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Abstract: Background: Cardiovascular diseases (CVDs) are a major public health concern. The
impact of dietary components on CVD risk has been recognized, but their interactions require further
investigation. This study aimed to examine the associations between major nutrient intake and
CVD risk and to assess potential causal relationships via Mendelian randomization. Methods: We
conducted a cross-sectional analysis using data from the National Health and Nutrition Examination
Survey (NHANES) 2017–2020, with a sample size of 5464 adult participants. Nutrient intake was
derived from two 24 h dietary recalls. Associations between four principal nutrients and CVD risk
were evaluated via Mendelian randomization analysis. Additionally, weighted multivariable logistic
regression analyses were performed to adjust for potential confounders, including age, sex, BMI, and
other lifestyle factors. Results: An observational analysis revealed that increased log-transformed
dietary fat intake was associated with reduced heart failure risk (OR = 0.722, 95% CI: 0.549–0.954).
Log-transformed protein intake was protective against heart failure (OR = 0.645, 95% CI: 0.471–0.889),
coronary artery disease (OR = 0.684, 95% CI: 0.504–0.931), and stroke (OR = 0.747, 95% CI: 0.568–0.988).
IVW-MR analyses confirmed causal relationships between relative fat intake and heart failure risk
(OR = 0.766, 95% CI: 0.598–0.982, p = 0.035) and between protein intake and stroke risk (OR = 0.993,
95% CI: 0.988–0.998, p = 0.010). MR analysis also revealed causal relationships between relative
fat intake and coronary artery disease risk and between relative protein intake and hypertension
risk. Conclusions: Both the observational and Mendelian randomization studies indicated that
dietary fat is inversely associated with heart failure risk and that protein intake is correlated with
reduced stroke risk. Future studies should investigate the optimal balance of macronutrients for CVD
prevention, explore potential mechanisms underlying these associations, and consider long-term
dietary interventions to validate these findings.

Keywords: NHANES; mendelian randomization; dietary factors; cardiovascular diseases

1. Introduction

Cardiovascular diseases (CVDs), including coronary artery disease (CAD), heart
failure (HF), stroke, and hypertension, represent the foremost cause of mortality globally,
accounting for approximately 17.9 million deaths annually, with a significant proportion
attributed to modifiable risk factors such as lifestyle and dietary habits [1,2]. Emerging
evidence from numerous studies highlights the critical role of dietary components in the
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etiology and progression of these conditions, emphasizing the necessity of delineating the
complex interactions between diet and CVDs [3–6].

Macronutrients—carbohydrates, fats, proteins, and sugars—constitute essential el-
ements of the human diet, influencing metabolic pathways and potentially modulating
cardiovascular event risk. Despite extensive epidemiological research elucidating the ef-
fects of these nutrients on CVD risk, the results frequently appear inconsistent, which is
attributable to confounders such as sample size, population heterogeneity, lifestyle factors,
and genetic predispositions. For example, one study indicated that a low-carbohydrate
diet (20% carbohydrates, 60% fats, and 20% proteins) could improve cardiometabolic risk
profiles [7]. Conversely, in middle-aged Australian women, moderate carbohydrate intake
(41.0% to 44.3% of total energy intake) was inversely associated with CVD risk but did not
affect overall mortality [8]. However, a prospective cohort study of 110,497 participants
from the UK Biobank revealed no association between total carbohydrate intake and CVD
outcomes [4]. The role of dietary fats in CVDs has also been contentious. High-fat diets
rich in choline are metabolized by the gut microbiota into trimethylamine (TMA), which
promotes CVDs [9]. Additionally, a longitudinal study reviewing dietary fat consumption
in China over 30 years (1990–2019) demonstrated a positive correlation between overall
dietary fat intake and CVD incidence and mortality [10]. Conversely, other studies have
reported no significant associations between total fat, saturated fat, or unsaturated fat
and CVD risk [11]. The role of added sugars in cardiovascular health is widely debated.
Many studies link high sugar intake, particularly from sugary beverages, to obesity, hyper-
tension, type 2 diabetes, and CVD risk factors such as elevated triglycerides and insulin
resistance [12–14]. The American Heart Association recommends limiting sugar intake
to reduce these risks [15]. However, some researchers argue that the relationship is con-
founded by factors such as overall diet quality and lifestyle, and the differential impacts of
sugars (e.g., fructose vs. glucose) remain contentious [16,17]. The impact of dietary protein
on cardiovascular health is also complex. High intake of red and processed meats has
been associated with increased CVD risk due to saturated fats and preservatives, whereas
plant-based proteins have been linked to improved heart health [18–20]. However, recent
studies suggest that lean red meat, in moderation, may not significantly increase CVD risk
and that dairy proteins have mixed effects on blood pressure and lipid profiles [21–23].

Given these inconsistencies, a robust methodology is imperative to clarify the asso-
ciations and causal effects between dietary nutrients and CVDs. Randomized controlled
trials (RCTs), though considered the gold standard for establishing causal relationships, are
often impractical because of their expense and complexity, particularly concerning dietary
interventions and chronic diseases [24]. In addition, traditional observational studies often
face limitations in establishing clear causal relationships because of confounding factors
and potential reverse causation. For example, individuals may change their diet on the
basis of health concerns, complicating the interpretation of data regarding the effects of
sugar and protein intake. To address these challenges, Mendelian randomization (MR)
offers a unique tool in this regard by utilizing genetic variants as instrumental variables to
infer causal relationships between exposure factors and outcomes, effectively overcoming
the confounding factors inherent in traditional observational studies and providing clearer
insights into the potential causal relationships between exposures and outcomes. Therefore,
MR is widely recognized as a complementary method to RCTs [25,26]. Additionally, the
National Health and Nutrition Examination Survey (NHANES), conducted by the Na-
tional Center for Health Statistics (NCHS), provides high-quality, nationally representative
data that are instrumental in examining the relationship between diet and cardiovascular
health [27].

This study utilizes NHANES data from 2017 to 2020 and integrates two-sample
MR methods to rigorously analyze the associations and potential causal relationships
between major macronutrient intake (carbohydrates, fats, proteins, and sugars) and the
risk of significant CVDs, including HF, CAD, stroke, and hypertension. By combining
observational data with genetic insights, this research aims to refine our understanding
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of how specific nutrients may influence CVD risk, thereby informing targeted nutritional
interventions to enhance cardiovascular health outcomes.

2. Methods
2.1. Overall Study Design

There were two parts to the current investigation. The first utilized NHANES data to
examine the associations between the intake of macronutrients—including carbohydrates,
fats, proteins, and sugars—and CVDs, including HF, CAD, stroke, and hypertension,
adjusting for multiple potential confounders. The second component assessed the causal re-
lationships between genetically predicted levels of macronutrient intake and CVD outcomes
via MR analysis of summary statistics from genome-wide association studies (GWASs).

2.2. Observational Study
2.2.1. Sample Population in the NHANES

The NHANES 2017–March 2020 prepandemic dataset provided the data used in this
investigation. Participants who were well informed about their intake of macronutrients
and CVDs were included. After individuals with missing covariate data were excluded, a
total of 5464 subjects were analyzed, as illustrated in Figure 1A. The NCHS Research Ethics
Review Board provided ethical approval for NHANES involving human subjects, and all
participants provided informed consent.
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Figure 1. Observational analysis and Mendelian randomization form the basis of the overall study
design: (A) flowchart of the observational study; (B) flowchart of the MR analysis, along with the three
key assumptions for Mendelian randomization: Assumption 1: the exposure is closely associated
with the genetic variant; Assumption 2: the genetic variant is not associated with confounding
factors; Assumption 3: the genetic variant affects the outcome only through the exposure of interest.
NHANES: National Health and Nutrition Survey, MR: Mendelian randomization. The images were
adapted from biorender.com under the terms of the Non-Commercial Use License.
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2.2.2. Intake of Macronutrients

Macronutrient intake was assessed as an independent variable in the exposure analysis.
Macronutrient data were acquired via the dietary interview component. Two 24 h dietary
recall interviews were performed by all NHANES participants: one in person at a Mobile
Examination Center (MEC) and one over the phone three to ten days later. Owing to the
right-skewed distribution of macronutrient intake, the data were naturally log-transformed
for normalization [28,29]. In summary, the natural logarithm of the average of the data
from the two interviews was used.

2.2.3. CVD Conditions

The National Center for Health Statistics (NCHS), a division of the Centers for Disease
Control and Prevention (CDC), performed the study, which included laboratory testing,
physical examinations, and household interviews [30]. The conditions of HF, CAD, stroke,
and hypertension were determined through household interviews, which were based on a
“yes” response to the following question: “Have you ever been told by a doctor that you
have this condition?”

2.2.4. Covariate Information

The covariates included age (years), sex (male or female), race, poverty–income ratio
(PIR), education level, body mass index (BMI; kg/m2), smoking status, alcohol consump-
tion, high cholesterol, and diabetes. Every covariate was regarded as a possible confounding
factor in the association between the intake of macronutrients and CVDs. The participants
were categorized into two age groups: <50 years and ≥50 years. The Mexican American,
other Hispanic, non-Hispanic White, non-Hispanic Black, and other ethnic groups were
among the groups included. Less than 9th grade, 9th to 11th grade (including 12th grade
without a diploma), high school graduate or GED, some college or AA degree, and college
graduate or higher were the five groups into which educational attainment was divided.
PIR was divided into four groups: <1 (below the poverty line), 1–1.99, 2–3.99, and ≥4
(highest income group). Normal weight (less than 25 kg/m2), overweight (between 25
and 30 kg/m2), and obese (more than 30 kg/m2) were the three BMI categories. Smoking
status was defined as “no” for individuals who had smoked fewer than 100 cigarettes in
their lifetime and “yes” for those who had smoked 100 or more. Alcohol consumption was
classified as “no” for individuals who had never consumed alcohol and “yes” for those who
had consumed at least one alcoholic drink (excluding small tastes or sips). High cholesterol
and diabetes were defined by a positive response to the following question: “Have you
ever been told by a doctor that you have high cholesterol/diabetes?”

2.3. Statistical Analysis for Observational Study

Using NHANES sample weights and taking into consideration the intricacies of
multistage cluster surveys, statistical analyses were carried out in accordance with CDC
guidelines. Continuous data are expressed as the means with standard deviations, whereas
categorical data are presented as percentages. For continuous variables, t-tests were applied,
and associations between categorical variables were assessed via a weighted chi-square
test. Multivariate logistic regression was employed to evaluate the independent association
between macronutrient intake and CVD conditions across three models: Model 1 was
unadjusted; Model 2 was adjusted for sex, age, and ethnicity; and Model 3 included
adjustments for all relevant covariates. Penalized spline smooth curve fitting and weighted
generalized additive models (GAMs) were used to explore nonlinear associations between
macronutrient intake and CVD risk. Subgroup analyses were performed via stratified
multivariate regression, with stratifications based on age, sex, ethnicity, education level,
poverty–income ratio, BMI, smoking status, alcohol consumption, cholesterol level, and
diabetes status. R software (version 4.3.0) was used for all the statistical analyses, and a
significance threshold of 0.05 was chosen.
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2.4. Mendelian Randomization
2.4.1. Study Design

A two-sample MR was used to further validate the causal relationship between the
intake of macronutrients and CVD conditions observed in the observational study based on
the NHANES database. Causal inference primarily utilizes the inverse-variance weighted
(IVW) MR method. By dividing the SNP-outcome association by the SNP–exposure asso-
ciation, this technique aggregates Wald ratio estimates for each SNP into a single causal
estimate for each risk factor. The IVW results are objective if horizontal pleiotropy is absent.
We conducted supplementary validation through Cochran’s Q test, MR-Egger regression,
and leave-one-out sensitivity analysis to ensure the reliability of the results. An overview
of the research design is presented in Figure 1B.

2.4.2. Selection of Genetic Tools

Summary GWAS data for macronutrients, including carbohydrates, fat, protein, and
sugar, were obtained from the Social Science Genetic Association Consortium (SSGAC).
The sample sizes for GWASs were as follows: 235,391 participants for sugar intake research
and 268,922 participants each for the fat, protein, and carbohydrate intake studies. Compre-
hensive dietary questionnaires covering either the subjects’ regular dietary habits or their
diet from the previous day were used to measure the relative intake of carbohydrates, fat,
protein, and sugar. The constant nutrient intake after adjusting for total calorie consump-
tion was known as relative intake. Each GWAS dataset was subjected to defined quality
control procedures by the study team to guarantee data accuracy and integrity [31]. The
details of the macronutrient GWAS datasets used in our study are listed in Table 1.

Table 1. Descriptions of GWAS data used for analyses.

Trait Year Total No. or
Case/Control Ancestry PMID Dataset

Relative carbohydrate intake 2020 268,922 European 32393786 SSGAC19 consortium
Relative fat intake 2020 268,922 European 32393786 SSGAC19 consortium

Relative protein intake 2020 268,922 European 32393786 SSGAC19 consortium
Relative sugar intake 2020 235,391 European 32393786 SSGAC19 consortium

Heart failure 2020 47,309/930,014 European 31919418 ebi-a-GCST009541
Coronary artery disease 2021 352,063 European 34017140 ebi-a-GCST90013864

Stroke 2021 6925/477,673 European 33959723 ebi-a-GCST90038613
Hypertension 2021 129,909/354,689 European 33959723 ebi-a-GCST90038604

Due to the limited availability of SNPs associated with macronutrient intake, we
selected SNPs that were genome-wide significant (p < 5 × 10−6) [32]. Additionally, these
SNPs showed paired linkage disequilibrium (LD), with a distance threshold of less than
10,000 kb and an r2 value of less than 0.01. Additionally, SNPs associated with possible
confounders, such as diabetes, smoking, alcohol use, and BMI, were not included. These
covariates had the following GWAS IDs: ebi-a-GCST006867 for diabetes, ukb-b-16878 for
alcohol use, ebi-a-GCST90025994 for BMI, and ebi-a-GCST90029014 for smoking. The
strength of the genetic instruments was assessed via the F statistic, which was calculated
via the following formula: F = beta2/se2 [33]. Sufficient instrument strength was defined as
an F statistic greater than 10. As instrumental variables (IVs), SNPs with an impact allele
frequency >0.01 and F > 10 were chosen [34].

2.4.3. Outcome Data

We acquired summary GWAS data for CVDs, including HF, CAD, stroke, and hyper-
tension, from the IEU Open GWAS database (https://gwas.mrcieu.ac.uk/ accessed on 27
May 2024). All GWAS data were derived from populations of European ancestry, including
HF involving 47,309 cases and 930,014 controls; CAD involving 352,063 individuals; stroke

https://gwas.mrcieu.ac.uk/
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involving 6925 cases and 477,673 controls; and hypertension comprising 129,909 cases and
354,689 controls. The details of the GWAS datasets are described in Table 1.

2.5. Statistical Analysis for Mendelian Randomization

Maximum likelihood, MR-Egger regression, weighted median, and IVW were among
the MR techniques used. Among these methods, the IVW method performed marginally
better and was used as the main analytical method; the other three methods provided
additional support for the findings.

Both MR-Egger and IVW were used to evaluate IV heterogeneity in conjunction with
Cochran’s Q statistic; homogeneity was demonstrated by a Q-p value > 0.05. The MR-Egger
approach, which employs weighted linear regression with an unconstrained intercept, was
used to assess horizontal pleiotropy. Pleiotropy was shown by a significant departure of the
intercept from zero (p value < 0.05). A leave-one-out sensitivity test, in which each IV was
successively omitted to evaluate stability, was used to further investigate the robustness of
the MR data.

The “TwoSampleMR”, “forestploter”, and “LDlinkR” packages were used in R (Ver-
sion 4.3.0; R Foundation for Statistical Computing, Vienna, Austria) for all MR studies. A
cutoff point of 0.05 was established for statistical significance. There was no need for ethical
approval because the summary data used were publicly available.

3. Results
3.1. Population Characteristics of the NHANES

This study analyzed data from NHANES 2017–2020, which included 2606 men
(47.694%) and 2858 women (52.306%). Tables 2–5 present the baseline characteristics
of the study population stratified by quartiles of intake for carbohydrates, fats, proteins,
and sugars. Significant differences (p < 0.05) were observed across intake quartiles for
age, sex, ethnicity, education level, poverty–income ratio, and smoking status. The partici-
pants in the highest quartiles of all four nutrients were generally older, more likely to be
male, and predominantly non-Hispanic White. For example, in the carbohydrate quartiles,
male representation increased from 34.407% in Q1 to 66.764% in Q4 (p < 0.001). Higher
education and income levels were also associated with the highest quartile of nutrient
intake (p < 0.001 for all nutrients). Body mass index (BMI) differences were statistically
significant only across carbohydrate intake quartiles (p = 0.004). Diabetes incidence varied
significantly across quartiles for carbohydrates (p < 0.001), fats (p = 0.014), and sugars
(p < 0.001) but not for proteins (p = 0.093). A lower diabetes incidence was observed in
the highest quartiles of carbohydrate and sugar intake. High cholesterol levels were sig-
nificantly different across quartiles for carbohydrates (p = 0.001) and sugars (p = 0.034),
with a lower prevalence in the highest intake quartiles. Cardiovascular disease indicators
also varied across nutrient quartiles. HF incidence differed significantly for carbohydrates
(p = 0.006) and proteins (p = 0.020), whereas coronary artery disease incidence varied only
across carbohydrate quartiles (p = 0.044). Stroke incidence was significantly different across
carbohydrate (p = 0.035) and protein (p < 0.001) quartiles. Hypertension incidence varied
significantly across quartiles for all nutrients except sugars (p < 0.001 for carbohydrates,
fats, and proteins; p = 0.122 for sugars).

These baseline characteristics highlight the complex associations between major di-
etary nutrients and cardiovascular disease risk factors, providing a foundation for further
analysis of their potential impacts on cardiovascular health.
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Table 2. Baseline characteristics of the participants according to quartiles of dietary carbohydrate
intake.

Characteristic Total
(n = 5464)

Quartile 1
(n = 1366)

Quartile 2
(n = 1366)

Quartile 3
(n = 1366)

Quartile 4
(n = 1366) p-Value

Age (year), mean value (SE) 50.477
(17.259)

52.197
(17.389)

51.203
(17.708)

51.114
(17.227)

47.396
(16.312) <0.001

Gender (%) <0.001
Male 2606 (47.694) 470 (34.407) 537 (39.312) 687 (50.293) 912 (66.764)
Female 2858 (52.306) 896 (65.593) 829 (60.688) 679 (49.707) 454 (33.236)

Race (%) 0.018
Mexican American 602 (11.018) 120 (8.785) 161 (11.786) 150 (10.981) 171 (12.518)
Other Hispanic 510 (9.334) 134 (9.810) 136 (9.956) 114 (8.346) 126 (9.224)
Non-Hispanic White 2094 (38.324) 512 (37.482) 527 (38.580) 525 (38.433) 530 (38.799)
Non-Hispanic Black 1467 (26.848) 415 (30.381) 351 (25.695) 367 (26.867) 334 (24.451)
Other Race—Including

Multi-Racial 791 (14.477) 185 (13.543) 191 (13.982) 210 (15.373) 205 (15.007)

Education level (%) <0.001
Less than 9th grade 282 (5.161) 74 (5.417) 63 (4.612) 66 (4.832) 79 (5.783)
9–11th grade (Includes 12th

grade with no diploma) 552 (10.102) 159 (11.640) 119 (8.712) 120 (8.785) 154 (11.274)

High school graduate/GED or
equivalent 1281 (23.444) 356 (26.061) 309 (22.621) 316 (23.133) 300 (21.962)

Some college or AA degree 1922 (35.176) 470 (34.407) 507 (37.116) 449 (32.870) 496 (36.310)
College graduate or above 1427 (26.116) 307 (22.474) 368 (26.940) 415 (30.381) 337 (24.671)

Poor income ratio (%) 0.001
<1 1022 (18.704) 284 (20.791) 226 (16.545) 231 (16.911) 281 (20.571)
1–1.99 1393 (25.494) 356 (26.061) 345 (25.256) 341 (24.963) 351 (25.695)
2–3.99 1525 (27.910) 343 (25.110) 389 (28.477) 389 (28.477) 404 (29.575)
≥4 1524 (27.892) 383 (28.038) 406 (29.722) 405 (29.649) 330 (24.158)

Body mass index (%) 0.004
<25 1380 (25.256) 318 (23.280) 331 (24.231) 360 (26.354) 371 (27.160)
25 to <30 1668 (30.527) 403 (29.502) 395 (28.917) 427 (31.259) 443 (32.430)
≥30 2416 (44.217) 645 (47.218) 640 (46.852) 579 (42.387) 552 (40.410)

Smoked at least 100 (%) <0.001
Yes 2321 (42.478) 590 (43.192) 524 (38.360) 567 (41.508) 640 (46.852)
No 3143 (57.522) 776 (56.808) 842 (61.640) 799 (58.492) 726 (53.148)

Ever drink alcohol (%) 0.090
Yes 5017 (91.819) 1250 (91.508) 1235 (90.410) 1265 (92.606) 1267 (92.753)
No 447 (8.181) 116 (8.492) 131 (9.590) 101 (7.394) 99 (7.247)

High cholesterol level (%) 0.001
Yes 1957 (35.816) 500 (36.603) 518 (37.921) 509 (37.262) 430 (31.479)
No 3507 (64.184) 866 (63.397) 848 (62.079) 857 (62.738) 936 (68.521)

Diabetes (%) <0.001
Yes 846 (15.483) 259 (18.960) 233 (17.057) 197 (14.422) 157 (11.493)
No 4618 (84.517) 1107 (81.040) 1133 (82.943) 1169 (85.578) 1209 (88.507)

Heart failure (%) 0.006
Yes 192 (3.522) 57 (4.185) 61 (4.485) 43 (3.152) 31 (2.271)
No 5259 (96.478) 1305 (95.815) 1299 (95.515) 1321 (96.848) 1334 (97.729)

Coronary artery disease (%) 0.044
Yes 253 (4.640) 64 (4.692) 72 (5.294) 72 (5.275) 45 (3.302)
No 5199 (95.360) 1300 (95.308) 1288 (94.706) 1293 (94.725) 1318 (96.698)

Stroke (%) 0.035
Yes 269 (4.929) 85 (6.232) 60 (4.399) 70 (5.132) 54 (3.956)
No 5188 (95.071) 1279 (93.768) 1304 (95.601) 1294 (94.868) 1311 (96.044)

High blood pressure (%) <0.001
Yes 2073 (37.939) 567 (41.508) 509 (37.262) 545 (39.898) 452 (33.089)
No 3391 (62.061) 799 (58.492) 857 (62.738) 821 (60.102) 914 (66.911)
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Table 3. Baseline characteristics of the participants according to quartiles of dietary fat intake.

Characteristic Total
(n = 5464)

Quartile 1
(n = 1366)

Quartile 2
(n = 1366)

Quartile 3
(n = 1366)

Quartile 4
(n = 1366) p-Value

Age (year), mean value (SE) 50.477
(17.259)

52.165
(17.406)

51.054
(17.481)

50.518
(17.175)

48.172
(16.738) <0.001

Gender (%) <0.001
Male 2606 (47.694) 474 (34.700) 527 (38.580) 691 (50.586) 914 (66.911)
Female 2858 (52.306) 892 (65.300) 839 (61.420) 675 (49.414) 452 (33.089)

Race (%) <0.001
Mexican American 602 (11.018) 147 (10.761) 153 (11.201) 161 (11.786) 141 (10.322)
Other Hispanic 510 (9.334) 165 (12.079) 126 (9.224) 118 (8.638) 101 (7.394)
Non-Hispanic White 2094 (38.324) 404 (29.575) 545 (39.898) 557 (40.776) 588 (43.045)
Non-Hispanic Black 1467 (26.848) 413 (30.234) 323 (23.646) 351 (25.695) 380 (27.818)
Other Race—Including

Multi-Racial 791 (14.477) 237 (17.350) 219 (16.032) 179 (13.104) 156 (11.420)

Education level (%) <0.001
Less than 9th grade 282 (5.161) 114 (8.346) 55 (4.026) 69 (5.051) 44 (3.221)
9–11th grade (Includes 12th

grade with no diploma) 552 (10.102) 168 (12.299) 125 (9.151) 127 (9.297) 132 (9.663)

High school graduate/GED or
equivalent 1281 (23.444) 337 (24.671) 318 (23.280) 320 (23.426) 306 (22.401)

Some college or AA degree 1922 (35.176) 446 (32.650) 485 (35.505) 469 (34.334) 522 (38.214)
College graduate or above 1427 (26.116) 301 (22.035) 383 (28.038) 381 (27.892) 362 (26.501)

Poor income ratio (%) <0.001
<1 1022 (18.704) 318 (23.280) 232 (16.984) 235 (17.204) 237 (17.350)
1–1.99 1393 (25.494) 381 (27.892) 357 (26.135) 328 (24.012) 327 (23.939)
2–3.99 1525 (27.910) 344 (25.183) 361 (26.428) 431 (31.552) 389 (28.477)
≥4 1524 (27.892) 323 (23.646) 416 (30.454) 372 (27.233) 413 (30.234)

Body mass index (%) 0.807
<25 1380 (25.256) 365 (26.720) 346 (25.329) 338 (24.744) 331 (24.231)
25 to <30 1668 (30.527) 418 (30.600) 416 (30.454) 414 (30.307) 420 (30.747)
≥30 2416 (44.217) 583 (42.679) 604 (44.217) 614 (44.949) 615 (45.022)

Smoked at least 100 (%) <0.001
Yes 2321 (42.478) 537 (39.312) 540 (39.531) 582 (42.606) 662 (48.463)
No 3143 (57.522) 829 (60.688) 826 (60.469) 784 (57.394) 704 (51.537)

Ever drink alcohol (%) <0.001
Yes 5017 (91.819) 1179 (86.310) 1258 (92.094) 1276 (93.411) 1304 (95.461)
No 447 (8.181) 187 (13.690) 108 (7.906) 90 (6.589) 62 (4.539)

High cholesterol level (%) 0.853
Yes 1957 (35.816) 491 (35.944) 494 (36.164) 496 (36.310) 476 (34.846)
No 3507 (64.184) 875 (64.056) 872 (63.836) 870 (63.690) 890 (65.154)

Diabetes (%) 0.014
Yes 846 (15.483) 249 (18.228) 201 (14.714) 200 (14.641) 196 (14.348)
No 4618 (84.517) 1117 (81.772) 1165 (85.286) 1166 (85.359) 1170 (85.652)

Heart failure (%) 0.123
Yes 192 (3.522) 60 (4.412) 50 (3.663) 44 (3.233) 38 (2.784)
No 5259 (96.478) 1300 (95.588) 1315 (96.337) 1317 (96.767) 1327 (97.216)

Coronary artery disease (%) 0.784
Yes 253 (4.640) 65 (4.772) 60 (4.409) 69 (5.059) 59 (4.322)
No 5199 (95.360) 1297 (95.228) 1301 (95.591) 1295 (94.941) 1306 (95.678)

Stroke (%) 0.013
Yes 269 (4.929) 78 (5.710) 82 (6.021) 51 (3.742) 58 (4.246)
No 5188 (95.071) 1288 (94.290) 1280 (93.979) 1312 (96.258) 1308 (95.754)

High blood pressure (%) 0.059
Yes 2073 (37.939) 546 (39.971) 539 (39.458) 497 (36.384) 491 (35.944)
No 3391 (62.061) 820 (60.029) 827 (60.542) 869 (63.616) 875 (64.056)
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Table 4. Baseline characteristics of the participants according to quartiles of dietary protein intake.

Characteristic Total
(n = 5464)

Quartile 1
(n = 1366)

Quartile 2
(n = 1366)

Quartile 3
(n = 1366)

Quartile 4
(n = 1366) p-Value

Age (year), mean value (SE) 50.477
(17.259)

52.239
(17.445)

51.972
(17.812)

50.034
(17.168)

47.665
(16.200) <0.001

Gender (%) <0.001
Male 2606 (47.694) 399 (29.209) 504 (36.896) 722 (52.855) 981 (71.816)
Female 2858 (52.306) 967 (70.791) 862 (63.104) 644 (47.145) 385 (28.184)

Race (%) <0.001
Mexican American 602 (11.018) 120 (8.785) 131 (9.590) 167 (12.225) 184 (13.470)
Other Hispanic 510 (9.334) 134 (9.810) 124 (9.078) 112 (8.199) 140 (10.249)
Non-Hispanic White 2094 (38.324) 475 (34.773) 542 (39.678) 544 (39.824) 533 (39.019)
Non-Hispanic Black 1467 (26.848) 448 (32.796) 370 (27.086) 345 (25.256) 304 (22.255)
Other Race—Including

Multi-Racial 791 (14.477) 189 (13.836) 199 (14.568) 198 (14.495) 205 (15.007)

Education level (%) <0.001
Less than 9th grade 282 (5.161) 81 (5.930) 67 (4.905) 66 (4.832) 68 (4.978)
9–11th grade (Includes 12th

grade with no diploma) 552 (10.102) 166 (12.152) 118 (8.638) 136 (9.956) 132 (9.663)

High school graduate/GED or
equivalent 1281 (23.444) 362 (26.501) 333 (24.378) 289 (21.157) 297 (21.742)

Some college or AA degree 1922 (35.176) 476 (34.846) 471 (34.480) 484 (35.432) 491 (35.944)
College graduate or above 1427 (26.116) 281 (20.571) 377 (27.599) 391 (28.624) 378 (27.672)

Poor income ratio (%) <0.001
<1 1022 (18.704) 303 (22.182) 244 (17.862) 247 (18.082) 228 (16.691)
1–1.99 1393 (25.494) 393 (28.770) 358 (26.208) 325 (23.792) 317 (23.206)
2–3.99 1525 (27.910) 368 (26.940) 389 (28.477) 370 (27.086) 398 (29.136)
≥4 1524 (27.892) 302 (22.108) 375 (27.452) 424 (31.040) 423 (30.966)

Body mass index (%) 0.245
<25 1380 (25.256) 327 (23.939) 379 (27.745) 337 (24.671) 337 (24.671)
25 to <30 1668 (30.527) 411 (30.088) 414 (30.307) 414 (30.307) 429 (31.406)
≥30 2416 (44.217) 628 (45.974) 573 (41.947) 615 (45.022) 600 (43.924)

Smoked at least 100 (%) 0.030
Yes 2321 (42.478) 556 (40.703) 552 (40.410) 596 (43.631) 617 (45.168)
No 3143 (57.522) 810 (59.297) 814 (59.590) 770 (56.369) 749 (54.832)

Ever drink alcohol (%) <0.001
Yes 5017 (91.819) 1200 (87.848) 1245 (91.142) 1270 (92.972) 1302 (95.315)
No 447 (8.181) 166 (12.152) 121 (8.858) 96 (7.028) 64 (4.685)

High cholesterol level (%) 0.541
Yes 1957 (35.816) 495 (36.237) 503 (36.823) 491 (35.944) 468 (34.261)
No 3507 (64.184) 871 (63.763) 863 (63.177) 875 (64.056) 898 (65.739)

Diabetes (%) 0.093
Yes 846 (15.483) 229 (16.764) 209 (15.300) 223 (16.325) 185 (13.543)
No 4618 (84.517) 1137 (83.236) 1157 (84.700) 1143 (83.675) 1181 (86.457)

Heart failure (%) 0.020
Yes 192 (3.522) 61 (4.482) 56 (4.103) 36 (2.643) 39 (2.861)
No 5259 (96.478) 1300 (95.518) 1309 (95.897) 1326 (97.357) 1324 (97.139)

Coronary artery disease (%) 0.562
Yes 253 (4.640) 64 (4.702) 72 (5.282) 59 (4.322) 58 (4.255)
No 5199 (95.360) 1297 (95.298) 1291 (94.718) 1306 (95.678) 1305 (95.745)

Stroke (%) <0.001
Yes 269 (4.929) 94 (6.902) 70 (5.136) 56 (4.100) 49 (3.587)
No 5188 (95.071) 1268 (93.098) 1293 (94.864) 1310 (95.900) 1317 (96.413)

High blood pressure (%) 0.006
Yes 2073 (37.939) 559 (40.922) 539 (39.458) 486 (35.578) 489 (35.798)
No 3391 (62.061) 807 (59.078) 827 (60.542) 880 (64.422) 877 (64.202)
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Table 5. Baseline characteristics of the participants according to quartiles of dietary sugar intake.

Characteristic Total
(n = 5464)

Quartile 1
(n = 1366)

Quartile 2
(n = 1366)

Quartile 3
(n = 1366)

Quartile 4
(n = 1366) p-Value

Age (year), mean value (SE) 50.477
(17.259)

50.822
(17.317)

51.272
(17.509)

50.810
(17.523)

49.005
(16.604) 0.003

Gender (%) <0.001
Male 2606 (47.694) 556 (40.703) 582 (42.606) 652 (47.731) 816 (59.736)
Female 2858 (52.306) 810 (59.297) 784 (57.394) 714 (52.269) 550 (40.264)

Race (%) <0.001
Mexican American 602 (11.018) 149 (10.908) 162 (11.859) 149 (10.908) 142 (10.395)
Other Hispanic 510 (9.334) 145 (10.615) 132 (9.663) 123 (9.004) 110 (8.053)
Non-Hispanic White 2094 (38.324) 506 (37.042) 492 (36.018) 515 (37.701) 581 (42.533)
Non-Hispanic Black 1467 (26.848) 345 (25.256) 349 (25.549) 395 (28.917) 378 (27.672)
Other Race—Including

Multi-Racial 791 (14.477) 221 (16.179) 231 (16.911) 184 (13.470) 155 (11.347)

Education level (%) <0.001
Less than 9th grade 282 (5.161) 89 (6.515) 64 (4.685) 60 (4.392) 69 (5.051)
9–11th grade (Includes 12th

grade with no diploma) 552 (10.102) 147 (10.761) 133 (9.736) 121 (8.858) 151 (11.054)

High school graduate/GED or
equivalent 1281 (23.444) 327 (23.939) 307 (22.474) 302 (22.108) 345 (25.256)

Some college or AA degree 1922 (35.176) 476 (34.846) 454 (33.236) 488 (35.725) 504 (36.896)
College graduate or above 1427 (26.116) 327 (23.939) 408 (29.868) 395 (28.917) 297 (21.742)

Poor income ratio (%) <0.001
<1 1022 (18.704) 269 (19.693) 228 (16.691) 226 (16.545) 299 (21.889)
1–1.99 1393 (25.494) 345 (25.256) 347 (25.403) 333 (24.378) 368 (26.940)
2–3.99 1525 (27.910) 342 (25.037) 375 (27.452) 401 (29.356) 407 (29.795)
≥4 1524 (27.892) 410 (30.015) 416 (30.454) 406 (29.722) 292 (21.376)

Body mass index (%) 0.662
<25 1380 (25.256) 344 (25.183) 329 (24.085) 359 (26.281) 348 (25.476)
25 to <30 1668 (30.527) 401 (29.356) 428 (31.332) 407 (29.795) 432 (31.625)
≥30 2416 (44.217) 621 (45.461) 609 (44.583) 600 (43.924) 586 (42.899)

Smoked at least 100 (%) <0.001
Yes 2321 (42.478) 572 (41.874) 546 (39.971) 540 (39.531) 663 (48.536)
No 3143 (57.522) 794 (58.126) 820 (60.029) 826 (60.469) 703 (51.464)

Ever drink alcohol (%) 0.077
Yes 5017 (91.819) 1239 (90.703) 1245 (91.142) 1260 (92.240) 1273 (93.192)
No 447 (8.181) 127 (9.297) 121 (8.858) 106 (7.760) 93 (6.808)

High cholesterol level (%) 0.034
Yes 1957 (35.816) 484 (35.432) 523 (38.287) 499 (36.530) 451 (33.016)
No 3507 (64.184) 882 (64.568) 843 (61.713) 867 (63.470) 915 (66.984)

Diabetes (%) <0.001
Yes 846 (15.483) 270 (19.766) 242 (17.716) 191 (13.982) 143 (10.469)
No 4618 (84.517) 1096 (80.234) 1124 (82.284) 1175 (86.018) 1223 (89.531)

Heart failure (%) 0.359
Yes 192 (3.522) 55 (4.035) 53 (3.894) 41 (3.010) 43 (3.150)
No 5259 (96.478) 1308 (95.965) 1308 (96.106) 1321 (96.990) 1322 (96.850)

Coronary artery disease (%) 0.736
Yes 253 (4.640) 61 (4.479) 70 (5.128) 64 (4.696) 58 (4.258)
No 5199 (95.360) 1301 (95.521) 1295 (94.872) 1299 (95.304) 1304 (95.742)

Stroke (%) 0.748
Yes 269 (4.929) 69 (5.059) 66 (4.835) 73 (5.356) 61 (4.469)
No 5188 (95.071) 1295 (94.941) 1299 (95.165) 1290 (94.644) 1304 (95.531)

High blood pressure (%) 0.122
Yes 2073 (37.939) 533 (39.019) 528 (38.653) 531 (38.873) 481 (35.212)
No 3391 (62.061) 833 (60.981) 838 (61.347) 835 (61.127) 885 (64.788)
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3.2. Associations Between Dietary Factors and CVD Incidence

Table 6 presents the associations between dietary nutrient intake and CVD outcomes,
including HF, CAD, and stroke. The comprehensive results are available in Supplementary
Material S1. The analysis employed three models: unadjusted (Model 1); adjusted for age,
sex, and ethnicity (Model 2); and fully adjusted for all covariates (Model 3).

Table 6. The results of multivariable-adjusted logistic regression.

Characteristic Log-Transformed Q1 Q2 Q3 Q4 p-Trend

Carbohydrate Heart failure

Model 1 0.645 (0.494–0.849) ** 1.00 1.103
(0.774–1.577)

0.729
(0.490–1.077)

0.513
(0.329–0.786) ** <0.001

Model 2 0.694 (0.517–0.941) * 1.00 1.122
(0.779–1.619)

0.710
(0.471–1.061)

0.611
(0.384–0.956) * 0.008

Model 3 0.791 (0.585–1.079) 1.00 1.269
(0.871–1.854)

0.845
(0.556–1.279)

0.714
(0.444–1.131) 0.076

Fat Heart failure

Model 1 0.677 (0.530–0.872) ** 1.00 0.764
(0.524–1.108)

0.733
(0.500–1.067)

0.579
(0.384–0.862) ** 0.008

Model 2 0.691 (0.530–0.91) ** 1.00 0.778
(0.528–1.139)

0.748
(0.504–1.103)

0.649
(0.422–0.987) * 0.044

Model 3 0.722 (0.549–0.954) * 1.00 0.794
(0.533–1.177)

0.786
(0.522–1.177)

0.677
(0.433–1.046) 0.088

Protein Heart failure

Model 1 0.574 (0.437–0.760) *** 1.00 0.858
(0.595–1.232)

0.594
(0.395–0.882) *

0.625
(0.418–0.923) * 0.005

Model 2 0.593 (0.435–0.815) ** 1.00 0.818
(0.562–1.187)

0.593
(0.388–0.897) *

0.730
(0.474–1.113) 0.051

Model 3 0.645 (0.471–0.889) ** 1.00 0.896
(0.610–1.315)

0.622
(0.402–0.952) *

0.781
(0.502–1.204) 0.101

Coronary artery disease

Model 1 0.751 (0.582–0.974) * 1.00 1.092
(0.780–1.530)

0.864
(0.605–1.230)

0.879
(0.616–1.250) 0.272

Model 2 0.680 (0.506–0.918) * 1.00 0.997
(0.700–1.422)

0.738
(0.504–1.077)

0.842
(0.571–1.239) 0.188

Model 3 0.684 (0.504–0.931) * 1.00 0.989
(0.687–1.424)

0.664
(0.446–0.983) *

0.778
(0.519–1.162) 0.077

Stroke

Model 1 0.566 (0.445–0.724) *** 1.00 0.73
(0.533–0.997) *

0.553
(0.393–0.772) ***

0.481
(0.336–0.680) *** <0.001

Model 2 0.649 (0.495–0.857) ** 1.00 0.719
(0.520–0.989) *

0.605
(0.423–0.856) **

0.622
(0.424–0.903) * 0.004

Model 3 0.747 (0.568–0.988) * 1.00 0.769
(0.553–1.065)

0.650
(0.452–0.928) *

0.680
(0.460–0.996) 0.020

Data are presented as OR (95%CI). * p < 0.05, ** p < 0.01, *** p < 0.001. Model 1: no covariates were adjusted. Model
2: adjusted for age, sex, and race. Model 3: further adjusted for all covariates.

In the unadjusted model (Model 1), log-transformed carbohydrate (p < 0.01), fat
(p < 0.01), and protein (p < 0.001) intakes were significantly inversely associated with HF.
Protein intake was also inversely associated with CAD (p < 0.05) and stroke (p < 0.001).
After adjusting for age, sex, and ethnicity (Model 2), these associations remained significant
for fat intake and HF (p < 0.01), protein intake and HF (p < 0.01), protein intake and CAD
(p < 0.05), and protein intake and stroke (p < 0.01). According to the fully adjusted model
(Model 3), significant associations persisted between fat intake and HF (p < 0.05), as did
protein intake and HF (p < 0.01), CAD (p < 0.05), and stroke (p < 0.05). The significant
association between carbohydrate intake and HF risk observed in earlier models dissipated
after full adjustment. Notably, the inverse association between protein intake and CVD
outcomes demonstrated the most robustness across all the models. According to the fully
adjusted model, protein intake was associated with lower odds of HF (OR: 0.645, 95% CI:
0.471–0.889), CAD (OR: 0.684, 95% CI: 0.504–0.931), and stroke (OR: 0.747, 95% CI: 0.568–
0.988). Sugar intake was not significantly associated with any CVD outcome across the
three models, with all p values and trend p values >0.05. These results indicate that higher
intakes of fat and protein may be associated with lower risks of certain CVD outcomes,
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particularly HF. The consistent inverse relationship between protein intake and reduced
risks of HF, CAD, and stroke across all the models suggests a potentially protective effect
of increased protein consumption against these CVDs.

3.3. MR Analysis of Dietary Factors and CVDs

Building on the observational study, we conducted MR analysis to investigate causal
relationships between dietary nutrients and CVDs via data from GWAS databases. After
removing confounding factors, we selected 46, 36, 39, and 41 SNPs for carbohydrates, fats,
proteins, and sugars, respectively, as IVs to assess the causal relationships between these
nutrients and CVDs (Supplementary Material S2). Given that IVW is the primary method
used in MR analysis, we primarily present the IVW results [35]. The results of the MR
analysis are presented in Figure 2, with sensitivity analyses shown in Table 7.
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Our findings indicate that relative fat intake is protectively associated with HF (OR:
0.766, 95% CI: 0.598–0.982, p = 0.035) and CAD (OR: 0.707, 95% CI: 0.538–0.931, p = 0.013).
Relative protein intake had a protective effect against stroke (OR: 0.993, 95% CI: 0.988–
0.998, p = 0.010) and hypertension (OR: 0.979, 95% CI: 0.960–0.999, p = 0.036). Relative
carbohydrate intake was not significantly associated with any CVD outcome (all p > 0.05).
Similarly, relative sugar intake did not demonstrate significant causal relationships with the
examined CVD outcomes, although there was a trend toward an increased risk of stroke
(OR: 1.004 95% CI: 1.000–1.009, p = 0.066). Sensitivity analyses were conducted to assess
the robustness of these findings (Table 7). The MR-Egger and IVW heterogeneity tests
revealed varying degrees of heterogeneity across different nutrients and outcomes. Relative
carbohydrate intake showed significant heterogeneity for all outcomes (p < 0.05). Relative
fat intake demonstrated heterogeneity for stroke (p = 0.03) and hypertension (p < 0.001).
Relative protein intake showed less heterogeneity, with no significant heterogeneity across
outcomes (all p > 0.05), and relative sugar intake exhibited significant heterogeneity for
stroke (p < 0.001). Despite the presence of heterogeneity in some analyses, the MR-Egger
pleiotropy test revealed no evidence of horizontal pleiotropy for any of the nutrients across
outcomes (all intercepts p > 0.05). This finding supports the validity of the MR results,
suggesting that the observed associations are likely causal rather than due to pleiotropy.
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Table 7. Heterogeneity and pleiotropy tests.

Exposure Outcome

Heterogeneity Test
MR–Egger

Heterogeneity Test
IVW

Pleiotropy Test
MR–Egger

Q p Q p Intercept p

Relative
carbohydrate

intake

Heart failure 70.511 <0.001 78.254 <0.001 −0.013 0.051
Coronary artery disease 82.673 <0.001 82.675 <0.001 <0.001 0.976

Stroke 64.774 0.010 64.791 0.014 <0.001 0.918
Hypertension 100.365 <0.001 101.891 <0.001 0.001 0.440

Relative fat intake

Heart failure 34.434 0.077 35.089 0.087 0.005 0.506
Coronary artery disease 33.992 0.085 35.359 0.082 0.008 0.336

Stroke 44.966 0.030 45.120 0.038 <0.001 0.754
Hypertension 61.165 <0.001 61.349 <0.001 <0.001 0.782

Relative protein
intake

Heart failure 40.098 0.065 40.298 0.079 0.002 0.711
Coronary artery disease 25.615 0.646 27.551 0.594 0.007 0.175

Stroke 32.983 0.517 32.986 0.566 <0.001 0.957
Hypertension 27.338 0.605 29.861 0.524 −0.001 0.123

Relative sugar
intake

Heart failure 31.477 0.392 34.639 0.298 −0.011 0.093
Coronary artery disease 57.634 0.003 57.991 0.003 −0.004 0.665

Stroke 131.978 <0.001 132.299 <0.001 <0.001 0.776
Hypertension 29.916 0.789 29.996 0.820 <0.001 0.778

These findings suggest that increased fat intake may causally reduce the risk of HF
and CAD, whereas increased protein intake may causally lower the risk of stroke and
hypertension. The absence of significant pleiotropy strengthens the reliability of these
causal inferences, despite the presence of heterogeneity in some analyses.

3.4. Dose-Response Relationship Analysis

A generalized additive model (GAM) was employed to elucidate the dose-response
relationships between fat intake and HF, as well as between protein intake and stroke,
corroborating findings from both observational and MR studies. After adjusting for all
covariates, nonlinear relationships emerged between log-transformed fat intake and heart
failure risk, as well as between protein intake and stroke risk (p nonlinear < 0.05) (Figure 3).

As shown in Figure 3A, the log OR for HF initially decreased with increasing log-
transformed fat intake and then plateaued with further increases. This pattern suggests a
threshold effect whereby the protective benefit of fat intake stabilizes at higher intake levels.
The nonlinear relationship was statistically significant (p nonlinear = 0.027), indicating that
the association between fat intake and HF risk is not constant across all levels of intake.
Similarly, Figure 3B illustrates the relationship between log-transformed protein intake
and stroke risk. The log OR for stroke continuously decreased with increasing protein
intake, indicating a progressively protective effect against stroke with increasing protein
consumption. This nonlinear relationship was also statistically significant (p nonlinear =
0.038), suggesting that the protective effect of protein intake on stroke risk varies across
different intake levels. In both cases, the shaded areas represent the 95% confidence
intervals, which widen at the extremes of intake levels, indicating greater uncertainty in
the estimates at very low and very high intake levels.

These dose-response analyses provide additional support for the findings from the
observational and MR studies, demonstrating that the relationships between these dietary
factors and cardiovascular outcomes are complex and nonlinear. The results suggest that
moderate increases in fat and protein intake may have beneficial effects on HF and stroke
risk, respectively, but these effects may not be uniform across all levels of intake.
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Figure 3. Associations of fat (A) and protein (B) intake with heart failure and stroke among NHANES
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The solid-line curves represent ORs, whereas the shaded areas denote 95% confidence intervals.
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3.5. Subgroup Analysis

To assess the consistency of associations between dietary factors and CVD outcomes
across various subgroups, we performed a subgroup analysis on the basis of the results
of the observational study and MR analysis. Additionally, we evaluated interactions with
age, sex, ethnicity, education level, poverty–income ratio, BMI, smoking status, alcohol
consumption, and high cholesterol or diabetes status (Figures 4 and 5).

Figure 4 depicts the association between fat intake and HF. The overall OR for this
association was 0.727 (95% CI: 0.549–0.954), indicating a protective effect of fat intake
against HF. This association remained relatively consistent across most subgroups, with no
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statistically significant interactions observed (all p values for interactions > 0.05). However,
some variations in effect size were noted. The protective effect was stronger in males
(OR: 0.671, 95% CI: 0.461–0.987) than in females (OR: 0.745, 95% CI: 0.482–1.170). Among
ethnic groups, other ethnicities had the strongest protective effect (OR: 0.198, 95% CI: 0.055–
0.708). Individuals with a medium poverty–income ratio (1–1.99) demonstrated a more
pronounced protective effect (OR: 0.572, 95% CI: 0.341–0.964) than those with lower ratios.
Figure 5 illustrates the association between protein intake and stroke incidence. The overall
OR for this association was 0.747 (95% CI: 0.568–0.988), suggesting a protective effect of
protein intake against stroke. This association was generally consistent across subgroups,
with one notable exception. A significant interaction was observed for the poverty–income
ratio (P for interaction = 0.016), indicating that the protective effect of protein intake on
stroke risk may vary depending on income level.
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Other subgroup analyses, including age, education level, BMI, smoking status, alcohol
consumption, and the presence of high cholesterol or diabetes, did not reveal significant
interactions for either the fat–HF or protein–stroke associations. These findings suggest
that while the protective effects of fat intake against HF and protein intake against stroke
are generally consistent across various demographic and health-related subgroups, there
may be some variations in the strength of these associations, particularly with respect to
sex, ethnicity, and income level.

4. Discussion

To our knowledge, this is the first comprehensive investigation delineating the linkages
between four principal dietary nutrients and CVD risk, leveraging extensive observational
and genetic datasets. Our analyses revealed that, within the framework of cross-sectional
studies, multivariable-adjusted logistic regression models discerned robust associations
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between dietary fat intake and the risk of HF, as well as between protein consumption
and stroke incidence. MR analyses support the conjecture of potential causal relationships,
suggesting an inverse relationship between relative fat intake and HF, alongside a similar
association between protein and stroke risk. Notably, both fat and protein intake were
inversely correlated with these adverse cardiovascular outcomes. Additionally, our ob-
servations suggested possible linkages between protein intake and both HF and CAD;
nevertheless, comprehensive MR analyses failed to corroborate specific causal interactions
between protein intake and these cardiovascular conditions. Moreover, inferred genetically
relative intakes of fat and protein were inversely correlated with CAD and hypertension,
respectively, although such associations were absent in the observational component of
the study.

Our observational dataset, adjusted for confounders, including age, sex, and race,
consistently highlighted protective associations between high protein intake and HF, stroke,
and CAD. These findings are congruent with other large-scale investigations suggesting
that high-quality protein consumption confers cardiovascular benefits [3]. Nevertheless,
some prior studies have reported an absence of significant associations between protein
intake and cardiovascular health, suggesting that variability in protein effects is potentially
modulated by other dietary components or genetic predispositions [36]. Additionally,
recent investigations have illuminated the potential deleterious mechanisms by which
excessive dietary protein and circulating leucine activate macrophage mammalian tar-
get of rapamycin (mTOR) signaling, thereby exacerbating atherosclerosis and increasing
CVD risk at protein consumption thresholds of approximately 25 g per meal [6]. Our
extensive study revealed an intriguing inverse correlation with HF. MR analyses further
substantiated the protective role of fat intake against HF. Animal studies corroborate these
findings, demonstrating that high-fat diets may ameliorate or even prevent HF through
mechanisms involving the reversal of cardiac remodeling and dysfunction, thus suggesting
the potential of high-fat diets as therapeutic interventions for HF [37]. In assessing the
impact of carbohydrates on CVD risk, both observational studies and MR analyses, ad-
justed for covariates and confounding factors, revealed no significant associations or causal
links between carbohydrate intake and CVD risk, in alignment with previous research
findings [4]. The current literature indicates that carbohydrate quality, rather than quan-
tity, significantly influences cardiovascular health [38,39]. The quality of carbohydrates,
classified as simple or complex carbohydrates or high-glycemic index (GI) and low-GI
foods, plays a crucial role in cardiovascular health [39]. High-quality carbohydrates, such
as whole grains, legumes, and fruits, are associated with lower CVD risk [40–43]. Diets rich
in high-GI carbohydrates have been associated with increased heart disease risk, whereas
low-GI diets appear protective [44]. This may explain the absence of significant findings in
our analyses, which did not discriminate between types of carbohydrates. Additionally,
our results revealed no substantive associations between sugar intake and CVD outcomes
in either the observational or MR analyses.

In contrast to conventional observational methodologies, MR mitigates confounding
factors and strengthens the analysis of genetic predispositions that influence dietary be-
haviors and disease susceptibility. MR findings indicate that fat consumption is protective
against HF and that protein intake mitigates stroke risk, corroborating our observational
data and bolstering the validity of our conclusions. Dose-response assessments via GAMs
have demonstrated significant nonlinear relationships between dietary fat and protein in-
take and cardiovascular outcomes, revealing a decrease in the protective effect of fat on HF
risk beyond a specified threshold, with a parallel pattern observed for protein and stroke
risk. Subgroup analyses further highlighted variations in the relationships between dietary
fat and HF and between protein intake and stroke risk across demographic factors such as
sex, ethnicity, and socioeconomic status. These disparities underscore the importance of
considering demographic attributes in the formulation of nutritional guidelines. Notably,
significant interactions in lower-income groups (interaction p = 0.016) suggest variable
associations between protein intake and stroke risk across economic strata, potentially
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reflecting a confluence of genetic, environmental, or lifestyle factors that influence cardio-
vascular health. Such insights are pivotal for devising targeted nutritional interventions
that accommodate cultural, economic, and biological diversity.

Nevertheless, MR analyses did not establish causal links between carbohydrate or
protein intake and HF or between protein and CAD, thus differentiating these findings
from observational data. Additionally, MR analysis indicated that each unit increase in
protein intake reduces hypertension risk by 0.02%, which is supported by a study suggest-
ing that higher protein intake is associated with a 26% reduction in hypertension risk per
additional protein source [45]. Interestingly, the MR results suggest a protective association
between fat intake and CAD. The cardiovascular effects of different types of fat are ex-
tremely complex because no effective method to distinguish dietary fat has been reported
in the literature, so the conclusion that fat has a protective effect on CAD should be viewed
with caution. Rigorous sensitivity analyses, as well as horizontal pleiotropy and hetero-
geneity tests, ensured the robustness of the MR results. In addition, discrepancies between
observational and MR results may arise from unaccounted confounders in observational
analyses [30], emphasizing the value of integrating MR methods to complement traditional
epidemiological findings for more robust causal inferences.

This study’s significant strengths include the use of NHANES data, which offer a large,
representative sample of the U.S. population, enhancing the generalizability of the findings.
Additionally, the use of MR analysis mitigates the confounding factors and reverse causality
inherent in traditional observational studies [46]. By using genetic variants as proxies for
dietary intake, MR provides insights that are less likely to be biased by confounders or
disease-related changes in diet. This study is the first to integrate NHANES data with
MR techniques to explore macronutrient-CVD relationships, identifying new pathways
for investigating dietary influences on disease. In both daily life and clinical settings, our
findings have significant practical implications, bridging the gap between scientific research
and real-world applications. The protective associations observed between fat intake and
heart failure, as well as between protein intake and stroke, challenge conventional dietary
wisdom and suggest a need for more nuanced nutritional guidance. In practice, these
results could reshape dietary recommendations for cardiovascular health. Individuals and
healthcare providers alike may consider a more balanced approach to macronutrient intake,
moving away from broad restrictions on fat consumption and toward ensuring adequate
intake of healthy fats and high-quality proteins. For example, patients at risk of heart
failure may be advised to incorporate sources of healthy fats into their diets, whereas those
with elevated stroke risk could focus on maintaining sufficient protein intake. Moreover,
the nonlinear relationships observed in our dose-response analyses suggest that there
may be optimal ranges for fat and protein intake, beyond which additional consumption
may not confer extra benefits. This underscores the importance of balanced nutrition
rather than extreme dietary approaches. However, these recommendations should be
tailored to individual patient needs, and the quality of fat and protein sources should
be considered. Our study offers several key lessons for both the scientific community
and the general public. Researchers highlight the importance of integrating multiple
methodologies, including observational studies and Mendelian randomization, to provide
a more comprehensive understanding of diet-disease relationships. The discrepancies
between our observational and MR results for some associations underscore the need
for caution in interpreting epidemiological findings and the value of genetic approaches
in nutrition research. For the broader scientific community, our work emphasizes the
complexity of nutrition science and the need for more nuanced, personalized dietary
recommendations. The observed variations across demographic subgroups suggest that
one-size-fits-all dietary guidelines may be insufficient.

However, several limitations merit acknowledgment. One primary limitation is the
lack of differentiation among types of macronutrients. Specifically, our analysis did not
distinguish between different types of dietary fat (saturated, monounsaturated, and polyun-
saturated fats), which have different effects on cardiovascular health and may also be one
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reason why we conclude that fat has a protective effect on CAD, contrary to most current
studies. Research indicates that while saturated fats are not associated with cardiovascular
risk, monounsaturated and polyunsaturated fats may have protective effects [5,47]. The
distinction between animal and plant proteins was not addressed in our analysis. Increas-
ing evidence suggests that the source of protein can differentially affect cardiovascular
health outcomes. Specifically, animal proteins are associated with increased mortality risk,
whereas plant proteins are linked to decreased cardiovascular risk [48–50]. By treating all
protein sources equally, our analysis may obscure these critical differences. Similarly, this
study did not differentiate between free sugars and nonfree sugars, which have substan-
tially different health impacts. Higher consumption of free sugars (from sources such as
high-sugar beverages, fruit juices, and sweets) is known to increase CVD risk [4]. Addition-
ally, our study did not account for interactions between different nutrients, which could
collectively influence cardiovascular health. These limitations highlight the complexity of
dietary assessment in large epidemiological studies, where detailed dietary information
is often sacrificed for broader data coverage. Thirdly, potential biases arising from popu-
lation differences between NHANES (primarily comprising U.S. residents) and GWASs
(primarily comprising Europeans) could affect the generalizability of our MR results owing
to differences in genetic background and lifestyle factors. Finally, the fact that the NHANES
data were based on self-report methods and did not contain specific biochemical measures
is indeed a feature of the NHANES data and, at the same time, a limitation of our study.
Future studies could incorporate specific biochemical measures such as blood glucose,
HbA1c, cholesterol, and blood pressure levels for a more precise analysis. Building on
our findings, we propose several key directions for future research. Studies should focus
on differentiating between sources of diet to refine our understanding of their impacts on
cardiovascular health. Long-term interventional trials are needed to confirm the efficacy
of dietary modifications on the basis of our results. Additionally, investigating genetic
interactions with dietary intake could pave the way for more personalized nutrition recom-
mendations. Research into the biological mechanisms underlying the observed protective
associations, particularly between fat intake and heart failure, may reveal new therapeu-
tic targets. Future studies could focus on using GWAS datasets that better represent the
NHANES population or conducting subgroup MR analyses within the NHANES dataset
to investigate the impact of dietary factors on cardiovascular diseases in specific ethnic
groups. Finally, developing and validating practical tools for implementing personalized
dietary advice in clinical settings will be crucial for translating these findings into effective
cardiovascular disease prevention strategies.

In conclusion, our study provides novel insights into the association between dietary
nutrients and CVD risk, highlighting the pivotal role of dietary modifications in the preven-
tion of CVDs at the population scale. Nonetheless, certain factors, including the potential
underlying biological mechanisms, warrant further exploration. To surmount the limita-
tions delineated in the present investigation, future research should endeavor to implement
a meticulous categorization of nutrients and undertake expansive, multiethnic prospective
studies to further the understanding and substantiation of these associations.

5. Conclusions

Our study, which integrates both observational data and MR analysis, demonstrated
that increased dietary fat and protein intake are associated with a reduced risk of car-
diovascular diseases, particularly heart failure and stroke. The protective effects of these
macronutrients highlight the potential of targeted dietary modifications to improve cardio-
vascular health. Future research should focus on identifying the specific types of fats and
proteins most beneficial for cardiovascular outcomes and further exploring the underlying
mechanisms.
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