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Abstract: Soil salinization is one of the major challenges for modern agriculture, posing a great
threat to soil health and food security. Field experiments were conducted to evaluate the effect of
seed coating on soil environment and maize growth in saline soils. Three treatments were applied
to maize seeds: coating with a microencapsulated microbial agent (ME), coating with microbial
only (MB), and no coating (CK). High-throughput sequencing of soil bacterial and fungal 16S and
ITS rRNA genes was performed using the Illumina HiSeq platform to analyze the effects of these
treatments on soil bacterial and fungal diversity and community structure. Additionally, the influence
of different treatments on endogenous hormones and yield of maize were investigated. It was found
that the coating with a microencapsulated microbial agent led to decreases in pH and electrical
conductivity (EC), while increasing the content of soil available phosphorus. This coating improved
soil microbial diversity, significantly increasing the relative abundance of the main bacteria genera,
Bacillus (34.9%), and the main fungal genera, Mortierella (190.4%). The treatment also significantly
enhanced indole-3-acetic acid (IAA) by 51.2%, contributing to improvements in resistance to salt
stress. The germination rate increased by 22.9%, the 100-grain weight increased by 12.7%, and grain
yield increased by 14.3%. The use of the microencapsulated microbial agent effectively mitigated the
adverse effects of salt stress on maize plants. This approach is beneficial for promoting sustainable
agriculture in saline soils.

Keywords: maize; saline stress; microencapsulation; hormones; yield; microbial diversity

1. Introduction

Soil salinization is one of the major challenges facing contemporary agriculture [1] and
seriously affects agricultural productivity [2]. According to climate change projections, the
number of salt-affected areas will increase in the future due to temperature and sea level
rises [3]. Natural factors such as arid climate, high evapotranspiration, low topographic
conditions, and groundwater levels can lead to further deterioration of saline soils [4],
but secondary salinization of the land caused by irrational human activities, such as
excessive use of chemical fertilizers and pesticides, heavy irrigation, and destruction of
surface vegetation by overgrazing, are the main factors that exacerbate soil salinization [5,6].
Currently, approximately 1.1 billion hectares of land are negatively affected by salinization
globally, and this area continues to grow at a rate of 10% per year [7], including more than
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20% of irrigated cropland [8]. There are about 99.3 million hectares of various types of
saline land resources in China, of which the total area of saline soils with prospects for
agricultural use is nearly 36.7 million hectares [9]. Under the current situation of arable
land protection and food security, it is important to develop saline agriculture to achieve
better production through sustainable and integrated use of genetic resources.

Soil salinity negatively affects plant physiological and metabolic processes in the form
of osmotic stress (early) and ionic toxicity (late) [10]; in particular, the seed germination and
seedling growth stages are the most sensitive stages of the plant life cycle [11]. Nowadays,
various measures, including physical, chemical, biological, and engineered hydraulic meth-
ods, have been taken to improve saline soils in order to increase crop productivity [12–14].
Bioremediation can utilize biological metabolic activities to reduce the concentration of
toxic and harmful substances in the environment or render them harmless, so as to restore
the polluted environment to its original state [15]. Salt-tolerant plants, which grow natu-
rally in saline soils, constitute only about 1% of the total flora [16] and are of insufficient
commercial value (staple food production), whereas many crops have a low tolerance to
salt and do not satisfy human food needs. Another strategy for bioremediation to miti-
gate the adverse effects of salt stress and enhance the viability of non-saline crops is the
use of salt-tolerant microorganisms [17]. According to a report [18], the introduction of
salt-tolerant microorganisms in salt-affected soils can increase the productivity of many
crops and improve the soil. Salt-tolerant bacteria improve plant growth and health through
a variety of mechanisms, including the activation of antioxidant defense mechanisms in
plants [19], increasing the fixation of atmospheric nitrogen or the solubilization of phos-
phorus, iron, and potassium [20], the secretion of extracellular polysaccharides (EPSs), the
production of ACC deaminase [10], the maintenance of homeostasis [21], osmotic pressure
accumulation [22], and induced production of phytohormones [17].

A strain of Pontibacter actiniarum DSM 19842 was isolated from fresh kelp obtained
from the seashore of Yantai City, Shandong Province, China, and it was found that the use
of Pontibacter actiniarum was able to increase wheat resistance to salt stress and reduce the
content of oxidizing substances [23]. However, environmental factors (e.g., temperature,
humidity, pH, etc.) are key factors affecting bacterial activity [24]. It has also been found
that the metabolic activity and tolerance of microorganisms to harsh environments can be
enhanced by encapsulating bacteria in miniature hermetic capsules [25]. Immobilization of
cells by specific carriers can effectively reduce microbial loss and increase bioavailability
compared to direct inoculation of bacterial preparations [26].

Maize belongs to the saccharine group of plants and is classified as moderately sen-
sitive to salinity, especially at the germination and seedling stages, more so than at later
stages of development [27]. In our previous study, indoor potting experiments using
microencapsulation technology with Pontibacter actiniarum DSM 19842 on wheat seeds
were carried out. It was found that the impacts of salt stress on wheat growth were re-
duced [28]. In this study, the effects of microbial microencapsulated seed coating on maize
growth and salt tolerance were researched in the field. The role of marine bacteria in
regulating the abundance, composition, and function of native soil microbial communities
was further investigated. This study provides new insights into microbially mediated
salt tolerance and the interactions between introduced and native microorganisms in the
rhizosphere. It may offer novel approaches for enhancing the viability of non-saline crops
in saline environments.

2. Results
2.1. Effect of Different Seed Treatments on Soil Characters and the Inter-Root
Microbial Community
2.1.1. Soil Characteristics

Table 1 shows the changes in the soil chemical characteristics under different treat-
ments. The application of microencapsulated seed coating (ME) resulted in notable changes
in soil characteristics. Specifically, pH decreased from 8.3 to 8.0, soil electrical conductivity
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(EC) decreased from 4.2 to 3.3 dS m−1, and soil available phosphorus content increased
from 21.7 to 27.3 mg kg−1. For the microbial coating (MB), only the EC decreased from 4.2
to 3.7 dS m−1.

Table 1. The soil chemical characteristics in the 0–20 cm layer.

Treatment pH EC
dS m−1

Organic Matter
g kg−1

Available Nitrogen
mg kg−1

Available Phosphorus
mg kg−1

Available Potassium
mg kg−1

CK 8.3 b 4.2 b 15.2 a 48.5 a 21.7 b 117.6 a

ME 8.0 a 3.3 a 16.5 a 49.5 a 27.3 a 118.3 a

MB 8.1 b 3.7 a 16.2 a 51.2 a 23.7 b 116.1 a

Notes: Different letters indicate significant differences by LSD test at p < 0.05.

2.1.2. Soil Microbial α-Diversity

Figure 1 shows the results of alpha diversity analysis for both the soil bacterial com-
munity and the soil fungal community. For the soil bacterial community (Figure 1A), the
observed species and Chao1 indices of the ME were significantly higher than that of CK,
with average increases of 9.2% and 9.6%, respectively. The ACE and Shannon indices were
obviously higher than those for CK, with increases of 8.9% and 2.8%, respectively. For
the MB, the observed species, Chao1 and Shannon index were significantly higher than
those for CK, increasing by 7.9%, 9.3% and 1.9%, respectively, and the ACE index was
significantly higher by 8.0%. There was no significant difference between the ME and MB.
For the soil fungal community (Figure 1B), observed species, Chao1, ACE and Shannon
indices for ME were significantly higher than those for CK, with respective increases of
25.2%, 31.9%, 28.1% and 15.4%. For MB, the observed species, Chao1 and ACE indices were
significantly higher than those for CK, increasing by 16.5%, 18.5% and 18.2%, respectively.
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2.1.3. Soil Microbial β-Diversity

To further analyze the effects of different treatments on the beta diversity of soil
bacterial and fungal communities, principal component analysis (PCA) at the OTU level
was performed on nine samples from three treatment groups (ME, MB and CK). As shown
in Figure 2, the distribution of samples was more dispersed among the ME, MB and
CK groups, indicating that microcapsule and microbial co-treatment, as well as single
microbial treatment, caused significant effects on the composition of soil bacterial and
fungal communities. Downscaling analysis explained a total of 74.5% of the variation in
bacterial community structure, with the first variable axis (PCo1) and the second variable
axis (PCo2) explaining 58.2% and 16.3% of the variation in bacterial community structure
(Figure 2A). For the fungal community structure, downscaling analysis explained a total of
80.6% of the variation, with PCo1 and PCo2 accounting for 48.7% and 31.9%, respectively
(Figure 2B). The results showed that the three treatments were distributed in different
quadrants. Samples from the same treatment replicates clustered closer together, which
indicated lower variability within each treatment group. The distance between the ME, MB
and CK groups was larger, indicating great differences in bacterial flora across different
treatments. Additionally, the ME and MB groups had samples distributed farther apart,
suggesting greater variability in fungal flora in these two treatment groups.
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2.1.4. Soil Microbial Community Composition

The relative abundance of the top 10 phyla was calculated to further interpret the
effect of microcapsules on the composition of soil bacterial and fungal communities. At the
phylum level, 43 bacterial and 15 fungal phyla were detected in the samples. For soil bacte-
ria, the dominant phylum was Proteobacteria (23.5% ± 3.1%), followed by Acidobacteriota
(22.0% ± 2.6%), Chloroflexi (12.4% ± 2.3%), Bacteroidota (7.2% ± 1.8%), and Actinobacte-
riota (6.8% ± 1.6%). For soil fungi, the major phylum was Ascomycota (46.8% ± 14.9%),
followed by Mortierellomycota (14.1% ± 7.5%), Basidiomycota (6.8% ± 4.2%), Chytrid-
iomycota (5.3% ± 3.4%), and Rozellomycota (2.8% ± 2.5%).

At the bacterial community phylum level (Figure 3A), the relative abundance of
Proteobacteria and Patescibacteria in ME was highly significantly higher compared to CK,
increasing by 16.1% and 109.8%. Conversely, the relative abundance of Chloroflexi and
Desulfobacterota decreased significantly by 33.5% and 94.9%, respectively. In MB, the
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relative abundance of Chloroflexi and Desulfobacterota decreased significantly by 23.7%
and 59.3%, respectively.
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At the fungal community phylum level (Figure 3C), the relative abundance of Mortierel-
lomycota, Rozellomycota, and Chytridiomycota in ME significantly increased by 89.0%,
254.1%, and 126.3%, respectively. In contrast, the relative abundance of Ascomycota
decreased significantly by 60.0%. In MB, the relative abundance of Peritrichous Mortierel-
lomycota, Basidiomycota, Rozellomycota and Chytridiomycota increased significantly
by 191.0%, 160.2%, 120.4% and 949.3%, while that of Ascomycota decreased significantly
by 50.0%.

At the genus level, 670 bacterial and 266 fungal genera were detected. The effects
of different treatments on the top 15 classified bacterial and fungal genera in the inter-
root soil of maize are shown in Figure 3B,D. The main soil bacterial genera were Bacillus,
Vicinamibacteraceae, RB41, A4b, and Pseudomonas. ME showed a significant increase in
Bacillus, Steroidobacter, Saccharimonadales, and Pseudomonas, as compared to CK. The relative
abundance of Bacillus, Steroidobacter, Saccharimonadales and Pseudomonas was significantly
increased by 34.9%, 108.8%, 136.1% and 114.1%, respectively. Conversely, the relative abun-
dance of Subgroup_25, A4b, SBR1031 and Desulfuromonadaceae was significantly decreased
by 52.1%, 34.0%, 73.4% and 40.7%. In MB, the relative abundance of Sphingomonas was
significantly increased by 91.9%, and Bacillus and Pseudomonas were highly significantly
increased by 15.9% and 60.0%, whereas Subgroup_25 and Desulfuromonadaceae were reduced
by 60.0% (p < 0.05) and 25.8% (p < 0.01).

The main soil fungal genera were Mortierella, Stachybotrys, Lophotrichus, Mycena, and
Idriella. In ME, the relative abundance of Mortierella and Powellomyce increased by 190.4%
(p < 0.01) and 83.5% (p < 0.05), whereas significant reductions were observed in Striaticoni-
dium (97%, p < 0.05), Stachybotrys (240.4%, p < 0.01), and Lophotrichus (195.9%, p < 0.01).
In MB, the relative abundance of Mortierella, Mycena, Idriella and Schizothecium increased
significantly by 89.4% (p < 0.05), 7.9 times (p < 0.01), 55.3 times (p < 0.01) and 35.9 times
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(p < 0.01), respectively, whereas Stachybotrys and Lophotrichus decreased significantly by
46.0% (p < 0.05) and 217.8 times (p < 0.01).

2.1.5. Soil Microbial Symbiotic Network

After filtering out low-abundance OTUs (<0.1% abundance), microbial co-occurrence
network analysis was constructed using the Spearman correlation matrix (Spearman cor-
relation coefficient r > 0.8, p < 0.001). The analysis revealed more positive than negative
correlations among OTUs in ME, MB, and CK. In the bacterial community network analysis,
ME showed an increase in nodes (5.6%), number of connections (4.1%) and modularity
index (11.3%) of the inter-root microbial co-occurrence network (Figure 4B). MB showed an
increase in nodes (9.1%) (Figure 4C). In the fungal community network analysis, ME demon-
strated a significant increase in nodes (46.1%), number of connections (22.7%) and average
degree of nodes (19.1%) of the inter-root microbial co-occurrence network (Figure 5B). MB
showed significant increases in nodes (11.2%), number of connections (2.3%) and average
degree of nodes (8.7%) (Figure 5C).
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2.2. Effect of Different Seed Treatments on Maize Growth and Yield
2.2.1. Endogenous Hormones in Maize Seedlings

As depicted in Figure 6, IAA content significantly increased by 51.2% in ME and 41.6%
in MB (Figure 6A). Conversely, JA content decreased drastically by 101.7% in ME and 59.9%
in MB (Figure 6B). The ABA and SA content in seedlings in ME decreased significantly
by 60.5% and 8.9%, respectively. Compared with MB, the ABA content in ME decreased
significantly by 47.8%, and the JA content also dropped significantly by 26.0%, while there
was no significant difference in IAA and SA content.
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2.2.2. Maize Growth and Yield

There were great differences in the yield, 100-grain weight and germination of maize.
Compared with CK, the germination percentage was high significantly increased by 22.9%
in ME and 10.7% in MB (Figure 7A). The 100-grain weight was significantly increased by
12.7% in ME (Figure 7B). Yield was significantly increased by 14.3% in ME and 5.5% in MB
(Figure 7C). There was no significant difference in either stem thickness or plant height
(Figure 7D,E).
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2.3. Relationship of Microbial Communities with Maize Growth and Soil Characteristics

Mantel’s test and correlation analysis showed that the germination rate of maize was
significantly positively correlated with soil available phosphorus (AP) and yield. It was
also significantly positively correlated with 100-grain weight and significantly negatively
correlated with soil pH and electrical conductivity (EC). Maize yield was significantly
positively correlated with AP and 100-grain weight. Yield was also significantly negatively
correlated with soil pH and EC (Figure 8). Six variables were associated with soil bacterial
community, with the strongest correlation being with pH, followed by germination rate, EC,
AP and yield. Six variables were correlated with soil fungal community, with the strongest
correlation being with yield and pH. There was no significant difference between plant
height, stem diameter and microbial community of maize.
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3. Discussion

Salt stress is an abiotic form of stress that negatively affects plant growth and crop
productivity [28,29], and phytohormones are essential for plant growth and development.
Defense hormones such as ABA, SA, and JA and the growth hormone IAA play important
roles in mediating salt stress signals and controlling the balance between plant growth
and stress responses [30]. In this experiment, results showed reduced levels of ABA, SA
and JA, but IAA levels showed a significant increase in ME. The increase in IAA can
promote root growth, expand the surface area and improve root uptake efficiency, which
is particularly important in water- or nutrient-constrained environments. This revealed
that the application of microencapsulated salt-tolerant bacteria (Pontibacter actiniarum DSM
19842) seed coating promoted seed germination through the IAA metabolic pathway.
Similar results were also found: inoculation of seeds with Pseudomonas spp. enhanced IAA
synthesis [31,32]. Usually, the levels of ABA, JA, and SA increase with the intensification of
salt stress [33,34]. However, in this experiment, the significant decrease in ABA, JA, and
SA could be attributed to the activity of salt-tolerant bacteria present in both ME and MB.
Additionally, the most substantial reduction in ABA and JA was observed in ME, indicating
that the microcapsules composed of potassium alginate and calcium carbonate effectively
helped to alleviate salt stress in maize.
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Meanwhile, Zvinavashe [35] et al. found that mixing and applying silk fibroin, alginate
and rhizobacteria to the seed surface resulted in the formation of more rhizomes in the roots
of cauliflower beans, which were able to increase germination and yield. In this study,
the capsule wall of microcapsules, calcium alginate, is the main compound of macroalgae,
and this compound can promote root growth, enabling plants to absorb more water and
nutrients, thus mitigating the effects of salt stress on growth [36,37]. Furthermore, studies
have demonstrated [38] that alginate acts as a plant growth bio-stimulant and could
attract additional microorganisms in the soil, contributing to the diversity of the soil
microbial community.

The alpha diversity indicator is an important indicator for evaluating the diversity of
microbial communities and is related to the richness, evenness and diversity of microbial
communities [39]. The increase in microbial diversity could improve soil fertility and crop
yield [40]. In this experiment, regarding the diversity of bacteria, it was found that there
was a significant increase in the observed species, Chao1, ACE, and Shannon indices in ME,
indicating that the microencapsulated salt-tolerant bacterial seed coating could increase the
abundance and diversity in the inter-root zone. Similarly, regarding the diversity of fungi,
ME also showed a significant increase in the observed species, Chao1, and ACE indices,
but not the Shannon index, indicating a lesser effect on fungal diversity than on bacterial
diversity. This is consistent with the findings of Bruggen [41] that elevated salinity has a
greater negative impact on fungi than on bacteria. Therefore, microencapsulated Pontibacter
actiniarum DSM 19842 helped to improve the microbial diversity in saline soil, especially in
terms of bacterial diversity.

Microbial community structure is important for soil nutrition. In this study, the phy-
lum Ascomycota was the largest bacterial group, including many salt-resistant bacteria
(e.g., Pseudomonas, Sphingomonas). Recent studies showed that Pseudomonas played an im-
portant role in promoting plant growth and controlling rhizosphere nutrient accumulation
and stress responses [42]. Sphingomonas was a common dominant bacterium in saline soil,
capable of withstanding barren and harsh environments, exhibiting the characteristics of
denitrification and non-symbiotic nitrogen fixation, as well as degrading toxic substances
in soil [43]. Additionally, phosphorus-fixing microorganisms were increased, which could
secrete organic acids to acidify their surrounding environment and reduce the pH of rhizo-
sphere soil, thus optimizing the microbial environment and alleviating the damage caused
by salt stress on plants [44]. The typical genera include Bacillus, Pseudomonas, Penicillium,
Aspergillus, Arbusclar mycorrhiza and Mortierella. Bacillus had been used a lot to improve the
salt tolerance of plants and produce many beneficial substances and functions for plant
growth, such as indoleacetic acid, ammonia, nitrogen fixation and phosphorus solution [45].
Mortierella could interact with arbuscular mycorrhiza in saline–alkali soils to enhance soil
phosphatase activity, thereby promoting plant grow. Furthermore, the ecological niche
of pathogenic fungi flora such as Ascomycota was reduced, which contained a variety of
plant pathogens that could cause serious damage to crops, such as Fusarium spp., Ustilago
spp., and Aspergillus spp. As a result, the decreased soil pH and increased soil available
phosphorus content and maize grain yield were observed in this study.

Co-occurrence network analysis revealed microbial interactions, enabling a compre-
hensive understanding of microbial structure and assembly patterns [46]. The results
indicated that the network complexity of bacteria was higher than that of fungi. Fungi
were found to be more sensitive to salt stress. The network complexity of fungi inoculated
with microencapsulated salt-tolerant bacteria was significantly higher compared to CK,
indicating that inoculation with microencapsulated salt-tolerant bacteria had more effects
on the fungal microbial community. This suggested that fungi played a more significant
role than bacteria in shaping the symbiotic network structure. Microbial communities
can adapt to changes in salt stress by enhancing cooperation among microorganisms and
altering key microorganisms [47]. In this study, it was observed that ME increased the
abundance of Bacillus, Pseudomonas, Sphingomonas and Mortierella. Inoculation of Pontibacter
actiniarum DSM 19842 can change the structure of the soil microbial community, increase
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salt-tolerant bacteria and phosphate-solubilizing bacteria in soil, and further improve the
health of the soil environment.

In conclusion, the application of microencapsulated salt-tolerant bacteria (ME) seed
coating improved the soil microbial community structure, decreased the pH and electric
conductivity, increased the soil available phosphorus and IAA content, and therefore
resulted in the highest maize grain yield. This study highlighted the benefits of inoculating
microencapsulated salt-tolerant bacteria through seed coating as an efficient bioremediation
strategy for saline soils.

4. Materials and Methods
4.1. Indoor and Field Experiment Design

A maize seedling experiment was carried out in a climatic chamber (day/night tem-
perature, 25 ◦C/20 ◦C; photoperiod, 12 h; light intensity, 240 µmol m−2 s−1; humidity, 50%).
Field experiments were carried out on coastal saline land, located in Guangrao County,
Dongying City, Shandong Province (longitude: E 118◦17′, latitude: N 36◦56′) (Figure 9). The
average annual temperature is 12.9 ◦C, with annual precipitation ranging from 508.6 mm
to 583.0 mm. The soil in the experimental area is loam, and the top soil characteristics in
the experimental plots are shown in Table 2. The maize (Zea mays L.), variety Zhengdan
958, was sown with three replications of each treatment. The row and plant spacings are
60 and 20 cm, respectively. The same agricultural practices were adopted according to the
local experiences. The bacterium used in the indoor Petri dish and field experiments was
Pontibacter actiniarum DSM 19842 [23], which was previously screened and isolated from
kelp by our group.
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Table 2. The soil chemical properties in the 0–20 cm layer.

Soil Layers
cm pH EC

dS m−1
Organic Matter

g kg−1
Total Nitrogen

g kg−1
Total Phosphorus

g kg−1
Total Potassium

g kg−1

0–20 8.22 4.51 15.18 1.09 1.03 18.80

CK involved sterilized and untreated maize seeds. For MB, Pontibacter actiniarum
DSM 19842 was cultured in LB liquid medium for 48 h. The bacterial solution was diluted
with sterile water to OD600nm = 0.9, and the sterilized maize seeds were placed inside
the diluted bacterial solution for 30 min with stirring under the conditions of 30 ◦C and
180 rmp [35]. For ME, microcapsules were prepared by endogenous emulsification using
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Pontibacter actiniarum DSM 19842 as the capsule core. The above bacterial solution (5 mL)
was homogeneously mixed with sterile 2% potassium alginate (50 mL) and calcium carbon-
ate (0.5 g), and the mixture was dispersed into the soybean oil phase containing 1% (w/v)
Span 80 (100 mL), which was emulsified by stirring at 400 rpm for 5 min. Then, stirring
was continued in soybean oil (50 mL) containing glacial acetic acid (0.25 mL) for 10 min.
After standing and layering, the aqueous phase was removed and centrifuged, washed
with phosphate buffer and dried to obtain microcapsules [23].

In the seedling experiment, ten maize seeds from ME, MB and CK were added to Petri
dishes with filter paper at the bottom and moistened with NaCl solution at a concentration
of 100 mM (11.2 dS m−1).

The field experiment was carried out on 30 × 30 m2 land, with three treatments set up:
maize seeds without coating (CK); maize seeds coated with microencapsulated Pontibacter
actiniarum DSM 19842 (ME); and maize seeds coated with Pontibacter actiniarum DSM 19842
only (MB).

4.2. Pontibacter actiniarum DSM 19842 Features

Pontibacter actiniarum DSM 19842 was observed using a JSM-7401F scanning electron
microscope (SEM) (JEOL, Tokyo, Japan) (Figure 10A). The surface is smooth; the bacterium
is Gram-negative and catalase-test-positive (Figure 10B), and in LB solid medium with
added 15% NaCl, it can achieve normal growth. The Salkowski method showed that the
supernatant of the strain was pink, indicating that the strain had the ability to produce IAA
(Figure 10C). On the NBRIP phosphorous solubilizing medium (Figure 10D), there was a
transparent circle around the colony, indicating that the strain had the ability to dissolve
inorganic phosphate. On the CAS medium (Figure 10E), the blue color around the colony
turned orange-yellow, indicating that the strain was capable of producing iron carriers [48].
In previous studies in our laboratory, it was found that the addition of this strain in a
saline–alkali stress environment can promote the growth, development and tolerance of
wheat roots [23].
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Figure 10. Functional testing of Pontibacter actiniarum DSM 19842. (A) Scanning electron microscope
scans of Pontibacter actiniarum DSM 19842. (B) Catalase characteristic experiment for catalase positivity.
(C) IAA grown on tryptophan with nothing added. (D): Phosphorus solubilization ability on NBRIP
culture medium. (E) Siderophore production on CAS culture medium.
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4.3. Plant Hormone Detection

After different seed treatments and sowing for 7 days, samples of maize shoots were
collected, quickly frozen in liquid nitrogen and ground into powder. Phytohormones (indole-
3-acetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were
detected in the seedlings by UPLC-MS (Ultra-Performance Liquid Chromatography–Mass
Spectrometry). The samples were accurately weighed into 50 mg of sample powder and
loaded into 2 mL centrifuge tubes; 500 µL of extraction solution (IPA:H2O:HCl = 2:1:0.002)
was added and the mixture was vortexed shaken for 10 s at 4 ◦C and 900 rpm for 30 min;
then, 1 mL of extraction solution (CHCl3) was added and the mixture was vortexed and
shaken for 10 s at 4 ◦C and 900 rpm for 30 min. Then, after centrifugation at 4 ◦C and
14,000 rpm for 5 min, the two phases were formed. We transferred 1.2 mL of the lower layer
of the liquid to be blow-dried under nitrogen at room temperature. Then, 0.1 mL of MeOH
was reconstituted, shaken at 4 ◦C and 900 rpm for 20 min, and centrifuged at 14,000 rpm
for 5 min, and the supernatant was extracted, passed through a 0.1 µm filter membrane,
loaded into injection vials, and put on the machine for measurement. Ultra-high-pressure
liquid chromatography (Waters Acquity UPLC; Allwegene, Chongqing, China) was used.
Mobile phase A was water (0.05% formic acid) and mobile phase B was acetonitrile (0.05%
formic acid). The column temperature was 35 ◦C, the sample temperature was 15 ◦C, and
the mobile phase flow rate was 0.3 mL·min−1. The sample gradient elution procedure is
shown in the table below. Mass Spectrometry was performed with a 5500 Qtrap-MS System
(AB SCIEX, Framingham, MA, USA). Lon Source: HESl; spray voltage (-): 3000; capillary
temperature: 320; sheath gas: 30; aux gas: 10; spare gas: 5; probe heater temp.: 350; S-Lens
RF level: 55. FULL MS-SIM: resolution: 70,000; AGC target: 3 × 106; maximum IT: 100;
scan range: 50 to 750m z−1 [46].

4.4. Determination of Soil Characteristics and Maize Yield Factors

Soil inter-root samples were collected at the most important stage, the silking stage
(78 days after sowing), and the topsoil (0–20 cm) samples were randomly selected by using
the excavation method from each plot with a consistent density of maize root residue; large
particles were removed around the inter-root, and inter-root soils were selected at 2 mm of
the inter-root for sampling, with three replications for each treatment, and these samples
were stored in self-sealing bags, put on dry ice, transported to the laboratory quickly, and
refrigerated at −80 ◦C for subsequent high-throughput sequencing analyses. At the same
time, some soil samples were dried naturally for the determination of soil available nitro-
gen, phosphorus, potassium, organic matter, pH and electric conductivity. Soil available
nitrogen was measured by the alkali diffusion method. Soil available phosphorus was
measured by the Olsen method. Soil available potassium was measured by the flame
photometer method. Organic matter was determined by the scorching method, electric
conductivity (soil/water = 1:5) was determined using a conductivity meter, and soil pH
(soil/water = 1:2.5) was measured via the potentiometric immersion method [49]. Field
maize emergence was calculated when the third leaf appeared, and stem thickness, plant
height, 100-grain weight and yield were measured at harvest.

4.5. Soil Microbial DNA Extraction, PCR Amplification and Sequencing

Genomic DNA from soil samples was extracted using the E.Z.N.A.® Soil DNA Kit
(Omega Bio-Tek, Norcross, GA, USA). DNA quality and concentration were measured
using a Nanodrop2000 (Thermo Fisher Scientific, Inc., Waltham, MA, USA). DNA samples
were stored at −20◦ C for subsequent experiments. The V3-V4 region of the bacterial 16S
rRNA gene was amplified with primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′). For fungi, the ITS1 region in the rRNA gene
was amplified by PCR using the primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-
3′) and ITS2R (5′-TGCGTTCTTCATCGATGC-3′), and the final primers synthesized were
amplified on an ABI9700 PCR instrument (Applied Biosystems, Inc., Waltham, MA, USA).
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Paired-end sequencing was performed based on the Illumina Miseq (San Diego, CA, USA)
high-throughput sequencing platform [50,51].

The reaction system of the PCR amplification system included 2 µL of the DNA
template, 1 µL of the forward primer (5 µM), 1 µL of the reverse primer (5 µM), 3 µL of
BSA (2 ng/µL), 5.5 µL of ddH2O and 12.5 µL of 2 × Taq Plus Master Mix (Vazyme Biotech
Co., Ltd., Nanjing, China), and the following procedures: pre-denaturation (95 ◦C, 5 min),
denaturation (95 ◦C, 45 s), annealing (55 ◦C, 50 s), extension (72 ◦C, 45 s), final extension
(72 ◦C, 10 min), and holding (4 ◦C). After the QIIME (v1.8.0) software split the downstream
data according to the Barcode sequence, the data were filtered and spliced using the Pear
(v0.9.6) software. After splicing, the UPARSE algorithm of the Vsearch (v2.7.1) software
was used to cluster the sequences with a similarity threshold of 97% [52]. The sequences
were compared using the Silva128 database.

4.6. Statistical Analyses

Maize growing paramenters, soil chemical properties and the relative abundance of
microorganisms were analyzed by one-way analysis of variance (ANOVA), LSD multi-
ple comparisons (p < 0.05), and Pearson correlation analyses using SPSS.25 software and
plotted using GraphPad Prism (10.1.2). A-diversity indices were calculated by the Micro-
biotaProcess package in R (4.4.1). Differences in bacterial and fungal community structure
between samples were compared using principal coordinate analysis with the ‘vegen’ and
‘stats’ packages in R. The Mantel test was carried out using the packages ‘linkET’, ‘patch-
work’ and ‘ggplot2’ in R and plotted by the packages ‘vegen’ and ‘stats’. Co-occurrence
networks for fungi and bacteria were constructed using the ‘WGCNA’, ‘psych’ and ‘igraph’
packages in R. In order to reduce the bias of correlation coefficients caused by sparse OTU
matrices, observed species with a frequency of occurrence lower than 1/6 and an average
relative abundance lower than 0.01% were excluded from the network construction, and
the correlation level was set at |R| > 0.8, p < 0.01. The co-occurrence networks of bacteria
and fungi were visualized using Gephi v 10.1 software.

5. Conclusions

(1) Improvement of soil environment: Inoculating microencapsulated salt-tolerant bacte-
ria (Pontibacter actiniarum DSM 19842) helped to reduce soil pH and electric conduc-
tivity and increase soil available phosphorus. The richness and uniformity of bacterial
and fungal communities significantly increased in saline soil. This led to an increase in
the complexity of microbial co-occurrence networks, revealing its important potential
in improving microbial diversity.

(2) Regulation of endogenous hormones: Inoculation with microencapsulated salt-tolerant
bacteria significantly reduced the content of ABA, SA and JA in maize seedlings, while
increasing the content of the growth hormone IAA, contributing to improvements in
resistance to salt stress.

(3) Improvement in maize productivity: Due to improvements in the emergence rate and
100-grain weight, the grain yield of maize was significantly increased, demonstrating
that the seed coating played a key role in optimizing the growing environment and
enhancing maize productivity.
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