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Semiconductor nanoparticles of sizes smaller than exciton Bohr diameters undergo
quantum confinement and are called quantum dots (QDs), which exhibit size-dependent
physicochemical properties. For the discovery and synthesis of QDs, three pioneers—
Moungi G. Bawendi, Louis E. Brus, and Alexei I. Ekimov—have been awarded the 2023
Nobel Prize in Chemistry [1]. Since the discovery of QDs in the early 1980s [2], the
synthesis, properties, and applications of QDs have been extensively investigated [3,4].
Various strategies, including physical, chemical, and biological approaches, have been
developed to develop QDs with controllable sizes, compositions, and structures [5–8].
QDs have superior optoelectronic properties, including wide tunability, narrow emission
bandwidth, high brightness, and high efficiency, and offer a wide range of potential device
applications in solar energy harvesting [9], lighting [10], displays [11], detectors [12],
biomedical imaging [13], and quantum information technology [14].

This Special Issue includes eight contributions, comprising seven research articles and
one review article, dedicated to the synthesis, properties, and applications of QDs with
diverse components and structures. These studies involve the investigation of the size uni-
formity in CsPbBr3 perovskite QDs via appropriate manganese doping [15], cost-effective
magnetic carbon QDs/FeOx photocatalytic composites [16], the effects of surface plasmon
coupling on the color conversion from quantum wells into QDs [17], temperature- and
size-dependent photoluminescence spectroscopy study on CuInS2 QDs [18], methods for
obtaining one single Larmor frequency in the coherent spin dynamics of colloidal CdSe and
CdS QDs [19], room temperature coherent spin dynamics in CsPbBr3 perovskite QDs [20],
high-quality CdSe/CdS/ZnS QD-based aptasensors for the simultaneous detection of two
different Alzheimer’s disease core biomarkers [21], and a review on advances in solution-
processed blue QD light-emitting diodes [22]. Research on the synthesis, properties, and
applications of QDs will continue to be rigorous and of high interest. Closely following
the prominent event of the 2023 Nobel Prize in Chemistry, our Special Issue highlights the
development of QDs and will be of interest to general readers of Nanomaterials.
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