes inactivate the piperazine ring and therefore lead to
resistance to fluoroquinolones with this chemical composition, such as ciprofloxacin [104].
Sitafloxacin has a piperazine derivative, which means it is not clear yet if the AAC(6′)-Ib-cr
mutant protein would also lead to resistance against this antibiotic.

Sitafloxacin has been shown to be highly active against fluoroquinolone-resistant mu-
tants. For example, sitafloxacin remains active against mutated DNA gyrase and topoiso-
merase IV in resistant M. genitalium [105]. Similarly, H. pylori with resistance to levofloxacin
remained susceptible to sitafloxacin in vitro [106,107]. Furthermore, another study showed
a high activity of sitafloxacin against levofloxacin-resistant E. coli [108]. Sitafloxacin was
also shown to be more effective against gyrA mutants of M. tuberculosis tested on clinical
isolates compared to moxifloxacin, levofloxacin, and ciprofloxacin in vitro [109], making it a
valuable option against infections with resistance against commonly used fluoroquinolones.

However, sitafloxacin has been described to display reduced activity against ciprofloxacin-
resistant strains [58]. This suggests there can be a shared resistance for more than one
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of these antibiotics from the same class. For M. tuberculosis, a cross-resistance between
sitafloxacin and moxifloxacin was observed in 40.6% of the tested clinical isolates in vitro [110].
It seems as if the specific mutation location can either lead to resistance to sitafloxacin or
not, so they are not universal between different fluoroquinolones.

Considering the increase in resistance, linked with increased mutation rates in bacterial
DNA, the use of fluoroquinolones may warrant careful monitoring into the future. The
mechanism of higher mutation rates is not completely clear, but the increased mutation
rate is a consequence of DNA repair [27,111–118] and can lead to bacteria adapting to new
drugs more quickly.

The resistance mechanism is not universal between classes, as sitafloxacin was shown
to be highly effective against multiple bacteria resistant to an antibiotic of another class.
One example is the antibacterial activity of multi-resistant enterococci in vitro, where
sitafloxacin was effective against strains resistant to antibiotics of any tested class except
to fluroquinolones [119]. Another example is the successful eradication of carbapenem-
resistant E. coli or P. aeruginosa and vancomycin-resistant E. faecium [120].

6. Synergy with Other Drugs or Compounds

Combining sitafloxacin with another antibacterial may increase killing efficacy as well
as reduce antibiotic resistance development. Therefore, several studies tested combinations
between sitafloxacin and other antibiotics in vitro. For example, combining sitafloxacin
with the protein synthesis targeting aminoglycoside antibiotic arbekacin led to a syner-
gistic effect on the majority of the tested clinical isolates of Mycobacterium abscessus [121].
Combination with the aminoglycoside amikacin or the cell-wall inhibiting beta-lactam
antibiotic imipenem was also beneficial for some of the strains [121]. Sitafloxacin further
showed high in vitro activity for extensively drug-resistant Acinetobacter baumannii and
showed possible synergy with the RNA synthesis inhibiting antibiotic rifampicin and the
polymyxin antibiotic colistin [122]. The combination of sitafloxacin with colistin was even
able to kill colistin-resistant A. baumannii. This could be due to the membrane-disruptive
properties of colistin, which would increase uptake of the hydrophobic sitafloxacin [123].
Against Mycobacterium ulcerans, the combination of sitafloxacin and rifampicin also led to
synergistic effects [124].

Some synergies observed in vitro could also be reproduced in vivo, such as the com-
bination of sitafloxacin and rifampicin against M. ulcerans in a mouse footpad infection
study [125]. However, synergy between sitafloxacin and colistin for the treatment of
carbapenem-resistant A. baumannii that was observed in vitro was not found in a patient
study compared to colistin monotherapy [126].

Antimicrobial activity can also be increased by partnering with other drugs that
influence the drug-inhibiting pathways or antibiotic resistance mechanisms. Adding
sitafloxacin together with the beta-lactamase inhibitor sulbactam increases the activity
against multiple strains of A. baumannii [122,127]. Another approach is to change the
environment the drug will be facing to make it more active or simply make the drug reach
the target more efficiently. In vitro testing on H. pylori showed synergy with lansoprazole,
which is a proton pump inhibitor (PPI) used to reduce stomach acid [53]. For both studies,
the mechanisms behind these enhanced treatments have not been further investigated.

By conjugating sitafloxacin with a bisphosphonate, the bacterium S. aureus can be
reached within the canaliculi of the bone shown in a murine model, as the bisphosphonate
binds to bone and therefore transports the drug to the bone infection site [128–130].

7. Utility in Clinical Settings

The primary agent causing UTIs, E. coli, is becoming increasingly resistant to estab-
lished therapeutics. Over 30% of UTI E. coli isolates in the Asian–Pacific region were
resistant to third and fourth generation cephalosporins. Of these, half also had decreased
susceptibility to commonly used fluoroquinolones such as levofloxacin and ciprofloxacin,
which are the first-line treatments for complicated UTI [131–133]. Sitafloxacin exhibits
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similar efficacy compared to established levofloxacin therapy (88.6% vs. 94.9%) for un-
complicated UTIs, corroborating its utility as an option to overcome emerging resistance
amongst uropathogens [134].

Sitafloxacin also retains its efficacy when used in the treatment of acute pyelonephri-
tis (kidney infection) and complicated UTI, which refers to an infection in specific pa-
tient populations (elderly, immunocompromised, pregnant, male) or patients with struc-
tural/functional abnormalities of the urinary tract (prostatic hypertrophy, indwelling
catheter, neurogenic bladder) [135]. A study in Thailand of 289 patients with complicated
UTI deemed sitafloxacin non-inferior to ceftriaxone with clinical success rates of 86.6% vs.
83.8% for intention-to-treat analysis and 97.2% vs. 99% for per-protocol analysis [136]. An-
other study in China of 59 patients found superior cure rates of sitafloxacin (80%) compared
to levofloxacin (54%) for complicated UTI [134].

Regarding other genitourinary infections, sitafloxacin eradicated M. genitalium in
92.3% of patients with uterine cervicitis with analogous rates to azithromycin and moxi-
floxacin [137]. Another study demonstrated sitafloxacin could clear non-gonococcal ure-
thritis in 95.7% of patients with C. trachomatis, 93.8% with M. genitalium, and 100% with
Ureaplasma urealyticum [138]. In addition, sitafloxacin is being continuously evaluated
for its safety and efficacy in other urologic infections, such as bacterial prostatitis and
epididymitis [139]. With the incidence and degree of adverse events remaining similar
between sitafloxacin and control groups, sitafloxacin is a valuable addition to the arsenal of
antibiotics physicians can use to treat infections of the genitourinary tract.

Sitafloxacin has also been shown to be effective against respiratory infections such as
community-acquired pneumonia (CAP). With the most common pathogens including S.
pneumoniae, H. influenzae, and M. catarrhalis, CAP has also become more challenging to treat
due to increased resistance to empiric therapy, consisting of penicillins, macrolides, and flu-
oroquinolones [140–142]. In a study comprising 300 S. pneumoniae clinical isolates in China,
44.7% were classified as resistant to oral penicillin, 60% were resistant to oral cefuroxime,
and 96% were resistant to erythromycin; in contrast; all strains were found to be susceptible
to levofloxacin [143]. Furthermore, the American Thoracic Society and Infectious Diseases
Society of America provide a strong recommendation for fluoroquinolone monotherapy in
CAP outpatients with comorbidities such as heart, lung, liver, renal disease, and diabetes
mellitus given the class’s broad coverage of CAP-causing organisms, decreased resistance
rates, high oral bioavailability, and increased likelihood of patient compliance with a single
antimicrobial [142]. Amongst fluoroquinolones, oral sitafloxacin has been ascribed similar
cure rates (>92%) for CAP when compared to oral levofloxacin and moxifloxacin with
the highest cure rates presenting at a 100 mg bid dosing regimen [144]. Intravenous (IV)
sitafloxacin also had comparable cure rates to the beta-lactam antibiotic imipenem (94%
vs. 97%) in patients hospitalized with pneumonia [145]. Considering sitafloxacin’s high
efficacy against inpatient and outpatient cases of pneumonia and decreased resistance
of respiratory pathogens to fluoroquinolones, there is rationale for sitafloxacin use for
respiratory infections, especially when first-line therapeutics fail or evoke AEs.

Sitafloxacin is also used as a third-line rescue therapy for H. pylori infection, which
is highly associated with gastric adenocarcinoma, mucosa-associated lymphoid tissue
lymphoma, and peptic ulcer disease [146–148]. Increased rates of antibiotic resistance have
rendered first-line (PPI–clarithromycin–amoxicillin) and second-line (PPI–metronidazole–
amoxicillin) triple therapy less efficacious [149,150]. In Japan, a randomized-control trial
(RCT) established that sitafloxacin is superior to levofloxacin, and guidelines recommended
its inclusion as part of the third-line regimen for H. pylori [150,151]. A systematic review
of 12 clinical studies found 7-day treatment with the acid blocker vonoprazan or PPI–
sitafloxacin–amoxicillin to have an eradication rate of 80.6% (95% CI, 75.2–85.0) [151–163].
Importantly, logistic regression analysis in another study demonstrated that decreased
susceptibility to sitafloxacin, determined by increased MIC and association with gyrA
mutation, independently influenced clearance by sitafloxacin-based triple therapy [159].



Pharmaceuticals 2024, 17, 1537 8 of 16

Therefore, given the duration of treatment and potential for fluoroquinolone-associated
AEs, sensitivity to sitafloxacin should be confirmed prior to the initiation of therapy.

8. Safety Profile and Adverse Effects

As with most fluoroquinolones, the clinical usage of sitafloxacin requires careful con-
sideration of both the benefits and potential life-threatening risks to the patient. Common
AEs of the quinolone class that should be monitored in all patients include but are not
limited to gastrointestinal (gastritis and hepatotoxicity), neurologic (altered mental status
and peripheral neuropathy), cardiovascular (QT interval prolongation leading to torsades
de pointes, a deadly arrhythmia), tendinopathy, dysglycemia, and phototoxicity [164–172].
In contrast, commonly reported side effects for sitafloxacin are more limited to the gastroin-
testinal tract [2]. Sitafloxacin elicits a dose-dependent mild phototoxic effect in Caucasian
subjects, which was not observed in Asian subjects [173].

A meta-analysis of four RCTs that compared the safety of sitafloxacin in the treat-
ment of a variety of bacterial infections, mainly UTI and pneumonia, demonstrated a
similar risk of AEs between sitafloxacin and comparator antibiotics, including other flu-
oroquinolones (OR, 1.14; 95% CI, 0.64–2.01; I2 = 61%) [136,145,174–176]. Another study
evaluating therapeutic efficacy and safety in CAP (n = 340) did not find a significant dif-
ference in the incidence of drug-related AEs (including clinical, lab, or electrocardiogram
abnormalities) between sitafloxacin 100 mg once daily (qd) (29.8%), sitafloxacin 100 mg
twice daily (bid) (29.8%), and moxifloxacin 400 mg qd (28.2%). The most common clinical
AE in the sitafloxacin 100 mg qd group was dizziness, while that in the 100 mg bid group
was nausea/diarrhea. Notably, an increased frequency of sitafloxacin dosing did increase
rates of alanine transaminase/aspartate transaminase elevation from 2.6% in the qd group
to 9.6% in the bid group, speaking to a potential dose-dependent deleterious effect of
sitafloxacin on hepatic function [144]. The authors also performed a study for patients with
UTI (n = 206) and found similar rates of sitafloxacin AEs for uncomplicated (27.5%) as well
as complicated infections (26.5%). Levofloxacin had a lower incidence of AEs in uncompli-
cated UTIs (21.1%) but similar rates for complicated infections (28.1%) [134]. Numerous
other studies further support that the range at which sitafloxacin evokes drug-related AEs
varies between approximately 20–30% with hepatotoxicity being the most common that
requires monitoring [1,145,174,177]. Nonetheless, considering sitafloxacin belongs to the
fluoroquinolones, a class that can potentially elicit life-threatening side effects, its utilization
must be warranted by the nature of the patient’s infection.

9. Dosing Regimens and Pharmacokinetics

Sitafloxacin has demonstrated efficacy over a range of doses. The appropriate dosage
and frequency of administration are selected based on the type of infection, severity of
clinical symptoms, and efforts to mitigate potential AE, and medical history. The standard
oral tablet of sitafloxacin is 50 mg with the recommended dose for adults being 50 mg
bid. Poor response and failure to clear the infection merit increasing dosage to 100 mg
bid [1,2,134]. A dosage of 100 mg bid is also warranted for H. pylori infection and non-
gonococcal urethritis [138,156]; 100 mg qd can be used in the treatment of CAP [178].
Guidelines regarding dosage adjustments for patients who are elderly or have decreased
hepatic function remain unclear; nonetheless, drug toxicities may require careful monitoring
in these specific patient populations [179]. Sitafloxacin safety in newborns, children, and
pregnant individuals has not been established and is therefore not recommended for these
patients [179]. In patients with impaired renal function, 50 mg qd is advised for individuals
with creatinine clearance (CrCl) between 30–49 mL/min and 50 mg every 48 h for those
with a CrCl less than 30 mL/min [1,2]. Critically ill patients who require higher serum
concentrations of sitafloxacin may necessitate an IV infusion of 400 mg. However, this is an
infrequent occurrence, as the oral form of the drug has good oral bioavailability [145,179].

Investigation of the pharmacokinetics of sitafloxacin has the potential to optimize
dosage. For fluoroquinolones, bactericidal efficacy correlates with the 24 h area under the
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serum concentration–time curve (AUC) to MIC ratio [180]. Specifically, studies in both
humans and animal models have demonstrated that an AUC:MIC ratio between 30 and 40
is required for fluoroquinolones (including sitafloxacin) to successfully eradicate bacterial
infection [181,182]. Notably, the standard dosage of 50 mg bid for sitafloxacin achieves an
AUC:MIC ratio > 100 against 90% of susceptible respiratory pathogens [183]. A different
prospective study comparing oral sitafloxacin administration at 100 mg qd to 50 mg bid
found higher peak serum concentrations for the 100 mg qd group, suggesting this would be
the preferred regimen to treat infection with decreased susceptibility to the antimicrobial.
Interestingly, AE rates were increased in the 50 mg bid group (40.4%) versus the 100 mg
qd group (33.7%), although the difference was not found to be statistically significant.
Nonetheless, the relationship between the dosing schedule of sitafloxacin and AEs deserves
further exploration [184].

10. Conclusions

Sitafloxacin is able to kill a wide variety of Gram-negative and Gram-positive bacteria.
It displays favorable properties such as low MIC for many clinically important pathogens
and a good safety profile. Unlike many other fluoroquinolones or antibacterials, it also has
potent activity against biofilms. This makes it an interesting option for biofilm-forming
infections, such as implant-associated infections. Furthermore, it is able to treat persisters
and SCVs, which makes it even more interesting in the fight against recurring infections.
Although more studies are needed, sitafloxacin should not only be considered outside of
Asia but especially for infections associated with high recurrence coming from persisters or
biofilm formation. One such potential future niche is implant- and bone-related infection,
as these infections are known to have high recurrence, and often biofilm and persister
formation are involved.
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