Semiconductor nanoparticles of sizes smaller than exciton Bohr diameters undergo quantum confinement and are called quantum dots (QDs), which exhibit size-dependent physicochemical properties. For the discovery and synthesis of QDs, three pioneers—Moungi G. Bawendi, Louis E. Brus, and Alexei I. Ekimov—have been awarded the 2023 Nobel Prize in Chemistry [1]. Since the discovery of QDs in the early 1980s [2], the synthesis, properties, and applications of QDs have been extensively investigated [3,4]. Various strategies, including physical, chemical, and biological approaches, have been developed to develop QDs with controllable sizes, compositions, and structures [5,6,7,8]. QDs have superior optoelectronic properties, including wide tunability, narrow emission bandwidth, high brightness, and high efficiency, and offer a wide range of potential device applications in solar energy harvesting [9], lighting [10], displays [11], detectors [12], biomedical imaging [13], and quantum information technology [14].
This Special Issue includes eight contributions, comprising seven research articles and one review article, dedicated to the synthesis, properties, and applications of QDs with diverse components and structures. These studies involve the investigation of the size uniformity in CsPbBr3 perovskite QDs via appropriate manganese doping [15], cost-effective magnetic carbon QDs/FeOx photocatalytic composites [16], the effects of surface plasmon coupling on the color conversion from quantum wells into QDs [17], temperature- and size-dependent photoluminescence spectroscopy study on CuInS2 QDs [18], methods for obtaining one single Larmor frequency in the coherent spin dynamics of colloidal CdSe and CdS QDs [19], room temperature coherent spin dynamics in CsPbBr3 perovskite QDs [20], high-quality CdSe/CdS/ZnS QD-based aptasensors for the simultaneous detection of two different Alzheimer’s disease core biomarkers [21], and a review on advances in solution-processed blue QD light-emitting diodes [22]. Research on the synthesis, properties, and applications of QDs will continue to be rigorous and of high interest. Closely following the prominent event of the 2023 Nobel Prize in Chemistry, our Special Issue highlights the development of QDs and will be of interest to general readers of Nanomaterials.
Acknowledgments
The Guest Editors express the deepest gratitude to all the authors for contributing their valuable work to the Special Issue. Special thanks to all the reviewers for their work in participating in the peer-review process of the submitted manuscripts and enhancing the papers’ quality and impact.
Author Contributions
D.F., G.Z. and Y.L. wrote this Editorial Letter. All authors have read and agreed to the published version of the manuscript.
Conflicts of Interest
The authors declare no conflicts of interest.
Funding Statement
This work was supported by the National Nature Science Foundation of China (Grants No. 12174108, 62127817, 62075120); the Basic Public Research Program of Zhejiang Province (LGF22B010004); Research Funds of Hangzhou Institute for Advanced Study, UCAS (2024HIAS-Y008); the Shanxi Province Science and Technology Innovation Talent Team (No. 202204051001014); and the Science and Technology Cooperation Project of Shanxi Province (202104041101021).
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1. [(accessed on 2 November 2024)]. Available online: https://www.nobelprize.org/prizes/chemistry/2023/summary/
- 2.Efros A.L., Brus L.E. Nanocrystal quantum dots: From discovery to modern development. ACS Nano. 2021;15:6192–6210. doi: 10.1021/acsnano.1c01399. [DOI] [PubMed] [Google Scholar]
- 3.Ciftja O. Quantum Dots: Applications, Synthesis, and Characterization. Nova Science Publishers; New York, NY, USA: 2012. [Google Scholar]
- 4.Masumoto Y., Takagahara T. Semiconductor Quantum Dots: Physics, Spectroscopy and Applications, Nanoscience and Technology Series. Springer; Berlin/Heidelberg, Germany: 2002. [Google Scholar]
- 5.García de Arquer F.P., Talapin D.V., Klimov V.I., Arakawa Y., Bayer M., Sargent E.H. Semiconductor quantum dots: Technological progress and future challenges. Science. 2021;373:eaaz8541. doi: 10.1126/science.aaz8541. [DOI] [PubMed] [Google Scholar]
- 6.Reiss P., Carriere M., Lincheneau C., Vaure L., Tamang S. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials. Chem. Rev. 2016;116:10731–10819. doi: 10.1021/acs.chemrev.6b00116. [DOI] [PubMed] [Google Scholar]
- 7.Zhou J., Yang Y., Zhang C.y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015;115:11669–11717. doi: 10.1021/acs.chemrev.5b00049. [DOI] [PubMed] [Google Scholar]
- 8.Li Y., Hou X., Shen Y., Dai N., Peng X. Tuning the reactivity of indium alkanoates by tertiary organophosphines for the synthesis of indium-based quantum dots. Chem. Mater. 2021;33:9348–9356. doi: 10.1021/acs.chemmater.1c03219. [DOI] [Google Scholar]
- 9.Carey G.H., Abdelhady A.L., Ning Z., Thon S.M., Bakr O.M., Sargent E.H. Colloidal quantum dot solar cells. Chem. Rev. 2015;115:12732–12763. doi: 10.1021/acs.chemrev.5b00063. [DOI] [PubMed] [Google Scholar]
- 10.Won Y.H., Cho O., Kim T., Chung D.Y., Kim T., Chung H., Jang H., Lee J., Kim D., Jang E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature. 2019;575:634–638. doi: 10.1038/s41586-019-1771-5. [DOI] [PubMed] [Google Scholar]
- 11.Shu Y., Lin X., Qin H., Hu Z., Jin Y., Peng X. Quantum dots for display applications. Angew. Chem. 2020;132:22496–22507. doi: 10.1002/ange.202004857. [DOI] [PubMed] [Google Scholar]
- 12.Nakotte T., Munyan S.G., Murphy J.W., Hawks S.A., Kang S., Han J., Hiszpanski A.M. Colloidal quantum dot based infrared detectors: Extending to the mid-infrared and moving from the lab to the field. J. Mater. Chem. 2022;10:790–804. doi: 10.1039/D1TC05359K. [DOI] [Google Scholar]
- 13.Gil H.M., Price T.W., Chelani K., Bouillard J.S.G., Calaminus S.D., Stasiuk G.J. NIR-quantum dots in biomedical imaging and their future. iScience. 2021;24:102189. doi: 10.1016/j.isci.2021.102189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Kagan C.R., Bassett L.C., Murray C.B., Thompson S.M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 2021;121:3186–3233. doi: 10.1021/acs.chemrev.0c00831. [DOI] [PubMed] [Google Scholar]
- 15.Zhang M., Han X., Yang C., Zhang G., Guo W., Li J., Chen Z., Li B., Chen R., Qin C., et al. Size uniformity of CsPbBr3 perovskite quantum dots via manganese-doping. Nanomaterials. 2024;14:1284. doi: 10.3390/nano14151284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Ying W., Liu Q., Jin X., Ding G., Liu M., Wang P., Chen S. Magnetic carbon quantum dots/iron oxide composite based on waste rice noodle and iron oxide scale: Preparation and photocatalytic capability. Nanomaterials. 2023;13:2506. doi: 10.3390/nano13182506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Yang S., Feng H.Y., Lin Y.S., Chen W.C., Kuo Y., Yang C.C. Effects of surface plasmon coupling on the color conversion of an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure. Nanomaterials. 2023;13:328. doi: 10.3390/nano13020328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Korepanov O., Kozodaev D., Aleksandrova O., Bugrov A., Firsov D., Kirilenko D., Mazing D., Moshnikov V., Shomakhov Z. Temperature-and size-dependent photoluminescence of CuInS2 quantum dots. Nanomaterials. 2023;13:2892. doi: 10.3390/nano13212892. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Jiang M., Zhang Y., Hu R., Men Y., Cheng L., Liang P., Jia T., Sun Z., Feng D. Methods for obtaining one single larmor frequency, either v 1 or v 2, in the coherent spin dynamics of colloidal quantum dots. Nanomaterials. 2023;13:2006. doi: 10.3390/nano13132006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Meliakov S.R., Zhukov E.A., Kulebyakina E.V., Belykh V.V., Yakovlev D.R. Coherent spin dynamics of electrons in CsPbBr3 perovskite nanocrystals at room temperature. Nanomaterials. 2023;13:2454. doi: 10.3390/nano13172454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Lu X., Hou X., Tang H., Yi X., Wang J. A high-quality CdSe/CdS/ZnS quantum-dot-based FRET aptasensor for the simultaneous detection of two different alzheimer’s disease core biomarkers. Nanomaterials. 2022;12:4031. doi: 10.3390/nano12224031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Li S.N., Pan J.L., Yu Y.J., Zhao F., Wang Y.K., Liao L.S. Advances in solution-processed blue quantum dot light-emitting diodes. Nanomaterials. 2023;13:1695. doi: 10.3390/nano13101695. [DOI] [PMC free article] [PubMed] [Google Scholar]